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Electromagnetic Wave Scattering Analysis by a Window Aperture
on a Conducting Wall

Cuong M. Bui, Khanh N. Nguyen, and Hiroshi Shirai*

Abstract—High frequency electromagnetic plane wave scattering by a large rectangular glass window
on a conducting wall has been analyzed in this study. Scattering far-fields are formulated by means
of the Kirchhoff approximation in which the fields are obtained from radiation integrals due to the
equivalent current sources on the virtually closed window apertures. In order to consider the effect of
the window glass, a dielectric slab layer has been inserted in the window hole, and the reflection and
transmission through the slab are treated via waveguide modal theory. The validity of our formulation
has been confirmed by the numerical comparison with another method for an empty window case. The
effects of the window dimension, the glass layer, and the polarization have been discussed for practical
high frequency mobile communications.

1. INTRODUCTION

Recently, with the increasing popularity of using mobile devices, the outdoor-to-indoor wireless
communication system is instrumental in providing fast and reliable communication channels between
indoor subscribers and outdoor base stations through building walls and windows. In an urban area,
high-frequency radio signals penetrate building walls, and the signals heavily attenuate due to the
conduction loss of the wall material. Then, it may be natural to assume that the wall is conducting wall
which yields no penetration, and window apertures would be primary gates for such communication.
Therefore, a study of the scattering field of high-frequency electromagnetic waves by a window placed
on the conducting wall plays a crucial role for understanding outdoor-indoor wireless communication
pathway [1].

The evaluation of the scattering by a building window may be estimated from the scattering
by a hole perforated on a thick conducting screen. Many works have been reported for estimating
the electromagnetic scattering by slit/hole structures by utilizing various calculation methods [2–
9], but these works have treated rather small apertures compared with the wavelength. Morse and
Rubinstein analyzed the diffraction by a slit on an infinitely thin screen by an eigenfunction expansion
in Mathieu functions [2]. Although this expansion solution exhibits rapid convergence for relatively
narrow slits, the method is limited for the infinitely thin slit. For a thick conducting screen, Kashyap
and Hamid [3] employed the Wiener-Hopf method and scattering matrix techniques. However, they
mainly considered relatively narrow slit apertures. Also, the Fourier transform combined with the
mode-matching technique has been successfully used to analyze high-frequency scattering by a narrow
slit [4, 5]. This method may not be effective for high frequency scattering analysis because the method
solves a time-consuming matrix equation which arises to assure the field continuity at the hole’s aperture
for determining the modal excitation coefficients. A hybrid method of finite element and boundary
integral methods also gives efficient and accurate solutions for an inhomogeneously filled aperture [6],
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and a three-dimensional slot in a thick conducting plane [7]. Hongo and Ishii have applied the Weber-
Schafheitlin integral to solve a diffraction by a thick conducting screen [8]. This method is called as
Kobayashi Potential (KP) method, and has been extended to analyze a diffraction by a rectangular
hole [9]. However, in a practical wireless communication scenario, when building windows dimensions
are large compared with the wavelength, these methods may have numerical convergence problems, and
require a large amount of memory and CPU time.

In the high-frequency regime, it would be better to apply asymptotic methods such as the
Geometrical Theory of Diffraction (GTD) [10, 11] and Kirchhoff approximation (KA) [12–15]. While
the GTD method gives pretty accurate results for estimating diffraction fields by canonical structures,
the application to the present problem would be difficult, since one needs knowledge of diffraction
coefficients by corners and dielectric wedges. Accordingly, the KA method is used in this study to
formulate the scattering by a rectangular window aperture on a conducting wall.

The scattering by the window aperture can be treated as radiation from the equivalent magnetic
current on the virtually closed aperture by the KA method. This study is an extension of the previous
research on the scattering by a two-dimensional thick slit [14] and by rectangular empty hole [15]. Effect
of window glass is now inserted to evaluate the more practical scattering effect of the building structure.
This modification makes the formulation involved as it includes the reflection and transmission at the
dielectric glass layer. Interactive contribution from the window hole is also considered as the secondary
radiation field from the equivalent currents excited by the internal waveguide modal fields, in which the
reflection and transmission at the glass layer can be treated rigorously.

This paper is structured as follows. The scattering far-field by a rectangular hole with a material
slab layer is formulated in Section 2. Comparison with another method has been made to check the
validity of our analysis, and some numerical results are presented in Section 3 to show the effect of
the window aperture size, the glass layer, and the polarization, followed by the conclusion in Section 4.
In the following discussion, the time-harmonic factor ejωt is assumed and suppressed throughout the
context.

