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A Neural Network Representation of Generalized Multiparticle
Mie-Solution

Ying Li Thong and Tiem Leong Yoon*

Abstract—Generalized Lorentz-Mie Theory (GLMT) provides analytical far-field solutions to
electromagnetic (EM) scattering of an aggregate of spheres in a fixed orientation. One of the
computational codes that implements the GLMT calculation is provided by Xu, dubbed GMM. which
returns EM responses such as the extinction cross section, σext, given the information of incident
wavelength, particle arrangement, common radius, and reflective indices of the aggregate. We have
attempted to represent the GMM code in the form a neural network dubbed NNGMM. The NNGMM
obtained was stress tested and systematically quantified for its accuracy by comparing the σext predicted
against that produced by the original GMM code. The σext produced by the NNGMM for arbitrary
aggregates at random wavelength yielded a good fidelity with respect to that calculated by the GMM
calculator up to an R-squared value of above 99% level and mean squared error of ≈ 5.0. The realization
of NNGMM proves the feasibility of representing the GMM code by a neural network. The optimally-
performing NNGMM obtained in this work can serve as an alternative computational tool for calculating
σext in place of the original GMM code at a much cheaper cost, albeit with a slight penalty in terms of
absolute accuracy.

1. INTRODUCTION

The scattering of electromagnetic (EM) radiation with an aggregate made up of spherical particles is
a complicated process that could be modelled from first-principles within the framework of Maxwell’s
equations. The simplest solution to this problem was proposed by Mie Gustav in 1908 for the simplest
case of a homogeneous sphere [1]. The solution to the general case of multiparticle scattering for an
arbitrary aggregate made up of spherical particles is referred to as the generalized Lorentz-Mie theory
(GLMT). There are many rigorous models at different levels of approximation to solve such a complex
calculation in EM scattering [2–19]. One of such models is the Generalized Multi-particle Mie-solution
(GMM) [13–18, 20–25] which provides analytical far-field solutions to electromagnetic scattering by an
aggregate of spheres in a fixed orientation. GMM was implemented as a Fortran package by Xu [26–
29]. It can be used to compute the optical responses of an EM scattering event with a multiparticle
aggregate, such as the cross sections of the scattered EM radiation, extinction, or absorption curves
as a function of scattering angle at fixed wavelength. The aggregate is assumed to be made of non-
intersecting homogeneous spheres embedded in a vacuum surrounding. GMM has been shown to provide
impressive agreement with experimental results as compared with the GLMT and geometrical optics
results [26]. The input information required by the GMM code includes geometrical arrangement in
3-dimension, common radius, and both the real and complex refractive indices of each sphere in the
multi-particle aggregate. EM responses such as the extinction cross section (σext) in a scattering event
between an incident EM radiation and the aggregate is returned as an output.
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Quite generally, the computational cost of the GMM code increases with size parameter, i.e., the
number of spheres in the aggregate. In practice, the GMM code is limited by the amount of RAM in
the computer hardware. The code was developed around the end of 1990s, and in principle can handle
calculations involving a very large number of spheres. In practice, however, the maximum number of
spheres that can be handled by the code is limited by the available memory in the computer hardware.

From a computational perspective, the GMM code reads in the input of geometrical arrangement of
the spheres sitting in 3-dimension space, radius, and reflective indices (of the spheres), to return an EM
response based on the generalized multiparticle Mie solution. In this sense, the GMM code is merely
a ‘calculator’ that output non-trivial numerical results when it is fed with a list of numerical input
representing a particular ‘point’ in the multi-dimensional configuration space of the aggregates. In the
subsequent discussion, we shall use the term ‘configuration’ to refer to the set of numerical lists required
by the GMM as input for producing an optical response in an EM scattering event. Specifically, the
configuration of an aggregate made up of N spheres with a common radius composed of the following
variables: {xi, yi, zi; r;N ;λ;n, κ}, i ∈ [1, N ]. Here, {xi, yi, zi} refers to the variables representing the x-,
y-, and z-coordinates, r the common radius of the spheres, N the number of spheres, λ the incident EM
wavelength, {n, κ} the real and imaginary parts of the reflective indices which are assumed common to
all spheres, respectively. Given a list of numerical values {xi, yi, zi; r;N ;λ;n, κ}, i ∈ [1, N ], the GMM
code shall return either a converged numerical output or otherwise (e.g., when the coordinates of distinct
spheres overlap, or the numerical solution to the GLMT is not found).

