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Squeezing of Hyperbolic Polaritonic Rays in Cylindrical Lamellar
Structures

Lu Song1, 2, Lian Shen2, 3, *, and Huaping Wang1, *

Abstract—We propose the squeezing of hyperbolic polaritonic rays in cylindrical lamellar structures
with hyperbolic dispersion. This efficient design is presented through conformal mapping transformation
by combining with circular effective-medium theory (CEMT) that is adopted to predict the optical
response of concentric cylindrical binary metal-dielectric layers. The volume-confined hyperbolic
polaritons supported in these cylindrical lamellar structures could be strongly squeezed when they
propagate toward the origin since their wavelength shortens, and velocity decreases. To demonstrate
the importance of using CEMT for engineering highly-squeezed hyperbolic polaritons, both CEMT
and planar effective-medium theory (PEMT) are utilized to design the cylindrical lamellar structures.
It is shown that the PEMT-based design is unable to achieve hyperbolic polaritons squeezing even
with a sufficiently large number of metal-dielectric binary layers. Remarkably, this study opens new
opportunities for the hyperbolic polaritons squeezing, and the findings are promising for propelling
nanophotonics technologies and research endeavours.

1. INTRODUCTION

Light squeezing is recognized as a scientifically well-investigated method for generating intense
subwavelength confined optical fields. The resultant strong field enhancement has opened up various
potential applications, such as photodetection [1], singlephoton sources [2, 3], and nonlinear optics [4–
6] through engineered antennas [7–9] and waveguides [10, 11], as well as the deep-subwavelength
nanolithography in the industrially viable development [12, 13]. With the in-depth study of volume-
confined hyperbolic polaritons [14–23] and the rapid advances in nanofabrication techniques, the
squeezing of hyperbolic polaritons has recently attracted renewed attentions. Particularly, scientists
show increased interests in utilizing hyperlens techniques for optical lithography [24–29]. The cylindrical
lamellar structures with opposite signs of dielectric constants in the radial and tangential directions can
support propagating waves with arbitrarily high wavenumbers [29] in principle. In this regard, it could
be considered as a promising design for squeezing hyperbolic polaritons into the smallest possible or
even point-like space.

The recently proposed transformation optics [30, 31] is a systemic-overall approach to constructing
photonic devices not only on the macroscopic but also on the subwavelength scale, over the entire optical
spectrum. This approach has already become the tool for building nanofocusing devices [28], invisibility
cloaks [32–38], as well as singular plasmonic structures for light harvesting [39–41]. However, it is not
obvious whether this approach could be successfully applied to the realm of highly-squeezed hyperbolic
polaritons and further utilized to understand the effective-medium theory in cylindrical coordinates.
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In this study, the squeezing of hyperbolic polaritonic rays is studied in a cylindrical lamellar
structure with hyperbolic dispersion, which can be made of bilayers-thin alternating cylindrical layers of
metal and dielectric. We theoretically propose that this cylindrical lamellar structure with hyperbolic
dispersion could be analyzed via conformal mapping transformation and circular effective-medium
theory (CEMT), which is able to squeeze the hyperbolic polaritons into a point-like space and enable
broadband response. To showcase the importance of CEMT-based design for the hyperbolic polaritons,
both CEMT and planar effective-medium theory (PEMT) are adopted to design the cylindrical
hyperbolic metamaterials with the same materials and order of elemental layers. These two designs show
totally different squeezing performances even with ultrathin elemental layers. The proposed analysis and
design techniques could mitigate the technical and furthermore, may be utilized to design nanophotonic
structures for photodetection, single-photon sources and other quantum emitters.