2. FORMULATION

Figure 1 describes an incident plane wave impinging on a rectangular hole of length a, width b, and
thickness c on a thick conducting screen. Inside the hole, a window glass is simulated by a material slab
layer whose relative material parameters are given by εr and µr, and the thickness is c2 − c1. For later
analysis, the entire scattering region is divided into three regions: I) upper semi-infinite space (z > 0),
II) inside the hole (−c < z < 0), III) lower semi-infinite space (z < −c).

An arbitrary polarized incident plane wave may be decomposed into two polarizations: the
transverse electric (TE) and the transverse magnetic (TM) fields with respect to the incident plane
and written as

Ei = (ETMθ̂0 + ETEϕ̂0)e
−jki·r, (1)

Hi =

√
ε0
µ0

(−ETMϕ̂0 + ETEθ̂0)e
−jki·r, (2)

where ki (with |ki| = k = ω
√
ε0µ0), r, ε0 and µ0 represent the free space incident wave number vector,

the position vector to the observation point, the free space permittivity and permeability, respectively.
Symbol ‘̂ ’ denotes the unit vector. In what follows, TE and TM polarizations will be analyzed separately.

By the Kirchhoff Approximation (KA) method [12–15], the scattering field may be given by the
radiation from the magnetic currents on the closing aperture of the hole, as shown in Figure 2. The
magnetic current sources M±

1 excite a scattering field Es
1 in the upper region (z > 0) and a field Ew

inside the hole (−c2 < z < 0). The field Ew experiences the reflection and transmission at the slab
layer and generates additional current sources M11 at the upper aperture and M2 at the lower aperture
to yield the secondary scattering field to the exterior region I and III. The field inside the hole may
be expressed in terms of rectangular waveguide modes, so that the reflection and transmission of the
modal field at the material layer can be calculated theoretically by using waveguide modal theory. In
region I, there also exists a reflected field due to the conducting screen at z = 0, and this contribution
is omitted in the following analysis.
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Figure 1. A rectangular hole in a thick
conducting screen.

Figure 2. Cross sectional view and scattering
process through the rectangular hole.

2.1. TE Polarization

Equivalent currents M±
1 on the virtually closed upper aperture (|x| < a/2, |y| < b/2, z = 0±) may be

derived from the incident electric field as [12]

M±
1 (x, y, z = 0±) = Ei|z=0± × (±ẑ) = ±ETE(cosϕ0x̂+ sinϕ0ŷ)e

jk(x sin θ0 cosϕ0+y sin θ0 sinϕ0). (3)

The current M+
1 excites the primary scattering field Es

1, while the current M−
1 excites the field Ew

inside the hole.

2.1.1. Primary Scattering Field Es
1

In region I, the scattered field Es
1 may be derived as a radiation from the above equivalent magnetic

source M+
1 through a vector potential F1 as [16]

Es
1 = − 1

ε0
∇× F1. (4)

When an observation point is located far from the hole, the vector potential F1 can be approximately
calculated as

F1 ∼
ε0e

−jkr

2πr

∫
S′
M+

1 (r
′)ejkr

′ ·̂rdS′ =
ε0e

−jkr

2πr

∫
S′
M+

1 (r
′)ejk(x

′ sin θ cosϕ+y′ sin θ sinϕ)dS′, (5)

where S′ denotes the aperture (|x′| < a/2, |y′| < b/2, z′ = 0+) where the equivalent current M+
1 exists.

r′ is the position vector to the aperture source point on S′ as

r′ = x′x̂+ y′ŷ + z′ẑ. (6)

After the vector potential F1 is evaluated analytically, the primary scattering far-field Es
1 can be

obtained from Eq. (4) by ignoring r−2 and higher order terms as

Es
1r ∼ 0, (7)

Es
1θ ∼

−2jETE

πkr
e−jkrA sin (ϕ0 − ϕ), (8)

Es
1ϕ ∼ 2jETE

πkr
e−jkrA cos θ cos (ϕ0 − ϕ), (9)

where

A =
sin [(ka/2)(sin θ0 cosϕ0 + sin θ cosϕ)]

sin θ0 cosϕ0 + sin θ cosϕ

sin [(kb/2)(sin θ0 sinϕ0 + sin θ sinϕ)]

sin θ0 sinϕ0 + sin θ sinϕ
. (10)
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2.1.2. Modal Field Ew inside the Hole

While the upper equivalent current M+
1 yields the upper scattering field Es

1, the lower equivalent current
M−

1 in Eq. (3) excites the field Ew in the hole which is considered as a rectangular waveguide. Thus,
the modal field propagating downward can be derived by Hertz potentials Π ′ and Π ′′ [17]:

Ew(r, r′) = ∇×∇× ẑΠ ′(r, r′)− jωµ0∇× ẑΠ ′′(r, r′), (11)