Acting as a ‘calculator’, the GMM code maps input configuration data {xi, yi, zi; r;N ;λ;n, κ},
i ∈ [1, N ] living in a large dimensional space (where each variable is continuous) to a numerical output
(e.g., a cross section of extinction σext) living in a 1D continuous parameter space. A large amount of
such configuration data {xi, yi, zi; r;N ;λ;n, κ}, i ∈ [1, N ], can be artificially generated and fed into the
GMM code to produce a corresponding converged or non-converged numerical output. This opens up an
interesting question: Suppose that a neural network (NN) is trained with a sufficiently large number of
artificially generated random configurations. Is such a trained NN capable of predicting, to a reasonably
acceptable level of accuracy, the extinction cross section of configurations to which the NN has never
been exposed before? For the sake of easy referencing, such a NN that can supposedly represent the
GMM calculator is dubbed ‘Neural Network representation of the Generalize Multiparticle Mie-solution’,
or ‘NNGMM’ for short, hereafter. In machine learning jargon, this is known as a regression problem,
in which numerical prediction of a continuous output is made based on patterns or rules identified from
the training dataset.

The major objective of the present work is to demonstrate a proof of concept whereby the inherent
knowledge coded in the GMM program can be transferred into the weights of the trained neutral network
[which in practice is digitally saved in the form of, e.g., a *.h5 file in the Hierarchical Data Format
(HDF)]. In other words, we wish to show that the GMM code can be represented (or approximated) by
a regression model. It is known that any complex function can be approximated using powerful function
fitting method based on deep neural networks [30]. Neural networks have excellent performance for
function fitting. As such, NN is a natural choice for building a regression model as it offers as many
free parameters (i.e., the weights relating the nodes in the neural network) as required to approximate
the GMM as a single function of multivariable input (i.e., the coordinates, size, and reflective indices of
the aggregates). The NNGMM can be considered as a proxy that can practically ‘represent’ the GMM
calculator without the need to know the detailed algorithm coded into the GMM theory.

The present work, prompted by the above-mentioned motivation, reports the results of our attempt
to realize such a possibility. It was found that the NNGMM program could achieve a good level of
accuracy in predicting the extinction cross section based on the metric measured in terms of R-squared
value and mean squared error.

It is worth mentioning that the present attempt to represent the GMM by an NN is relevant to the
so called ‘forward electromagnetic problem’ [31]. In this problem, one seeks to obtain the information
of the EM scattered fields given the information of the scatterers in the computational domain and
the incidences. Machine learning based algorithms have been adopted as an alternative approach
to devise the so-called EM ‘solvers’ in place of convention computational electromagnetic methods,
such as finite difference method (FDM) [32, 33], finite element method (FEM) [34], boundary element
method (BEM) [35], method of moments (MoM), and their variants [36, 37]. These are computationally
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costly methods for solving forward EM problems, especially for electrically large structures. The book
by Ren et al. [38] provides a detailed discussion on the technicality of applying deep learning (DL)
techniques in EM scattering problems, assessing its potential to replace traditional numerical solvers in
real-time forecast scenarios. Generally speaking, ML based EM solvers are gaining popularity, see, e.g.,
[39–43]. For example, [43] proposes a generative adversarial network (GAN) based fast electromagnetic
scattering solver. It is a full-fledged learning-based approach to solve forward EM scattering problems for
a dielectric scatterer located in a predefined spatial domain. Generally speaking, ML based approaches
for solving the forward EM scattering problem reported in the literature vary from one to another in
terms of scope, system, theoretical strategy, implementation details, and the type of ML algorithm used.
As a comparison, the scope of the present manuscript is simpler. It mainly aims to demonstrate the
feasibility of representing a GMM, a specific form of forward EM solver, by a NN.

