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A Simple Graphic Method for Analyzing the Polarization State
of an Optical System with a Fixed Polarizer and a Rotating

Elliptical Retarder

Nan Wang1, 2, 3 and Sailing He1, 2, 4, *

Abstract—The trajectory of the polarization state of a monochromatic beam passing through a
fixed linear polarizer and a rotating elliptical retarder on the Poincaré sphere is found to be a three-
dimensional 8-shaped contour, which is determined as the line of intersection of a right-circular cylinder
with the Poincaré sphere. The cylinder is parallel to the S3 axis, and the projection of the contour
on the S1S2 plane is a circle whose center and radius are determined. A method of projecting the
three-dimensional geometric relationships to the two-dimensional S1S2 plane to locate the position of
the polarization state of the emerging beam on the Poincaré sphere for a given azimuth of the elliptical
retarder is presented, and applied to solve a problem of polarization optics. The proposed graphic
method substantially simplifies the polarization state analysis involving elliptical retarders.

1. INTRODUCTION

A retarder, which is a polarizing component capable of changing the phase of the optical beam, is widely
used in polarization optics [1–3]. The most general case of a retarder is an elliptical retarder, whose
eigenpolarizations are orthogonal elliptical polarization states [1]. An elliptical retarder is not only of
great theoretical significance, but also occurs frequently in practice. For example, certain crystals [4],
combinations of linear retarders [4–6], twisted nematic liquid crystal cells [7], birefringence behavior of
an optical fiber [8, 9], transparent birefringent mask [10] can all be treated as elliptical retarders.

Therefore, numerous studies on elliptical retarders have been performed [1–4, 6, 7, 11]. One of
the most frequently encountered tasks is to study the commonly used optical system consisting of a
linear polarizer and an elliptical retarder. It is always desirable to determine the polarization of the
emerging beam when the polarization of the polarizer is fixed and the elliptical retarder is rotated [1–
4, 7]. Even though such optical system has been well studied and used to characterize the optical
parameters of elliptical retarders [4, 7], the methods adopted by these researches mainly rely on the Jones
matrix formalism and the Mueller matrix formalism. However, the matrix algebra concerning elliptical
retarders is complex, and the tedious calculations often prevent us from forming a clear and systematic
picture how the polarization of the emerging beam evolves as the elliptical retarder is rotated [7].
Therefore, it is alluring for us to develop a graphic method to simplify the problem. Perhaps one
of the most straightforward ways to achieve this is to apply the famous conclusion that passage of
polarized light through an elliptical retarder corresponds to a rotation on the Poincaré sphere about
a certain diameter [5]. However, directly applying the method of rotation in the three-dimensional
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space is still inconvenient. Alternatively, the trajectory of the polarization states of a linearly polarized
beam passing through a rotating linear retarder has been discussed. The early observations on special
cases by Rajagopalan & Ramaseshan [12], Azzam et al. [13], and Sabatke et al. [14] presented that
the trajectory is a three-dimensional 8-shaped contour. Later Azzam [15] generalized their results and
pointed out that such contour is the line of intersection of a right-circular cylinder with the Poincaré
sphere. Recently Salazar & Torres [16] further developed this idea and presented that the trajectory
becomes the intersection curve of a cone and the Poincaré sphere when the input polarization is an
arbitrary state. The previous studies on the trajectory generated by a rotating linear retarder are
instructive, while how to extend the results to the cases of elliptical retarder remains a problem.
Another limitation of the previous studies is that they only presented the trajectory generated by a
rotating retarder. While for practical applications, it is more desirable to point out the specific output
polarization state for a given orientation of the retarder. This task, however, is still unresolved [15, 16]

In this paper, we demonstrate that the trajectory of the polarization state of a monochromatic
beam passing through a fixed linear polarizer and a rotating elliptical retarder on the Poincaré sphere
is still an 8-shaped contour, which is determined as the line of intersection of a right-circular cylinder
with the Poincaré sphere. The cylinder is parallel to the S3 axis, and the projection of the contour on
the S1S2 plane is a circle tangent to the equator of the Poincaré sphere. The center and the radius
of the circle are determined. Based on these geometric relationships, we further present a method of
projection to locate the position of the polarization state of the emerging beam on the Poincaré sphere
for a given azimuth of the elliptical retarder. The proposed method converts the three-dimensional
geometric relationship to a two-dimensional one, and thus substantially simplifies the problem. Finally,
an application of this method is demonstrated to determine the intensity of the beam emerging from
an optical system consisting of an elliptical retarder sandwiched by two polarizers.