Hw(r, r′) = jωµ0∇× ẑΠ ′(r, r′) +∇×∇× ẑΠ ′′(r, r′), (12)

where these potentials are expressed by other scalar potentials S ′, S ′′ as [17]:

Π ′(r, r′) = −M−
1 (r

′) · ∇′ × ẑS′(r, r′), (13)

Π ′′(r, r′) = − j

ωµ
M−

1 (r
′) · ∇′ ×∇′ × ẑS′′(r, r′), (14)

with ∇, ∇′ being operators applied for coordinates (x, y, z) and (x′, y′, z′), respectively. Potentials
S ′(r, r′) and S ′′(r, r′) can be derived by utilizing the Dirichlet and Neumann boundary conditions at
the waveguide wall as [15, 17]:

S ′(r, r′) =
∞∑

m=1

∞∑
n=1

−2je−jkm,n|z−z′|

abkm,n[(mπ/a)2 + (nπ/b)2]

· sin
[mπ

a

(
x+

a

2

)]
sin

[nπ
b

(
y +

b

2

)]
sin

[mπ

a

(
x′ +

a

2

)]
sin

[nπ
b

(
y′ +

b

2

)]
, (15)

S ′′(r, r′) =

∞∑
m=0

∞∑
n=0

−jϵmϵne
−jkm,n|z−z′|

2abkm,n[(mπ/a)2 + (nπ/b)2]

· cos
[mπ

a

(
x+

a

2

)]
cos

[nπ
b

(
y +

b

2

)]
cos

[mπ

a

(
x′ +

a

2

)]
cos

[nπ
b

(
y′ +

b

2

)]
, (16)

where km,n is the modal wavenumber in z-direction

km,n = k
√

1− (mπ/ka)2 − (nπ/kb)2, (17)

and

ϵi =

{
1 (i = 0)

2 (i > 0).
(18)

Substituting M−
1 into Eqs. (13), (14), the field inside the hole may be obtained by integrating over

the aperture source. Then the field is found to be TEmn rectangular waveguide modes only. Thus, the
components of waveguide fields can be derived directly from Eqs. (11), (12), or a representative Hw

z
component as

Hw
z =

√
ε0
µ0

∞∑
m=0

∞∑
n=0

Fw
m,ne

jkm,nz cos
[mπ

a

(
x+

a

2

)]
cos

[nπ
b

(
y +

b

2

)]
, (19)

where

Fw
m,n =

π2ϵmϵnE
TE

k2ab
B0

m,n[(mkb)2 + (nka)2] sin θ0 cosϕ0 sinϕ0, (20)

with B0
m,n is given as

B0
m,n =

(−1)m+1ej(ka/2) sin θ0 cosϕ0 + e−j(ka/2) sin θ0 cosϕ0

(mπ)2 − (ka sin θ0 cosϕ0)2

· (−1)n+1ej(kb/2) sin θ0 sinϕ0 + e−j(kb/2) sin θ0 sinϕ0

(nπ)2 − (kb sin θ0 sinϕ0)2
. (21)

When the rectangular waveguide modal fields are incident on the material slab layer as in Figure 2,
modal reflection and transmission occur. These reflected and transmitted modal fields from the slab
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can be derived rigorously from the waveguide modal theory with the reflection coefficient Rm,n and the
transmission coefficient Tm,n as

Rm,n =
[(k′m,n)

2 − (µrkm,n)
2](ej2k

′
m,n(c1−c2) − 1)e−j2km,nc1

(k′m,n + µrkm,n)2 − (k′m,n − µrkm,n)2e
j2k′m,n(c1−c2)

, (22)

Tm,n =
4µrkm,nk

′
m,ne

j(k′m,n−km,n)(c1−c2)

(k′m,n + µrkm,n)2 − (k′m,n − µrkm,n)2e
j2k′m,n(c1−c2)

, (23)

with k′m,n is the modal wavenumber in z-direction inside the slab layer as

k′m,n = k
√

εrµr − (mπ/ka)2 − (nπ/kb)2. (24)

2.1.3. Secondary Scattering Field Es
11

In the case of an empty hole (εr = µr = 1 or c1 = c2), one can easily show that Rm,n = 0, Tm,n = 1,
and the formulation coincides with the previous derived results in Ref. [15]. The reflected modal field
ER propagates toward the upper aperture and radiates the secondary scattering field Es

11 in region I.
This scattering field can be calculated from the equivalent magnetic current M+

11 which is given as

M±
11(x, y, z = 0±) = ER|z=0± × (±ẑ)