The paper is organized as follows. In Section 2, the methodology for generating configurations for
the purpose of training and testing is elaborated. The procedure of training and testing the trained NN
is also detailed in the same section. In Section 3, we discuss the results and interpret the performance
of the trained NN. A conclusion follows in Section 4.

2. METHODOLOGY

The program of creating a NN representation of GMM was divided into two stages. The first stage
involves the generation of training and testing configuration data, while the second retraining and stress
testing of the *.h5 files. These two stages are detailed in the following two subsections.

2.1. Data Generation

The GMM Fortran code reads in the configuration of an aggregate in the form of a data file with a
common file name ‘bk7s2.k’. The format of the ‘bk7s2.k’ is shown in Table 1. The format of the bk7s2.k
file is as follows:

• The first line refers to the wavelength λ, in nm.

• The integer in second row N refers to the number of spheres.

• In row three or above, the lines are interpreted as xi, yi, zi, r, n, κ.

The following lists the lower and upper limits of each of the variables in the bk7s2.k input file:

• λ ∈ [λinit, λlast]

• N ∈ [1, Nmax], Nmax a positive integer equal or larger than 1.

• r ∈ [rmin, rmax] , with rmin = 0.99r0, rmax = r0 + 3rmin. r0 a positive real value in units of nm
representing a reference radius.

• xi ∈ [xmin, xmax] = [−L/2, L/2], where L = 2rmax ·Nmax ·f , f a positive real factor. yi and zi share
the same lower and upper limits as xi.

• n ∈ [nmin, nmax] , with nmin, nmax real, positive numbers.

• κ ∈ [κmin, κmax] , with κmin, κmax real, positive numbers.

Table 1. The format of the bk7s2.k file used as input to the GMM code.

λ

N

x1, y1, z1, r, n, κ

x2, y2, z2, r, n, κ

x3, y3, z3, r, n, κ

...

xN , yN , zN , r, n, κ
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All variables in the bk7s2.k file, namely, {xi, yi, zi; r;N ;λ;n, κ}, i ∈ [1, N ] were generated randomly
within their respective limits as stated. The lower and upper limits of these random variables in turn
were controlled by the free parameters λinit, λlast, Nmax, r0, f, nmin, nmax, κmin, κmax. Table 2 lists the
values of these free parameters used in this work. Each random configuration could contain different
numbers of spheres, equal or less than the positive integer Nmax.

Table 2. Free parameters used to control the ranges of the input variables in Table 1.

Variable values

[λinit, λlast] [50 nm, 100 nm]

Nmax 10

r0 1 nm

f 0.99

[nmin, nmax] [0.1, 1.0]

[κmin, κmax] [0.1, 1.0]

A simple shell script was written to generate a bk7s2.k file that contains random values assigned to
the variables {xi, yi, zi; r;N ;λ;n, κ}, i ∈ [1, N ], according to the above prescription. Once the random
input data in the bk7s2.k was generated, it was fed into the GMM calculator for execution to return
an output file ‘gmm01f.out’. It contained the numerical responses calculated by the GMM calculator
for an EM wave interacting with the aggregate, among others, the extinction (σext), absorption (σabs),
scattered (σsca) cross sections at zero Euler angles, and the dimensionless polarization components of the
scattered intensity as a function of scattering angle. In the present work, for the sake of demonstrating
the proof-of-concept of the proposed NNGMM approach, only the σext cross section was monitored as
the numerical target. This process is depicted in Fig. 1.

Randomly generated data 

{x , y , z ; r; N; λ; n, κ}
i i i

bk7s2.k GMM gmm01f.out σext

Figure 1. Flowchart of a randomly generated input file bk7s2.k being fed into the GMM calculator to
produce a value of extinction cross section σext.