2. FUNDAMENTAL PRINCIPLE

2.1. Highly-Squeezed Hyperbolic Polaritons via a Conformal Mapping Transformation

We start with the analysis of how to squeeze hyperbolic polaritonic rays via a conformal mapping
transformation. Consider an ideal situation: a transverse magnetic (TM) polarized emitter is located
in near-field proximity to the interface of a planar lamellar structure with hyperbolic dispersion (see
Figure 1(a)). In practice, the emission will efficiently couple to the hyperbolic polaritons (Poynting
vector) and propagate toward the other interface with a propagation angle θ as shown in Figure 1(a),
which is expressed as θ = ±(π/2− φc), where φc is the critical angle between the optical axis and the
asymptotic line of hyperbolic iso frequency contours and satisfies the condition Re [ε(φc)] = 0, in which

ε(φ)−1 = cos2(φ)(ε⊥)
−1 + sin2(φ)(ε∥)

−1, (1)

here φ is the angle between the wave vector of hyperbolic polaritons and the optical axis, and ε⊥ and
ε∥ are the components perpendicular and parallel to the optical axis for the planar lamellar structure
with hyperbolic dispersion, respectively. We then apply a known conformal mapping transformation,
z̄ = x̄+ iȳ → w̄ = ū+ iv̄, as shown in Figure 1,

z̄ = ρ̄e(iϕ̄) = ρlmaxe
w̄/κ =

(
ρlmaxe

ū/κ
)(

eiv̄/κ
)
, (2)

(a) (b)

Figure 1. Fundamental principle of the highly-squeezed hyperbolic polaritons via a conformal mapping
transformation. It maps the planar lamellar layers onto the concentric layers of cylindrical structure
with a known conformal mapping transformation z̄ = x̄ + iȳ → w̄ = ū + iv̄. (a) A slab (semi-infinite
or finite) of a planar lamellar structure with hyperbolic dispersion supports volume-confined hyperbolic
polaritons which could transport its energy to the end. The spectrum is continuous and broadband
therefore the process is efficient over a wide range of wavelengths. (b) The transformed space of (a) is
an ordered cylindrical lamellar structure with hyperbolic dispersion.
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where ū and v̄ are the real space coordinates, while ρ̄ and ϕ̄ are their transformed counterparts; κ is
the scaled factor for the two structures; ūlmax = 0 is mapped into the radius ρ̄lmax , which is selected
arbitrarily. Thus, the coordinates are connected by,

ρ̄ = ρlmaxe
ū/κ, ϕ̄ = v̄/κ. (3)

If the slab is semi-infinite ū0 → −∞, which means that the orange line in w̄ translates to the origin in
z̄ and the dark line in w̄ translates to the external circle in z̄ as shown in Figure 1. Transformation optics
enables us to obtain the physical insight into this process. A polarized emitter generates hyperbolic
polaritons in the planar hyperbolic media which could transport to infinity without reflection. The
spectrum of hyperbolic polaritons is continuous in the wavelength range with hyperbolic dispersion.
Upon the transformation, infinity is mapped to the origin. Hence, in the transformed frame, hyperbolic
polaritons are squeezed to the origin without reflection. In practice, material losses and finite thicknesses
of the discrete constituent elements used in the realization of the hyperbolic metamaterials may relax
the degree of confinement of hyperbolic polaritons, thereby broadening the angular distribution of the
emission and limiting the propagation length of hyperbolic polaritons. In this regard, the word “infinity”
means the limited propagation length of hyperbolic polaritons, thus the hyperbolic polaritons in the
transformed space will not be rigorously squeezed at the origin but into a small region. To understand the
hyperbolic polaritons squeezing in this case, we could still follow the conformal mapping transformation
mentioned in Figure 1, that is if the slab is extremely large but finite, the orange line in w̄ translates to
a small circle in z̄ while the dark line in w̄ translates to the external circle in z̄. Thus, the hyperbolic
polaritons will be squeezed at the edge of the small inner circle.

Now we move to the determination of material parameters in the transformed space. We introduce

a two-dimensional Jacobian matrix J =

(
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)
, thus the permittivity and permeability

tensors in transformed space become,

ε′ = diag
(
ε⊥ε∥

)
, µ′ = µ0det(J)

−1. (4)

We notice that the design of hyperbolic polaritons squeezing based on cylindrical lamellar structure
involves spatial dependent permeability along the out-of-plane direction, which is difficult to implement
in visible and infrared spectrum. To excite hyperbolic polaritons, we could consider the electrostatic
approximation model: a system in which all dimensions are smaller than the wavelength of light. We
assume that the radiative effects decoupling electrostatic and magnetostatic fields can be neglected to
ease the discussion. As a consequence, we can ignore the contribution from permeability and assume
that it is equal to unity, thus Eq. (4) can be simplified as,

ε′ = diag (εϕερ)µ
′ = 1. (5)

where εϕ and ερ are the components in the directions of ϕ̄ and ρ̄, respectively.