=∓
√

ε0
µ0

∞∑
m=0

∞∑
n=0

jωµ0Rm,nF
w
m,n

k2 − k2m,n

·
{mπ

a
sin

[mπ

a

(
x+

a

2

)]
cos

[nπ
b

(
y +

b

2

)]
x̂+

nπ

b
cos

[mπ

a

(
x+

a

2

)]
sin

[nπ
b

(
y +

b

2

)]
ŷ
}
. (25)

Then, the secondary scattering field Es
11 induced by M+

11 at z = 0+ can be derived by the same manner
as Es

1. One gets

Es
11r ∼ 0, (26)

Es
11θ ∼

j(k2ab)2e−jkr

2πkr

∞∑
m=0

∞∑
n=0

Rm,nF
w
m,nBm,n

(mπ/ka)2 + (nπ/kb)2

[(nπ
kb

cosϕ
)2

−
(mπ

ka
sinϕ

)2]
sin θ, (27)

Es
11ϕ ∼ −j(k2ab)2e−jkr

8πkr

∞∑
m=0

∞∑
n=0

Rm,nF
w
m,nBm,n

(mπ/ka)2 + (nπ/kb)2

[(mπ

ka

)2
+

(nπ
kb

)2]
sin (2θ) sin (2ϕ), (28)

where

Bm,n =
(−1)m+1ej(ka/2) sin θ cosϕ + e−j(ka/2) sin θ cosϕ

(mπ)2 − (ka sin θ cosϕ)2

· (−1)n+1ej(kb/2) sin θ sinϕ + e−j(kb/2) sin θ sinϕ

(nπ)2 − (kb sin θ sinϕ)2
. (29)

It is noted that the equivalent magnetic current M−
11 at z = 0− excites the modal field which cancels

the reflected modal field due to the virtually closed aperture. This matches with the physical nature of
KA that there is no reflection at the aperture interface.

2.1.4. Lower Scattering Field Es
2

The waveguide modal fieldET creates equivalent currentsM±
2 on the lower aperture of the hole (z = −c).

The current M±
2 at z = −c is determined by the following equation:

M±
2 (x, y, z = −c±) = ET|z=−c± × (±ẑ)

=∓
√

ε0
µ0

∞∑
m=0

∞∑
n=0

jωµ0Tm,nF
w
m,ne

−jkm,nc

k2 − k2m,n
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·
{mπ

a
sin

[mπ

a

(
x+

a

2

)]
cos

[nπ
b

(
y +

b

2

)]
x̂+

nπ

b
cos

[mπ

a

(
x+

a

2

)]
sin

[nπ
b

(
y +

b

2

)]
ŷ
}
. (30)

Again the current M+
2 excites the cancelling field of the reflected modal field to yield no modal reflection

at the lower aperture. The current M−
2 excites the scattering far-field Es

2 in the lower region (z < −c).
By the same manner as in Section 2.1.1, the scattering far-field Es

2 can be obtained as

Es
2r ∼ 0, (31)

Es
2θ ∼ −j(k2ab)2e−jk(r+c cos θ)

2πkr

∞∑
m=0

∞∑
n=0

Tm,nF
w
m,nBm,n sin θe

−jkm,nc

(mπ/ka)2 + (nπ/kb)2

[(nπ
kb

cosϕ
)2
−

(mπ

ka
sinϕ

)2]
, (32)

Es
2ϕ ∼ j(k2ab)2e−jk(r+c cos θ)

8πkr

∞∑
m=0

∞∑
n=0

Tm,nF
w
m,nBm,ne

−jkm,nc sin (2θ) sin (2ϕ). (33)

2.2. TM Polarization

The corresponding results for the TM polarization can be derived in a similar way as the TE polarization.
Accordingly, the final results are shown without the detailed derivation.

2.2.1. Primary Scattering Field Es
1

Based on KA, equivalent currents M±
1 on the virtually closed upper aperture may be derived for

(|x| < a/2, |y| < b/2, z = 0±) as

M±
1 (x, y, z = 0±) = ETMe−jki·rθ̂0

∣∣∣
z=0±

× (±ẑ)

= ±ETM(cos θ0 sinϕ0x̂− cos θ0 cosϕ0ŷ)e
jk(x sin θ0 cosϕ0+y sin θ0 sinϕ0). (34)

Then the scattering far-field Es
1 may be derived from Eq. (4) with the vector potential F1 in Eq. (5) as

Es
1r ∼ 0, (35)

Es
1θ ∼

2jETM cos θ0
πkr

e−jkrA cos (ϕ0 − ϕ), (36)

Es
1ϕ ∼ 2jETM cos θ0

πkr
e−jkrA cos θ sin (ϕ0 − ϕ), (37)

where A is given in Eq. (10)