The value of σext calculated by GMM was appended into a *.npy file named ‘label.npy’ while
the corresponding input configuration {xi, yi, zi; r;N ;λ;n, κ}, i ∈ [1, N ] into config.npy. The *.npy
file format is popularly used in Python software package for intensive data processing. A simple
program was developed to repeatedly generate many configurations and the corresponding σext’s to
populate a config.npy file (and the corresponding label.npy file) with ∼ 105 non-repeated random
configurations. Not all of the generated configurations would produce a converged output by the GMM
code. Non-convergent random configurations were filtered out and not appended into the config.npy file.
A specifically designed boundary condition was imposed in the random generation of the configuration
to minimize overlapping spheres, so that about ∼ 25% of the total random configurations generated
got filtered out. These random configurations were divided in a mutually exclusive manner into two
separate directories, data train/ and data test/. data train/ contains 170 while data test/ 19 pairs of
{config.npy, label.npy} files. Each of the paired {config.npy, label.npy} files contains approximately
∼ 105 random configurations (after filtration). The files in the data train/ directory were to be used for
training the NN model while those in data test/ were to be used for stress testing the retrained model.

As a detailed technical note, in a config.npy file, a single random configuration containing N
sphere is represented by a row vector with 4Nmax + 4 components, despite N ≤ Nmax. The first 4Nmax

components were reserved for {xi, yi, zi; r}, i ∈ [1, N ], with the last 4 for {N,λ, n;κ}. Those components
reserved for {xi, yi, zi; r} where i ∈ [N + 1, N + 2, ..., Nmax] would be simply set to zero. The shape of
the row vectors in config.npy was designed in this manner to provide flexibility to accommodate the
varying number of spheres N in each random configuration.
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2.2. Incremental Retraining and Systematic Monitoring of the NN

A neural network which can ‘predict’ the value of σext when it was presented with an arbitrary
configuration was to be trained. To this end, a multi-layer neural network, namely, the Sequential model
tensorflow.keras.models package from Keras, a high-level API that is built on top of TensorFlow [44, 45],
was compiled and saved after it was trained with a data set. The saved model, which is basically a *.h5
file that stores the weights and biases of the neurons in its layers, was then called to make prediction
against all data sets kept in the data test/ directory.

Each NN model was compiled with a specific set of hyperparameters. The hyperparameters included
the number of layers (depth of the NN), number of neurons (width of the NN), dropout rate, activation
function, and epochs. Table 3 lists illustrative values of hyperparameters used in the NN. In particular,
the ReLu activation function, defined as f(x) = max(0, x), was used throughout our work. The NN
obtained with this activation function produces acceptably good accuracy (as discussed in Section 3).
With a fixed set of hyperparameters, a model was first compiled and trained by feeding the data using
a {config.npy, label.npy} data pair from the data train/ directory. For the sake of easy referencing, this
model shall be identified as 0.h5. It was subjected to a series of stress tests by using it to predict the
corresponding σext value of all config.npy files sitting in the data test/ directory. The values of σext
predicted by the model 0.h5 for all config.npy files, each composed of Nc ∼ 105 random configurations,
were compared against the values in the corresponding ground-truth files (i.e., label.npy). The process
as described above is depicted in Fig. 2.

Data generation 

data_train/ 

{config.npy, label.npy} 

data_test/ 

{config.npy, label.npy} 

A trained NN model saved in 

the form of a0.h5 file 

Stress-testing the 0.h5 file by using it to predict 

the label, i.e.,     , of the configuration samples sitting 

in data_test/

Tensorflow.keras.model 

Accuracy performance of the 0.h5 file is quantified 

by comparing the output of the prediction against 

the ground-truth stored in data test/label.npy   , mse of the 0.h5model R
2

σext

_

Figure 2. Flowchart showing the training of a .h5 file using a {config.npy, label.npy} data set
stored in the directory data train/. The resultant .h5 file is then used to predict the output of
sample configurations stored in the directory data test/config.npy. The performance accuracy of 0.h5
is evaluated in the form of R2 and mse.