2. THEORY

An elliptical retarder has two eigenpolarization states with different optical path lengths. Fast
eigenpolarization refers to the polarization associated with the smaller optical path lengths, while
slow eigenpolarization corresponds to the one with larger lengths.We adopt the notation ER(θ, ε, ϕ)
to represent an elliptical retarder introducing a phase shift ϕ > 0 between its fast eigenpolarization J1

and its slow eigenpolarization J2. The polarization ellipse of J1 has an ellipticity angle ε ∈ [−π/4, π/4]
and its major axis n̂ is characterized by orientation angle θ ∈ [0, π) (Fig. 1).

Figure 1. Polarization ellipses of eigenpolarization states J1 and J2 with major axis n̂, orientation
angle θ, and ellipticity angle ε labeled for the ellipse of J1.
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The Jones matrix of elliptical retarder ER(θ, ε, ϕ) is [7, 11]

T =

[
cos(ϕ/2) + i sin(ϕ/2)s1 sin(ϕ/2)(is2 + s3)

sin(ϕ/2)(is2 − s3) cos(ϕ/2)− i sin(ϕ/2)s1

]
, (1)

where

s1 = cos 2ε cos 2θ

s2 = cos 2ε sin 2θ

s3 = sin 2ε.

(2)

The Mueller matrix of elliptical retarder ER(θ, ε, ϕ) can be built from Jones matrix T by [3]

M = L (T⊗T∗)L−1 =

[
1 0

0T m

]
(3)

where L =

 1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

, ⊗ represents the Kronecker product, asterisk represents complex

conjugate, 0 = (0, 0, 0), and m is recognized as the matrix which represents the rotation about axis
ŝ = ( s1 s2 s3 )T through angle −ϕ on the Poincaré sphere

m =

 s21(1− cosϕ) + cosϕ s1s2(1− cosϕ) + s3 sinϕ s1s3(1− cosϕ)− s2 sinϕ

s1s2(1− cosϕ)− s3 sinϕ s22(1− cosϕ) + cosϕ s2s3(1− cosϕ) + s1 sinϕ

s1s3(1− cosϕ) + s2 sinϕ s2s3(1− cosϕ)− s1 sinϕ s23(1− cosϕ) + cosϕ

 . (4)

Then we consider a beam passing through a fixed linear polarizer with its polarization P parallel
with the x axis and a rotating elliptical retarder ER(θ, ε, ϕ) (the angle between the major axis n̂ and
the x axis is θ) (Fig. 2). Suppose that the Stokes vector of the beam emerging from the polarizer is
I0( 1 1 0 0 )T , which corresponds to point A = ( 1 0 0 )T on the Poincaré sphere. Then the

beam emerging from the elliptical retarder ER(θ, ε, ϕ) has a Stokes vector I0M( 1 1 0 0 )T , which
corresponds to point B = mA on the Poincaré sphere. Substituting Equations (2) and (4) into B = mA
gives

B =

 cos2 2ε cos2 2θ(1− cosϕ) + cosϕ

cos2 2ε cos 2θ sin 2θ(1− cosϕ)− sin 2ε sinϕ

cos 2ε sin 2ε cos 2θ(1− cosϕ) + cos 2ε sin 2θ sinϕ

 =

(
B1

B2

B3

)
.

Figure 2. The combination of a fixed linear polarizer and a rotating elliptical retarder.
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By elimination of θ, we are able to obtain the relationship between B1 and B2: (B1 −B′
1)

2 +
(B2 −B′

2)
2 = r2, where

B′
1 = cosϕ+ 1/2 cos2 2ε(1− cosϕ)

B′
2 = − sin 2ε sinϕ

r = 1/2 cos2 2ε(1− cosϕ).

(5)

Therefore, the trajectory of point B (denoted by b) on the Poincaré sphere as the elliptical retarder is
rotated is the intersection line of the Poincaré sphere and a right-circular cylinder whose axis is parallel
with the S3 axis (Fig. 3(a)). If we denote the projection of trajectory b on the S1S2 plane as CB,
then CB is a circle whose center locates at point B′ = (B′

1, B
′
2, 0)

T and radius equals r. It can be

verified that
√

B′2
1 +B′2

2+ r = 1. Therefore, circle CB is tangent to the equator of the Poincaré sphere,

and the coordinate of the tangent point D is D = (B′
1, B

′
2, 0)

T /
√

B′2
1 +B′2

2. In addition, it is worth

mentioning that the 8-shaped trajectory generated by rotating elliptical retarder is also understandable
from another aspect, if we treat the elliptical retarder as the composition of a linear birefringence and
an optical activity and apply the results given by Salazar & Torres [16].