2.2.2. Modal Field Ew inside the Hole

While the field Ew may be derived as in the previous Section 2.1.2, from the equivalent current M−
1 , it

is found that the internal modal field Ew in the hole is expressed by both TMmn and TEmn rectangular
waveguide modes. These waveguide modal fields can be derived from representative longitudinal
components Ew

z and Hw
z :

Ew
z = k

∞∑
m=1

∞∑
n=1

G
w
m,n

km,n
ejkm,nz sin

[mπ

a

(
x+

a

2

)]
sin

[nπ
b

(
y +

b

2

)]
, (38)

Hw
z =

√
ε0
µ0

∞∑
m=0

∞∑
n=0

F
w
m,ne

jkm,nz cos
[mπ

a

(
x+

a

2

)]
cos

[nπ
b

(
y +

b

2

)]
, (39)

where

G
w
m,n = −2mnπ2ETMB0

m,n sin (2θ0), (40)

F
w
m,n =

π2ϵmϵnE
TM

2k2ab
B0

m,n[(mkb)2 sin2 ϕ0 − (nka)2 cos2 ϕ0] sin (2θ0), (41)
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with B0
m,n is given in Eq. (21).

According to the waveguide modal theory, there is no modal coupling between TE and TM modes
as these modal fields experience a slab layer discontinuity in the waveguide. Thus TE and TM modal
fields can be treated separately. While the reflection coefficient Rm,n and the transmission coefficient

Tm,n for TEmn mode are given in Eqs. (22), (23), the corresponding Rm,n and Tm,n for TMmn modes
are found as

Rm,n =
[(k′m,n)

2 − (εrkm,n)
2](ej2k

′
m,n(c1−c2) − 1)e−j2km,nc1

(k′m,n + εrkm,n)2 − (k′m,n − εrkm,n)2e
j2k′m,n(c1−c2)

, (42)

Tm,n =
4εrkm,nk

′
m,ne

j(k′m,n−km,n)(c1−c2)

(k′m,n + εrkm,n)2 − (k′m,n − εrkm,n)2e
j2k′m,n(c1−c2)

, (43)

with km,n, k
′
m,n are given in Eqs. (17), (24), respectively.

2.2.3. Secondary Scattering Field Es
11

The secondary scattering field Es
11 due to the reflected modal field ER may be derived from the equivalent

current M+
11 at the aperture. This current M+

11 is given as

M+
11(x, y, z = 0+) =ER|z=0+ × ẑ

=

∞∑
m=0

∞∑
n=0

j

(mπ/ka)2 + (nπ/kb)2

·
{
−

(mπ

ka
Rm,nF

w
m,n +

nπ

kb
Rm,nG

w
m,n

)
sin

[mπ

a

(
x+

a

2

)]
cos

[nπ
b

(
y +

b

2

)]
x̂

+
(nπ
kb

Rm,nF
w
m,n − mπ

ka
Rm,nG

w
m,n

)
cos

[mπ

a

(
x+

a

2

)]
sin

[nπ
b

(
y +

b

2

)]
ŷ
}
. (44)

Then, the secondary scattering far-field Es
11 may be obtained from M+

11 as

Es
11r ∼ 0, (45)

Es
11θ ∼

j(k2ab)2e−jkr

2πkr

∞∑
m=0

∞∑
n=0

Bm,n sin θ

(mπ/ka)2 + (nπ/kb)2

·
{
Rm,nF

w
m,n

[(nπ
kb

cosϕ
)2

−
(mπ

ka
sinϕ

)2]
− mnπ2

k2ab
Rm,nG

w
m,n

}
, (46)

Es
11ϕ ∼ −j(k2ab)2e−jkr

8πkr

∞∑
m=0

∞∑
n=0

Rm,nF
w
m,nBm,n sin (2θ) sin (2ϕ), (47)

where Bm,n is given in Eq. (29).

2.2.4. Lower Scattering Field Es
2

The scattering field Es
2 in the lower half plane (z < −c) may be derived from the equivalent current

M−
2 at the lower aperture (z = −c). The equivalent current M−

2 for calculating the radiation field in
the lower half-space can be evaluated as

M−
2 (x, y, z = −c−) =ET|z=−c− × (−ẑ)

=

∞∑
m=0

∞∑
n=0

je−jkm,nc

(mπ/ka)2 + (nπ/kb)2

·
{(mπ

ka
Tm,nF

w
m,n − nπ

kb
Tm,nG

w
m,n

)
sin

[mπ

a

(
x+

a

2

)]
cos

[nπ
b

(
y +

b

2

)]
x̂

+
(nπ
kb

Tm,nF
w
m,n +

mπ

ka
Tm,nG

w
m,n

)
cos

[mπ

a

(
x+

a

2

)]
sin

[nπ
b

(
y +

b

2

)]
ŷ
}
. (48)