The comparison can be conveniently visualized by displaying a scatter plot of σext(prediction) vs.
σext(ground truth) (for an illustrative example, see the scatter plots in the last column in Fig. 4). By
examining such scatter plots, the qualitative agreement between the predicted values σext(prediction)
and σext(ground truth) can be conveniently visualized. E.g., if the data points in these scatter plot
distribute closely about the y = x symmetrical line, the agreement is good, and vice versa. The
accuracy of the prediction by a NN model could be quantitatively quantified by calculating the mean
square error (mse) and coefficient of determination (R2, a.k.a. R-squared) values of the σext(prediction)
vs. σext(ground truth) plot. R-squared value, which is related to the fraction of variance unexplained
(FVU), is defined as per

R2 = 1− FVU, FVU =
SSres
SStot,

(1)
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SSres =

Nc∑
i=1

(σext,i (prediction)− σext,i (ground truth))
2 , (2)

SStot =

Nc∑
i=1

(σext,i (prediction)− σext )
2 , (3)

σext =
1

Nc

Nc∑
i=1

σext,i (prediction) (4)

mse is defined as

mse =
1

Nc

Nc∑
i

(σext,i (prediction)− σext,i (ground truth))
2 (5)

where σext,i refers to the extinction cross section associated with a random configuration i, and Nc is
the total number of random configurations in a config.npy file. Note that the values of σext generated
by the GMM calculator approximately lie in the range ∼ 0 to ∼ 6× 102.

The results can also be presented in the form of a scatter plot in which both the values of
σext(ground truth) and σext(prediction) were plotted at their common configuration represented by a
numbered integer in the horizontal axis. An example of σext(prediction), σext(ground truth) scatter
plots as a function of their common configuration label is shown in the last third column from the right
in Fig. 4.

Figure 3. Flowchart showing the process of ‘retraining’ and ‘systematic monitoring’ of the NN models.
It is a generalization of the procedure as depicted in Fig. 2, where the n.h5 model is incrementally
updated with more config.npy data sitting in the data train/ directory.
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Figure 4. The test results of the NN model compiled with hyperparameter set p2@c22 for three selected
stages retraining, namely 1.h5, 21.h5 and 40.h, when they were subjected to a common stress test using
configuration file test.479600 c p10@c27.

A third way for visual comparison of the prediction against the ground truth was to sort the values
of the σext(ground truth) (blue dots) and σext(prediction) (orange dots) in ascending order and then
display them as a monotonically increasing curve on a common x-y plane. Both sorted σext(ground truth)
and σext(prediction) curves obtained were then overlaid on the same plot such as that illustrated in the
last second column from the right in Fig. 4.

The three types of scatter plots mentioned above display the overlapping pattern of the predicted
and the ground truth values for all configuration labels in a given config.npy file, serving a useful
perspective of how well the predicted and ground-truth data sets agree to each other.

The model .h5, after finishing its stress test, was retrained by using another {config.npy, label.npy}
data pair from the data train/ directory at a fixed learning rate. The resultant retrained model, which
was labelled as 1.h5, was expected to contain the knowledge already acquired in .h5 plus that from the
current training data. 1.h5 was subjected to the same stress tests as experienced by .h5 using the same
set of test data in the data test/ directory. The average mse and R-squared value of the stress tests for
1.h5 were calculated and recorded. The same procedure was repeated, each time using a new training
data pair stored in data train/ to produce a new retrained *.h5 model file. The performance metric
of the successive *.h5 models, such as 2.h5, 3.h5, ..., was consecutively monitored. The two averaged
metrics (i.e., mse and R-squared) for each *.h5 model were calculated based on a total of 7,768,766
random configurations separately stored in 19 config.npy files in the data test/ directory. The huge
number of random configurations used in the stress tests should be statistically sufficient as a justifiable
means to measure the robustness and accuracy of the retrained NN models. It is noted that a higher
numbered *.h5 model was trained with a relatively larger random data than a lowered number *.h5
file. As such it is logically feasible to anticipate that the performance of the *.h5 model would grows
as it was trained with more data until it hits a saturation level above which additional training data
of random samples would not lead to performance improvement. The above-mentioned procedure is
dubbed ‘retraining’ and ‘systematic monitoring’. Fig. 3 illustrates the flowchart of this procedure.