2.2. Bloch Theorem and Effective-Medium Theory

To realize hyperbolic polaritons squeezing in quasistatic limit, an approximation technique is needed,
where the cylindrical hyperbolic metamaterial can be constructed by a number of alternative metal
and dielectric layers, as shown in Figure 1(b). Since the effective permittivity tensors for planar and
cylindrical hyperbolic lamellar structures are the same, the effective material properties of a planar
lamellar structure (see Figure 1(a)) with period Λ (Λ = ul+2 − ul) will be first studied, which can be
obtained from the following equation according to the Bloch theorem [42],

cos (KΛ) = cos [k1 (ul+1 − ul)] cos [k2 (ul+2 − ul+1)]

−γsin [k1 (ul+1 − ul)] sin [k2 (ul+2 − ul+1)] , (6)

where γTM = 1/2 (εmk1/εdk2 + εdk2/εmk1) is for the TM-polarized waves, γTE = 1/2 (εm/εd + εd/εm)
is for the transverse electric (TE) polarized waves and k21,2 = εd,mk20−β2, β represents the component of

wave vector in the direction of v̄. Hence, a series expansion of Eq. (6) yields a conventional zeroth-order
PEMT,

ε−1
u,l (ul+2 − ul) = ε−1

l (ul+1 − ul) + ε−1
l+1 (ul+2 − ul+1) (7)

εv,l (ul+2 − ul) = εl (ul+1 − ul) + εl+1 (ul+2 − ul+1) (8)
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where εl = εl+2 = εd and εl+1 = εl+3 = εm, thus hyperbolic dispersion can be achieved by arranging
periodic subwavelength thin layers of metal and dielectric homogeneous materials carefully.

Under the transformation, z̄ = x̄ + iȳ → w̄ = ū + iv̄, the effective material properties remain
unchanged; however, the dimensions change according to Eq. (3). To obtain the effective-medium
theory and accomplish hyperbolic dispersion in this transformed space with the same materials and
order of elemental layers, we turn to study how the Bloch theorem is modified. If a material has
periodicity such as n(u) = n(u+Λ), as it is the case in planar layered structure as shown in Figure 1(a),
wave propagation in such a medium is represented by

FK (u) = F (u) exp (−iKu) , (9)

according to the Floquet theorem [42, 43]. Here, K indicates the Bloch wavenumber common in the
periodic structure, and FK(u) is the periodic function with period Λ = ul+2 − ul, namely,

FK (u+ Λ) = FK (u) → F (u+ Λ) = exp (−iKΛ)F (u) . (10)

Since the quantity k̄ · r̄ must remain unchanged under the transformation, the wave vector in the
transformed frame can be calculated as,

k̄′ =
(
JT

)−1
k̄. (11)

Here, superscripts prime refers to parameters in the transformation space. Thus, we could come to the
same conclusion for the Bloch wavenumber,

K̄ ′ =
(
JT

)−1
K̄. (12)

In this situation, the wave propagation according to the Floquet theorem in the transformed space is
represented by,

FK′ (ρ) = F (ρ) exp
(
−iK ′ρ

)
, (13)

where K ′ indicates the Bloch wavenumber common in the transformed space, and FK′(ρ) is the periodic
function with period Λ′, thus

FK′
(
ρ+ Λ′) = FK′ (ρ) → F

(
ρ+ Λ′) = exp

(
−iK ′Λ′)F (ρ) . (14)

Therefore, in the quasistatic approximation model, according to the conformal mapping in Eq. (3),
we could obtain the following eigenvalue equation in cylindrical hyperbolic metamaterial which can be
constructed by a number of alternative metal and dielectric layers

cos
(
K ′Λ′) = cos

[
k′1κln (ρl+1/ρl)