102 Bui, Nguyen, and Shirai

The scattering far-field Es
2 can be derived from the above current M−

2 as

Es
2r ∼ 0, (49)

Es
2θ ∼ −j(k2ab)2e−jk(r+c cos θ)

2πkr

∞∑
m=0

∞∑
n=0

e−jkm,nc

(mπ/ka)2 + (nπ/kb)2
Bm,n sin θ

·
{
Tm,nF

w
m,n

[(nπ
kb

cosϕ
)2

−
(mπ

ka
sinϕ

)2]
+

mnπ2

k2ab
Tm,nG

w
m,n

}
, (50)

Es
2ϕ ∼ j(k2ab)2e−jk(r+c cos θ)

8πkr

∞∑
m=0

∞∑
n=0

Tm,nF
w
m,ne

−jkm,ncBm,n sin (2θ) sin (2ϕ). (51)

3. NUMERICAL RESULTS AND DISCUSSION

The newly derived formulas in the previous section are now utilized for the evaluation of the scattering
effect through the hole which can be considered as a rectangular window on a building wall. All numerical
computation results are obtained by self-built Fortran code. In the following numerical calculation, all
scattering far-field patterns are normalized by a common factor e−jkr/(2πkr) with ETE = ETM = 1.

The scattering far-fields are represented as a summation of radiations from magnetic currents
due to an original incident plane wave and the TE and TM waveguide modes from the hole. The
double formal infinite summations of modal reradiation fields can be easily truncated by those with
the propagating modes only, since the effect from higher order evanescent modes decays rapidly. This
truncation can be determined when the waveguide modal propagation constant km,n in Eq. (17) becomes
from a real to a complex number, as the modal indices m,n become large [14]. In our calculation, the
first few evanescent waveguide modes are included for the numerical evaluation in order to make sure
the numerical convergence.

Let us first discuss the empty hole case. As mentioned before, our formula is found to be analytically
the same as the previous formulation for the empty case [15] when one removes the slab layer by setting
c1 = c2 or εr = µr = 1. In a previous study [15], we have shown that the scattering patterns can be
easily estimated from the corresponding cross-sectional patterns of two-dimensional thick slit results if
the incident plane is parallel to the hole’s internal wall (ϕ0 = 0, π/2, . . .). Accordingly, the incident angles
are chosen here for general cases. Figure 3 shows the field distribution of the co-polarized component Eϕ

when the TE polarized plane wave is incident on a large rectangular empty hole (ka = kb = 30, kc = 2,
θ0 = π/6, ϕ0 = π/4). While Figure 3(a) shows the three-dimensional scattering patterns, Figures 3(b),
(c) are field strength maps projected on the spherical surfaces from the upper and the lower hemispheres.
As one expects, the main scattering beams point to the specular reflection and transmission directions
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Figure 3. TE scattering far-field patterns of Eϕ component by an empty square window. θ0 = π/6,
ϕ0 = π/4, ka = kb = 30, kc = 2. (a) Three-dimensional pattern viewing from θ = π/3, ϕ = 4π/3. (b)
Scattering field strength map on the upper hemisphere. (c) Scattering field strength map on the lower
hemisphere.
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Figure 4. Comparison of the scattering far-field patterns in θ variation in the incident plane
(ϕ = ϕ0, π + ϕ0), θ0 = π/6, ϕ0 = π/4, ka = kb = 30, kc = 2. (a) Eϕ (TE polarization), (b) Eθ

(TM polarization).

in the incident plane. One may note little effect of the thickness of the wall to region III, since the
thickness of the wall is chosen as rather thin (kc = 2) with respect to the wavelength. Figure 4 shows
the scattering field pattern of Eϕ(Eθ) in the incident plane for TE(TM) polarization. Our results are
compared with those by the KP method [9]. While our result for the main lobe matches well with
the KP method, one finds some differences at some side lobes near the boundaries. These differences
stem from the fact that our approximation does not satisfy the boundary conditions on the virtually
closed surfaces for the tangential fields and it ignores multiple edge diffraction terms [18]. One also
observes that the main difference between the TE and TM polarizations arises in the strength of the
side-lobes, and these lobes in the incident plane for the TM polarization are bigger than those for the
TE polarization. In Figure 4 and the subsequent polar plots, there is a thick screen (wall) between the
upper and lower semicircles. Accordingly, it is natural to have some discontinuities from top to bottom
values, except for an infinitely thin screen case, and the fields show correct behavior along the wall
surfaces.