The hyperparameters of the NN models in the present study were fine-tuned in the following way.
As mentioned in the paragraph above, the performance of any given *.h5 model was measured in terms
of average R-squared value and mse over the test data sets. The two performance metrics for all
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incrementally increasing *.h5 models were first measured at a fixed set of hyperparameters composed
of {depth of the NN, width of the NN, dropout rate, learning rate, activation function, batch size,
epochs}. The values in the set of hyperparameters were then systematically varied. For each set of
varied hyperparameter values, the two performance metrics for all incrementally increased *.h5 models
were measured. The trend of the performance metrics in the incrementally increased *.h5 models as a
function of hyperparameter set was then systematically monitored and compared. Generally, NN models
compiled with different parameter sets would display different trends of performance. The desired trend
would be one where the accuracy performance gets saturated to an R-squared value ∼ 1.00 and a
minimum mse after a NN model was trained beyond a threshold amount of training data.

When a model underwent a training process, the weights in the NN were updated in a cyclic manner
for a number of rounds specified by the ‘epochs’ hyperparameter. One of hyperparameters, namely,
validation split, was set to a value of validation split = 0.2 in the present study. In each training
epoch, a fraction 0.7 (= validation split) of the given training data was chosen randomly for training
the model. The rest of the training data, 0.3(= 1− validation split), was used for the validation of the
retrained model in that epoch. The effective accuracy of the NN in predicting σext was not sensitive to
the hyperparameter validation split. For pragmatic application of the NN representation of the GMM
calculator, the accuracy metric of the validation on the NN model during the epoch training cycles was
not an important indicator to monitor. The effective accuracy of the NN model was not determined by
the validation metric of the model in training epochs. A retrained NN model displaying very impressive
validation metrics at the end of the epoch cycles was not necessarily capable of producing prediction
accuracy at a similar level when it was challenged with not-seen-before configurations. From a practical
point of consideration, ultimately the accuracy of the NN model was to be independently justified via
the stress tests using the test data sets but not the validation metric during training epochs. Another
hyperparameter, namely the loss function (which was set to ‘mean squared error’), was also insensitive
to the accuracy of the NN model. As such, both hyperparameters were not tuned in the present study.
The mean squared error loss function is defined via mse = 1

N

∑N
i (yi − ŷi)

2, where ŷi are the expected
or target outputs; yi are the predicted outputs from the NN; and N is the number of samples.

3. RESULTS AND DISCUSSION

Using the methodology as described in the previous section, the prediction performance of NN models
compiled with different hyperparameter sets were systematically investigated. Table 3 displays two
selective examples to illustrate such hyperparameter sets. The trend and results of NN models obtained

Table 3. Illustrative hyperparameter sets.

Tunned

hyperparameters
set name

p2@c22 p10@c25

depth of the NN 2 2

width of the NN
750 (layer 1)

100 (layer 2)

750 (layer 1)

100 (layer 2)

dropout rate
0.6 (layer 1)

0.6 (layer 2)

0.6 (layer 1)

0.6 (layer 2)

learning rate 0.001 0.001

activation function
relu (layer 1)

relu (layer 2)

relu (layer 1)

relu (layer 2)

batch size 8 8

Epochs 6 6

Fixed
loss function mean squared error

validation split 0.3
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with other hyperparameter sets were also investigated but not presented in this manuscript, as they
were largely similar to that of the two illustrative NN models in the limit the accumulated data for
retraining the *.h5 models became sufficiently large.