]
cos

[
k′2κln (ρl+2/ρl+1)

]
−γ′sin

[
k′1κln (ρl+1/ρl)

]
sin

[
k′2κln (ρl+2/ρl+1)

]
(15)

and further the zeroth-order CEMT,

ε−1
ρ,l ln (ρl+2/ρl) = ε−1

l ln (ρl+1/ρl) + ε−1
l+1ln (ρl+2/ρl+1) , (16)

εϕ,lln (ρl+2/ρl) = εlln (ρl+1/ρl)+εl+1ln (ρl+2/ρl+1) (17)

Previously, an improved effective-medium approximation has been applied to obtain nonlocal corrections
for anisotropic materials made of lamellar structures with subwavelength thin layers [44]. According to
the above discussion, a parallel work about the nonlocal adjustments for the cylindrical systems can be
straightforwardly calculated in a way much similar to the techniques introduced here.

For CEMT-based design, as demonstrated in Eq. (3), we have the following relation

ρl+1 = ρlexp [(ul+1 − ul) /κ] → ρlmax = ρ0

lmax∏
0

exp [(ul+1 − ul) /κ] (18)

where κ = lmax (ul+2 − ul) / [2ln (ρlmax/ρ0)] is defined to fit both inner and outer radii. Therefore, for a
given number of layers lmax, the inner radius ρ0 and outer radius ρlmax , the entire design can be achieved.
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3. RESULTS AND DISCUSSIONS

As discussed previously, the lamellar structures with hyperbolic dispersion (see Figure 1) can be achieved
by arranging periodic subwavelength thin layers of metal and dielectric homogeneous materials. As an
example, we consider silver as the metal layers, and for its permittivity, we use the Drude model,

εm = ε∞ − ω2
p

/
[ω (ω + iωc)] , (19)

with ε∞ = 3.8355, ωp = 1.3937 × 1016 rad/s and ωc = 2.9588 × 1013 rad/s [45]. The dielectric layer is
silica with a permittivity of εd = 2.25.

In order to achieve the squeezing of hyperbolic polaritons in cylindrical lamellar structure, the
effective permittivity tensor for planar lamellar structure should be first considered as depicted in
Figure 2(a) according to Eqs. (7) and (8). For simplicity, same-sized metal and dielectric layers are
chosen here (ul+2 − ul+1 = ul+1 − ul). From this figure, we find that this planar lamellar structure
clearly exhibits hyperbolic properties in the wavelength range 500 nm–2500 nm. According to Eq. (5),
we could reveal that the corresponding components of the effective permittivity tensor for both planar
and cylindrical hyperbolic lamellar structures are the same, thus we show εϕ and ερ in the figure directly
instead of ε⊥ and ε∥. Due to the dispersion of hyperbolic metamaterial, the propagation angle of the
hyperbolic polaritons according to Eq. (1) is sensitive to the wavelength as shown at the bottom of
Figure 2(a).

In the literature, cylindrical hyperbolic metamaterials for subwavelength imaging and focusing have
already been investigated, but the case of a cylindrical hyperbolic metamaterial for squeezing hyperbolic
polaritons into a point-like space has never been addressed to the best of our knowledge. As we will see,
the cylindrical lamellar structure operates efficiently over a broadband range from visible to mid-infrared

(a)

(b)

(d) (e)

(c)