The thickness effect of the hole to the scattering field distribution may be obtained for a rather deep
case kc =

√
6ka in Figure 5. While our modal excitation coefficients are given by KA, the waveguide

modes themselves satisfy correctly the boundary conditions on the guided walls and the propagation
mechanism inside the hole should be kept even for the thicker screen case. This feature has been
confirmed in the previous investigation [15]. By comparing Figure 5 with Figure 3, one finds little
change in the upper scattering distribution (Figure 5(a)) but pretty big change in the lower scattering
distribution (Figure 5(b)). This is due to the fact that the truncated incident GO beam experiences the
reflection at the hole’s internal wall to change the beam propagation direction in the lower half-space,
as shown in Figure 5(c). From this result, one should be careful about the thickness of the hole, as it
becomes thicker with respect to the wavelength.
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Figure 5. TE scattering field strength map for θ0 = π/6, ϕ0 = π/4, ka = kb = 30, kc =
√
6ka. (a)

Scattering field strength map on the upper hemisphere. (b) Scattering field strength map on the lower
hemisphere. (c) Top view of GO beam reflection at the holes internal wall.
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Let us now discuss the effect of the window glass with practical parameters for mobile
communications. The frequency is set to be 1GHz; the dimension of the window frame of the
building wall is chosen as a = 1.0m, b = 2.2m, c = 0.15m; and the window glass of the thickness
c2 − c1 = 0.008m is installed on the upper aperture (c1 = 0). The electric property of the glass is
selected as εr = 7.2− j0.151, µr = 1 for soda-silica glass [19].

Figures 6, 7 show the scattering field distribution of co-polarized (Eϕ) component for the TE
polarized incidence, and Figures 8, 9 show the co-polarized (Eθ) component for the TM case. The
main scattering feature is the same for both TE and TM cases, and the scattering field is distributed in
the vicinity of the reflected and transmitted GO beam directions. In order to observe the effect of the
window glass, the scattering patterns are shown in detail in the plane of the incidence (ϕ = ϕ0, ϕ0 + π)
and in the plane perpendicular to the incidence (ϕ = ϕ0 + π/2, ϕ0 + 3π/2) in Figures 7, 9. As seen
clearly from these figures, the scattering occurs mainly in the incident plane and the main scattering
beam peaks become lower by 1 ∼ 2 dB. Since the glass is pretty thin (c2 − c1 < 0.1λ) and its loss is
small, the effect is weak to the scattering far-field. Through the secondary radiation Es

11, several minor
lobes are generated by the glass layer especially in the upper half region.

TE polarized plane wave scattering far-field Eϕ and TM polarized plane wave scattering far-field

 10

 20

 30

 40

 50

 60

[d
B

]

(a) E   (TE polarization)

0

3π/2

π/2

 10

 20

 30

 40

 50

 60

[d
B

]

(b) Upper hemi-sphere

0

3π/2

π/2

 10

 20

 30

 40

 50

 60

[d
B

]

(c) Lower hemi-sphere

ππ

φ

Figure 6. TE scattering far-field patterns of Eϕ component by a rectangular glass window. θ0 = π/4,
ϕ0 = π/4. a = 1.0m, b = 2.2m, c = 0.15m. The location of a dielectric glass (εr = 7.2−j0.151, µr = 1)
is set at the upper aperture (c1 = 0m, c2 = 0.008m). Frequency f = 1GHz. (a) Three-dimensional
pattern viewing from θ = π/3, ϕ = 4π/3. (b) Scattering field strength map on the upper hemisphere.
(c) Scattering field strength map on the lower hemisphere.
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Figure 7. Comparison of TE polarized scattering far-fields Eϕ in θ variation with and without a
window glass. a = 1.0m, b = 2.2m, c = 0.15m, θ0 = π/4, ϕ0 = π/4. The location of a dielectric glass
(εr = 7.2 − j0.151, µr = 1) is set at the upper aperture (c1 = 0m, c2 = 0.008m). (a) Incident Plane
(ϕ = π/4, 5π/4). (b) Plane perpendicular to the incident plane (ϕ = 3π/4, 7π/4).
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Figure 8. TM scattering far-field patterns of Eθ component by a rectangular glass window. All
parameters are the same as Figure 6. (a) Three-dimensional pattern viewing from θ = π/3, ϕ = 4π/3.
(b) Scattering field strength map on the upper hemisphere. (c) Scattering field strength map on the
lower hemisphere.
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Figure 9. Comparison of TM polarized scattering far-fields Eθ in θ variation with and without a
window glass. All parameters are the same as Figure 7. (a) Incident Plane (ϕ = π/4, 5π/4). (b) Plane
perpendicular to the incident plane (ϕ = 3π/4, 7π/4).
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Figure 10. Comparison of TE polarized scattering far-fields Eϕ and TM polarized scattering far-fields
Eθ in θ variation by a rectangular glass window. All parameters are the same as in Figure 7. (a)
Incident Plane (ϕ = π/4, 5π/4). (b) Plane perpendicular to the incident plane (ϕ = 3π/4, 7π/4).