(a) (b) (c)

Figure 3. (a) When the elliptical retarder is rotated, the trajectory b of point B on the Poincaré sphere
is the intersection line of the Poincaré sphere and a right-circular cylinder whose axis is parallel with
the S3 axis. (b) Schematics for locating point Bp associated with a given azimuth θ of the elliptical
retarder on the S1S2 plane. (c) Schematics of projection curve CB for a linear retarder.

Next, we will show how to locate point B for a given azimuth θ of the elliptical retarder. When θ
varies, point B moves along curve b. This defines a mapping from [0, π) to b: θ → B(θ). The mapping
exhibits a useful property when we observe the S1S2 plane. Suppose that point Bp is the projection of

point B on the S1S2 plane, and axis
−−−→
B′S′

1 is parallel with the S1 axis, then angle β between
−−−→
B′Bp and

−−−→
B′S′

1 satisfies (Fig. 3(b))
β = 4θ. (6)

This can be verified by tanβ =
B2−B′

2
B1−B′

1
= tan 4θ. Equation (6) allows us to locate the

position of projection point Bp. However, in order to uniquely determine the position of point B(θ)
(except when B coincides with D), we still needs to point out whether B locates on the upper or
lower hemisphere. This can be achieved by determining the sign of B3 = M sin(2θ + γ), where

M =
√

sin2 ϕ+ [sin 2ε(1− cosϕ)]2 cos 2ε ≥ 0, and tan γ = sin 2ε tan(ϕ/2) (γ ∈ [−π/2, π/2]). Since
B3 and sin(2θ + γ) have the same sign (when M ̸= 0), B(θ) locates on the upper hemisphere if
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sin(2θ + γ) > 0 and on the lower hemisphere if sin(2θ + γ) < 0. In summary, our graphic method to
determine the output polarization state associated with a given azimuth θ of the elliptical retarder has
two steps: (i) construct circle CB by Equation (5), (ii) point out the position of B by equation (6) and
the sign of sin(2θ + γ). Above procedures can be accomplished by a simple sketch on the S1S2 plane
(Fig. 3(b)), do not involve complicated calculations, and thus substantially simplify the determination
of the output polarization state.

In addition, when sin(2θ + γ) = 0, B coincides with D, which means that the elliptical retarder
converts a linear polarized beam into another linear polarized beam. When M ̸= 0, there are only two
values of θ which will achieve this. For M = 0 (such as a linear λ/2 retarder and circular retarders), the
elliptical retarder converts any linear polarized beam into a linear polarized beam regardless the value
of θ.

Furthermore, it should be noted that our graphic method also simplifies the problems concerning a
linear retarder, which is only a special case of elliptical retarders. For a linear retarder, ε = 0, B′

2 = 0,
and thus the center of CB is on the S1 axis (Fig. 3(c)). This is the result given by Azzam [15] and
Salazar & Torres [16], however, we can further determine the position of B associated with θ. Still Bp

can be obtained by Equation (6), and the hemisphere B(θ) locates is determined by θ: it locates on the
upper hemisphere when θ ∈ (0, π/2) and on the lower hemisphere when θ ∈ (π/2, π), since γ = 0.

3. APPLICATION

As a demonstration to show the convenience of our graphic method, we apply it to an optical system
which besides the configuration shown in Fig. 2 has another rotating linear polarizer (called analyzer)
after the elliptical retarder (Fig. 4). Suppose the angle between polarization A of the analyzer and
the x axis is α, then we will determine the intensity of the beam emerging from the whole system for
arbitrary values of α and θ.

Figure 4. The combination of a fixed polarizer, a rotating elliptical retarder, and a rotating analyzer.