Figure 2. Highly-squeezed hyperbolic polaritons with effective model. (a) Optical properties of the
hyperbolic lamellar structure with alternating silver and silica layers. The components of the effective
permittivity tensor and the propagation angle as a function of wavelength [top, Re(εϕ) and Re(ερ);
middle Im(εϕ) and Im(ερ); bottom, θ] are shown. Wavelengths of 500 nm–2500 nm are considered
since the lamellar structure in this range has hyperbolic dispersion. (b)–(d) Simulated electric-field
magnitudes at different wavelengths: (b) 500 nm, (c) 1500 nm, (d) 2500 nm generated by the TM
polarized emitter. In these simulations, a 400 nm radius cylindrical structure with hyperbolic dispersion
is used to realize highly-squeezed hyperbolic polaritons. (e) The amplitude of the electric field along a
cross-section close to the origin of the cylindrical structure. The electric-field enhancement is normalized
with respect to the electric-field magnitude in free space.
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spectrum since hyperbolic properties can be achieved in this spectrum. According to Eqs. (11) and (12),
the wave vector of the hyperbolic polaritons becomes infinite as they approach the origin. Therefore,
hyperbolic polaritons propagate toward the origin as their wavelength shortens, and velocity decreases.
This fact is ensured by the theory of transformation optics, that is if we transform infinity to a finite
point, the velocity automatically taken by the transformation must be zero at this point. Besides,
the cylindrical hyperbolic metamaterial has a singularity in the material parameters at the origin.
This material singularity has the same function as the geometrical singularity of previous studies [39–
41], and hence will stop hyperbolic polaritons approaching the origin. In an ideal lossless hyperbolic
metamaterial, energy accumulates toward the origin, its density increasing with time without bound.
In practice, material losses will resolve the situation leading to a balance between energy accumulation
and dissipation.

To demonstrate the squeezing performance of hyperbolic polaritons according to conformal
mapping transformation, we first conduct field mapping simulations using a commercial finite-element
method based solver (COMSOL MULTIPHYSICS). Simulated electric-field magnitudes of the squeezed
hyperbolic polaritons at different wavelengths (500 nm, 1500 nm, and 2500 nm) for effective model are
depicted in Figures 2(b)–(e). In these simulations, a TM polarized emitter is located near a 400 nm
radius cylindrical structure with hyperbolic dispersion. From Figures 2(b)–(d), we find that hyperbolic
polaritionic rays spiral gradually towards the origin from the emitter. To gain more insight into the
behavior of the fields around the origin, the line profiles of electric-field enhancement along a cross-
section close to the origin are also shown in Figure 2(e) for different wavelengths. The electric-field
enhancement here is normalized with respect to the electric-field magnitude in free space. From the
plot, it is observed that near the origin, a clear electric-field enhancement is observed as the hyperbolic
polaritons become more strongly concentrated. The result of the electric-field enhancement on increasing
the wavelength is also shown in the plot in Figure 2(e), in which Im(εϕ) increases when the wavelength is
increased, which greatly reduces the electric-field enhancement. One thing to note is that the squeezing
of hyperbolic polaritons can be realized at different wavelengths, although losses as the function of
wavelength truncate the growth of the field at the origin.

After we obtain the phenomena of hyperbolic polaritons squeezing for the effective model, the
next question that arises is what happens to the practical implementation of the proposed hyperbolic
polaritons squeezing device. As mentioned above, the effective model of cylindrical lamellar structure
has a singularity in the material parameters at the origin. However, to avoid this singularity while
still maintaining hyperbolic polaritons squeezing, the inner radius should be small enough compared
to the wavelength. The physical insight for this case has been explained above, thus in a practical
cylindrical lamellar structure we expect that the hyperbolic polaritons will be squeezed at the edge of
the inner circle. Usually, the PEMT based on Eqs. (7) and (8) is applied to design the optical properties
of cylindrical lamellar structure; however, this is not always valid especially for hyperbolic polaritons.
To further investigate this, both CEMT and PEMT are adopted to the design of cylindrical lamellar
structure. In these simulations, the squeezing device with the sufficient number of layers lmax = 100,
the inner radius ρ0 = 10nm, and the outer radius ρlmax = 400 nm is demonstrated. The thickness of
each layer for CEMT-based design can be obtained via Eq. (18).