Eθ are compared in Figure 10. While the intensities of the scattering fields at the main beam directions
are almost the same, there are differences at side lobes and near the boundary direction. One might
also see the difference near the boundary direction in the perpendicular plane. The difference at the
boundary direction (θ = π/2) is caused by the fact that Eϕ of TE polarization vanishes due to the
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Figure 11. Comparison of TE polarized scattering far-fields Eϕ in θ variation due to the location of
the window glass. a = 1.0m, b = 2.2m, c = 0.15m, θ0 = π/4, ϕ0 = π/4. Position of a window glass
(εr = 7.2 − j0.151, µr = 1) is changed at the top, the middle, and the bottom. (a) Incident plane
(ϕ = ϕ0, π + ϕ0). (b) Plane perpendicular to the incident plane (ϕ = 3π/4, 7π/4).
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Figure 12. Comparison of TM polarized scattering far-field Eθ in θ variation due to the location of
the window glass. All parameters are the same as in Figure 11. (a) Incident plane (ϕ = ϕ0, π + ϕ0).
(b) Plane perpendicular to the incident plane (ϕ = 3π/4, 7π/4).

pattern functions in Eqs. (9), (28), and (33), while Eθ in TM polarization remains. Also one finds a
slight change of the main scattering lobe direction between TE and TM polarizations.

Figures 11, 12 show the co-polarization pattern change due to the location of the glass for TE
and TM polarizations, respectively. The location of the glass is changed at the top (c1 = 0), the
middle (c = c1 + c2), and the bottom (c2 = c). The location of the window glass creates a change of
the scattering pattern in the upper region. When one compares the empty case in Figures 7, 9, the
difference among the three cases at the main scattering beam peaks is approximately 2 ∼ 3 dB. However,
there is no change in the lower region since the modal fields which excite the transmitted field at the
bottom aperture to the lower region are essentially the same no matter where the internal glass layer is
located. These observations can be applied for both polarization cases.

It might be interesting to analyze the scattering far-field by a square aperture case (a = b = 1.0m).
Figures 13, 14 show the comparison of the scattered far-fields by the square empty and the square glass
windows with the glass set at the top aperture (c1 = 0). Again the glass effect is small to the main lobes,
but the scattering lobes become broader and small. This feature can be explained from the scattering
pattern function A in Eq. (10), which is a product of two sinc functions. This pattern function A has a
peak value of k2ab/4 at the specular reflection direction and oscillates rapidly as the aperture becomes
larger. When the scattering patterns in Figures 7, 9 are compared with those in Figures 13, 14, there
are more sharp diffraction lobes constructed for the wide aperture due to the interference between the
diffracted fields excited at the aperture’s edges. The scattering far-fields in the plane perpendicular to
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Figure 13. Comparison of TE polarized scattering far-fields Eϕ in θ variation with and without a
window glass. All parameters are the same as in Figure 10 except b = 1.0m. (a) Incident Plane
(ϕ = π/4, 5π/4). (b) Plane perpendicular to the incident plane (ϕ = 3π/4, 7π/4).
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Figure 14. Comparison of TM polarized scattering far-fields Eθ in θ variation with and without a
window glass. All parameters are the same as in Figure 13. (a) Incident Plane (ϕ = π/4, 5π/4). (b)
Plane perpendicular to the incident plane (ϕ = 3π/4, 7π/4).

the incident plane in Figures 13(b), 14(b) are found to be symmetric with respect to the z-axis due to
the symmetry of the coefficient Bm,n in Eq. (29) when a = b and ϕ = (3π/4, 7π/4).

4. CONCLUSION

In this study, KA method has been utilized to formulate the scattering fields by a rectangular hole with
a material slab layer to simulate the scattering from a window glass on a building wall. The scattering
field can be obtained by the radiation from the equivalent magnetic currents excited successively on
the virtually closed apertures of the hole. The penetrating field inside the hole has been expressed in
terms of the waveguide modes, and these modal fields are used for estimating additional scattering fields
in the upper and lower regions. The comparison of numerical results with the KP method has been
made for the empty case [15] to check the accuracy of our formulations, and good agreement has been
found between them. The effect of the window aperture dimension, slab layer, and polarization has also
been discussed. The increasing thickness of the wall mainly impacts on the lower scattering far-field
pattern. If one only concerns with the main beam of the scattered field, it can be roughly estimated by
a somewhat simpler empty case.

Penetration through a practical lossy wall of the building, the effect of multiple windows, and the
surface roughness of the wall are also important in practical applications for wireless communication
environment. These aspects are now under investigation.
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