In order to do this, we adopt the graphic representation of a polarizer on the Poincaré sphere
(Fig. 5(a)). When an elliptically polarized beam with Stokes vector I0( 1 B1 B2 B3 )T passes
through an analyzer rotated about the z axis through angle α, the intensity of the output beam
is I = (1 + cos)I0/2, where R = ( cos 2α sin 2α 0 )T representing a point on the equator of the

Poincaré sphere, B = ( B1 B2 B3 )T , and is the arc of the great circle [2]. By applying spherical
law of cosines in the spherical triangle BNR (N is the north pole of the Poincaré sphere), we have
cos = cos εB cos(2α − θB) = k, where θB and εB are orientation angle and ellipticity angle of the

polarization ellipse represented by point B, k satisfying
−−−→
OBR = k

−−→
OR is the “ratio” of

−−−→
OBR and

−−→
OR,

and BR is the projection of B on the
−−→
OR axis. Therefore, the intensity can be finally simplified as

I = (1 + k)I0/2.
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(a) (b)

Figure 5. (a) The intensity of the emerging beam from a linear polarizer is I = (1 + cos)I0/2( is the
arc of the great circle), when the polarization state of the incident beam with intensity I0 is represented
by point B on the surface of the Poincaré sphere and point R = ( cos 2α sin 2α 0 )T is determined
by the azimuth αof the polarizer. (b) Schematics for obtaining the intensity of a beam passing through
a polarizer, an elliptical retarder and an analyzer by geometric relationships on the S1S2 plane.

Like what we did before, we can then obtain the output intensity simply by working on the S1S2

plane (Fig. 5(b)). More specifically, first construct circle CB, then point out Bp by Equation (6), next

construct point R = ( cos 2α sin 2α 0 )T , after that project Bp on the
−−→
OR axis to obtain BR and k,

and finally the intensity of the output beam is I = (1 + k)I0/2.
Compared with matrix calculations, this method provides us with deeper insight and can visually

demonstrate how the output intensity varies with α and θ. Such advantage is even further enlarged
during getting analytical solutions concerning the extreme values of the output intensities. For example,
when the analyzer is fixed (α remains constant) and the elliptical retarder is rotated, we can instantly
identify from Fig. 5(b) that the intensity of the output beam takes its maximum Imax when β = 4θ = 2α
or β = 4θ = 2α+2π (Bp coincides with point Bmax) and takes its minimum Imin when β = 4θ = 2α+π
or β = 4θ = 2α + π ± 2π (Bp coincides with point Bmin). This result allows us to experimentally
determine (not uniquely) the orientation of major axis n̂. Furthermore, the general form of Imax and
Imin can be obtained by geometric relationship without difficulty, however, as a demonstration we only
present the results when α = 0 and α = π/2, since these are the most frequently encountered situations
(where Imax and Imin take simpler forms). When α = 0, we have

Iα=0
max = I|α=0

θ=0 or π
2
=

1

2

(
1 +B1|θ=0 or π

2

)
I0

=
1

2

(
1 + cosϕ+ cos2 2ε (1− cosϕ)

)
I0

Iα=0
min = I|α=0

θ=π
4

or 3π
4

=
1

2

(
1 +B1|θ=π

4
or 3π

4

)
I0 =

1

2
(1 + cosϕ) I0.

(7)

When α = π/2, we have

Iα=π/2
max = I|α=π/2

θ=π
4

or 3π
4

=
1

2

(
1−B1|θ=π

4
or 3π

4

)
I0 =

1

2
(1− cosϕ) I0

I
α=π/2
min = I|α=π/2

θ=0 or π
2
=

1

2

(
1−B1|θ=0 or π

2

)
I0 =

1

4
(1− cosϕ) (1− cos 4ε) I0.

(8)
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Combining Equations (7) and (8), we can relate the parameters of the elliptical retarder to the intensity
of the emerging beam by

cos 4ε = 1−
2I

α=π/2
min

I
α=π/2
max

cosϕ =
Iα=0
min − I

α=π/2
max

I
α=π/2
max + Iα=0

min

.

(9)

In contrast, obtaining the analytical solutions of Equations (7)–(9) by matrix calculations requires
complex matrix multiplications and computing the derivative of the output intensity, which are
apparently not as convenient and clear as our graphic method.

4. CONCLUSION

In this paper, a detailed analysis of the fixed-polarizer rotating-elliptical-retarder optical system by a
graphic method has been presented. The trajectory of the polarization state of the beam emerging from
the system is an 8-shaped contour, which is determined as the intersection line of the Poincaré sphere
and a right-circular cylinder whose axis is parallel with the S3 axis. The projection of the trajectory on
the S1S2 plane is a circle whose center and radius are determined. Furthermore, the polarization state of
the emerging beam associated with a given azimuth of the elliptical retarder can be easily obtained. This
method converts the complicated problem of polarization optics to a simple two-dimensional geometric
issue, and its convenience and effectiveness have been demonstrated by determining the intensity of the
beam emerging from an optical system consisting of an elliptical retarder sandwiched by two polarizers.
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