Figure 3 shows the results of PEMT- and CEMT-based designs for cylindrical lamellar structures.
Simulated electric-field magnitudes of the squeezed hyperbolic polaritons at different wavelengths
(500 nm, 1500 nm, and 2500 nm) for PEMT- and CEMT-based designs are shown in Figures 3(a)–
(f). From these figures, we could find that for PEMT-based design, the hyperbolic polaritons could
not be squeezed when they propagate into the origin. Nevertheless, for CEMT-based design, most of
the hyperbolic polaritons could spiral gradually towards the origin and squeeze at the edge of the inner
circle. From the line profiles of electric-field enhancement shown in Figures 3(g)–(i), it could be clearly
observed that the CEMT-based design continues to perform well and could squeeze hyperbolic polaritons
into a point-like space at the edge of the inner circle, although the back reflection at the interface of
each layer decreases the electric-field enhancement. However, for the PEMT-based design, the peak of
electric-field enhancement vanishes and no hyperbolic polaritons squeeze at the edge of the inner circle.
This is because the wave vector of the hyperbolic polaritons increases as they approach the origin, and
Eq. (12) for Bloch wavenumber is not satisfied. At this point, the cylindrical lamellar structure based
on PEMT can no longer be treated as an effective medium, and the hyperbolic polaritons are cut off,
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(a) (b)

(f)(d) (e)

(g) (h) (i)

(c)

Figure 3. Highly-squeezed hyperbolic polaritons with discrete pairs of binary metal-dielectric layers.
Both PEMT and CEMT are adopted to the design of cylindrical lamellar structure. (a)–(f) Simulated
electric-field magnitudes of the squeezed hyperbolic polaritons at different wavelengths: (a), (d) 500 nm,
(b), (e) 1500 nm, (c), (f) 2500 nm generated by the TM polarized emitter, (g), (h), (i) the amplitude
of the electric field along a cross section close to the origin of the cylindrical lamellar structure. The
electric-field enhancement is normalized with respect to the electric-field magnitude in free space.

leading to the invalidation of the squeezing device. We could conclude that in this case there is a
substantial performance gap between the PEMT- and CEMT-based designs. In addition, the squeezing
is strongly related to the wavelength; however for a longer wavelength (2500 nm), the loss increases,
which reduces the electric-field enhancement (Figure 3(i)). Anyhow, the CEMT-based design could still
squeeze the hyperbolic polaritons into a point-like space at the edge of the inner circle, although more
energy is dissipated.

In a nutshell, all our simulation cases including the effective model and discrete pairs of binary
metal-dielectric layers showcase a good squeezing performance achieved through the conformal mapping
based CEMT design. The proposed design procedure is general and can be utilized as an innovatory
way to robust hyperbolic polaritons squeezing.

4. CONCLUSIONS

To summarize, using the formalism of conformal mapping transformation optics, we extend the concept
of hyperbolic polaritons squeezing and demonstrate how the hyperbolic polaritons propagate toward
the singularity where the velocity vanishes. Strong electric-field enhancement (∼ 104) and confinement
are predicted within the classical approach. We also show that the proposed effective model can be
substituted by a cylindrical lamellar structure using two distinct designs PEMT and CEMT. Numerical
simulations of the effective model and the lamellar devices illuminated with a TM polarized emitter
indicate that the CEMT-based design demonstrates superior squeezing performance versus the PEMT-
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based design with the same materials and order of elemental layers. In fact, the conventional PEMT
fails to adequately approximate the optical properties of the cylindrical lamellar structure for squeezing
of hyperbolic polaritonic rays even with a sufficiently large number of metal-dielectric binary layers
which is different from our previous work for nanofocusing [28]. From the conformal mapping point of
view, we identify the quantity k̄ · r̄ to be the cause of this disagreement. The wave vector k̄ becomes
extremely large if hyperbolic polaritons are squeezed into a smallest possible or even point-like space,
r̄ → 0. Although PEMT-based design is much easier for constructing an arbitrary lamellar structure,
conformal mapping based CEMT is necessary for the design of hyperbolic polaritons squeezing device.
Moreover, we highlight that due to the advancement of nanotechnology, it might be feasible to implement
cylindrical lamellar structures in experiments [46, 47]. Because of its ease of applicability, we anticipate
that this approach based on hyperbolic polaritons will find great potential applications in solar cells,
spectroscopy, medical applications, and quantum information.
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