As mentioned in the methodology section, a model with a fixed set of hyperparameters was
retrained in an incremental manner. The NN after each retraining was successively saved and named
0.h5, 1.h5, 2.h5, ..., etc. The prediction accuracy of two selective NN models compiled with different
hyperparameter sets, namely p2@c22 and p10@c25, using one of the stress test configurations labelled
test.479600 c p10@c27, is displayed in the last columns of Figs. 4 and 5. This test data contains a total of
479600 configurations, where each configuration was essentially a set of numerical values in the format as
given in Table 1 and was generated randomly based on the prescription as explained in Section 2.1. The
results produced by three selected stages of retraining, namely, 1.h5, 21.h5, and 40.h5, were displayed
in Fig. 4 (for p2@c22) and 2 (for p10@c25). Be reminded that in the present study, there were 19 test
configurations such as test.479600 c p10@c27 in the data test/ directory. test.479600 c p10@c27 was
arbitrarily chosen merely for the purpose as an illustration. The pattern and trend of the output by
the NN model using other test configurations were largely the same. Monitoring the rows in Fig. 4
(for p2@c22) in the sequence 1.h5 → 21.h5 → 40.h5 provides a glimpse of the trend of the evolution of
a NN in its ability to predict the extinction cross section as the accumulated data used for retraining
each *.h5 models increases. The accumulative training data for the initially trained model 1.h5 and
the subsequently retrained models 21.h5 and 40.h5 were 366540, 4030760, and 7505169 respectively for
p2@c22. Fig. 5 displays similar information to that in Fig. 4 but for a different model compiled with
hyperparameter set p10@c25. The performances for these two models were largely similar in that the
R2 value in both NN models saturates to ∼ 1 and a relatively small mse when they were retrained with
a sufficiently amount of training data.

Figure 5. The test results of the NN model compiled with hyperparameter set p10@25 for three selected
stages for retraining, namely 1.h5, 21.h5 and 40.h, when they were subjected to a common stress test
using configuration file test.479600 c p10@c27.

Figure 6 shows the trend of the accuracy performance as a function of the amount of training data
for NN models with hyperparameter set p2@c22 and p10@c25. The accuracy performance is quantified
in terms of R2 and mse. In Fig. 6 the initial part of the R2 vs. amount of accumulative training data
curves does not display gradual or incremental climb in accuracy as more data were added in the re-
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training process. Instead, the curves show that the *.h5 models have achieved a near-to-ideal accuracy
earlier on after being trained with only the first few 105 of configuration samples. Be reminded that
each config.npy file contains a large amount (∼ 105) of configuration samples. Each discrete point in
the scatter plot in these figures represents a NN retrained with about ∼ 105 or more data samples
than the previous one. The ‘abrupt’ jump to a near-to-idea accuracy is likely due to the following
possibility: With just one or two chunks of ∼ 105 training sets, the NN has already been able to learn
the encoded information of the GMM calculator up to a saturation level. It is anticipated that R2

would display an incremental increase in the initial segment of the curve if each chuck of training data
file (i.e., config.npy) contains a much smaller amount of training data than ∼ 105. Despite that the
process of incremental increase in the learning accuracy is not explicitly demonstrated in Fig. 6 due
to the excessively large chuck of training configuration samples in each config.npy file, what ultimately
counts is that the resultant NN *.h5 files are able to make accurate prediction. This has clearly been
demonstratively achieved by the near-to-ideal behaviour in R2 and mse of these curves.

p
2
@

c2
2

 

 

p
1
0
@

c2
5

 

 

Figure 6. The trend of accuracy performance varies with incremental amount of training data. Each
dot in the scatter plot denotes the accuracy performance of a *.h5 model retrained with an accumulated
number of training configuration indicated in the horizontal axis.

R2 was observed to be a less sensitive measure of the prediction accuracy, evidenced by the rather
flat scatter plot that runs closely along the ‘ideal’ (red-dotted) line in Fig. 6. On the other hand, the
scatter plots of mse in Fig. 6 for both illustrative hyperparameter sets display erratic peaks at certain
retrained *.h5 model. Despite such erratic peaks, the mse fluctuates about a mean value of about ≈ 10.0
(for p10@c25) and ≈ 5.0 (for p2@c22). The mse achievable in other hyperparameter sets (not reported
here) were largely similar to these two illustrative results. The smallest possible mse achievable by all
NN models with various hyperparameter sets was found to be about ≈ 5.0. From the generic results
shown in Fig. 6, it is seen that the accuracy of retrained NN models could achieve an average mse as low
as 5.0 and an R2 ∼ 1.0, but cannot attain the ideal value of mse = 0. If an NN has zero mse, it means
that such a model could 100% accurately predict the value of σext for any given arbitrary aggregate
configuration with number of spheres less or equal to 14 but larger or equal than 2. However, given the
range of parameters in Table 2 used to generate the random configurations, most σext values lie below
≈ 450 (this is easily seen from the scatter plots in Figs. 4 and 5), while some will spread beyond 450
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and extend up to ≈ 600. With the assumption that σext was approximately distributed uniformly in
the interval ≈ 0 to ≈ 450, an averaged mse of ≈ 5 in the σext prediction by the retrained NN model
appears feasibly small and acceptable for practical applications. In principle any *.h5 model producing
an acceptably small mse in the stress tests could be used as a NN representation of the GMM calculator.
Since the NN model compiled with hyperparameter set p2@c22 appears more accurate than p10@c25
by and large, the last *.h5 model, namely, 40.h5 with the hyperparameter set p2@c22 was selected and
used as the NN representation of the GMM calculator in future application.

The computational cost of both NNGMM and GMM has been estimated in a server equipped with
an AMD Ryzen 5 3600X 6-core processor and a Nvidia GeForce GTX 1060 GPU. Note that when a
trained NNGMM file is invoked to make a σext prediction, it does so by using the “model.predict(X test)”
function in Tensorflow, which in turn makes use of the available GPU to execute the computation. On
the other hand, the GMM code can only be executed in a CPU processor. It took about 5.3 hours to
produce the output (i.e., σext) of 150 k configurations (28.3 k configurations per hour) in parallel mode
using 11 threads with the Ryzen 5 processor. On the other hand, the trained NNGMM spent roughly
10 minutes to produce the predicted value of σext of 479.6 k configurations (∼ 2, 900 k configurations per
hour) using one CPU thread plus the GPU. The enhancement of about 100 times in the computational
speed-up of the NNGMM is partly due to the advantage of GPU-assisted hardware over the CPU-only
GMM. However, the major contributor of the impressive enhancement is because NNGMM ‘calculates’
a predicted output by inserting the input configuration into the *.h5 file, which almost instantly returns
an output by the “model.predict(X test)” function packaged into Tensorflow. In contrast, the GMM has
to go through a full-fledge computational routine to calculate the output via the built-in algorithmic
solutions to the Maxwell’s equations. The speed-up of computational efficiency in NNGMM is an
obvious value-added advantage over the GMM code.

4. CONCLUSION

The current work has provided a proof of concept methodology to represent the Generalized Multi-
particle Mie-solution calculator in the form of a neural network representation using data generated
within the parameter space as specified in Table 2. The results presented in the present work illustrate
the robust possibility to realise a NN representation of the GMM calculator when it is trained with a
sufficiently large amount of random data. The amount of accumulated training data required to achieve
an acceptably good mse, and R-squared *.h5 model is not a fundamental concern, because random
configuration data for training purposes could be generated at a low computational cost. The NN
representations of the GMM calculator obtained in the present work achieves a near-to-ideal accuracy
earlier on after being trained with only the first few 105 of configuration samples. The hyperparameters
of a working NN model that could effectively represent the GMM calculator required some fine-tuning.
From a pragmatic point of view, any set of hyperparameters that could produce a NN *.h5 file that
passes the stress test to a satisfactory level (e.g., R2 ≈ 1.0, mse ≈ 5.0) suffices, irrespective of their
exact values. Table 3 exemplifies the possible choices of hyperparameters that could do the job. The
exact choice of the hyperparameters was by no means unique nor perfectly optimum. Neither were
they difficult to tune. The NN model, compiled with hyperparameter set p2@c22, 40.h5, was shown
to predict with a good accuracy of R2 ≈ 1.0 and mse ≈ 5.0. It could be deployed as an effective NN
representation of the GMM calculator to calculate predicted values of σext for any arbitrary aggregate of
spheres with number N ≤ 10. It is reasonable to expect that a sufficiently accurate NN representation
of the GMM calculator for a much larger parameter space (e.g., for number of spheres in the aggregate
much larger than Nmax = 10, or the case where the reflective indices are different for each sphere in the
aggregate) than that listed in Table 2 could be realized by following the methodology described in this
manuscript in a straight-forward manner.
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