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Design of Filter Integrated SPDT Switch Using Capacitor Loaded
Ring Resonator with High Isolation
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Abstract—A reconfigurable filter integrated single-pole double-throw (SPDT) switch (FIS) based on
capacitor loaded ring resonators is presented in this paper. The design incorporates two PIN diodes
between two symmetric square ring resonators. The ring resonators can be switched between allstop and
bandpass responses, by adjusting the state of the PIN diodes, allowing the corresponding signal path
to be in OFF-state with high isolation or ON-state with bandpass filter response. For demonstration,
filtering switch was fabricated and measured for 2.4GHz applications. The measurement results featured
an ON-state low insertion loss of −2.1 dB and port-to-port isolation of −52 dB at the band of interest,
and good consistency is achieved between simulated and measured results.

1. INTRODUCTION

Integrating multiple RF components into one single module is an effective approach to minimize circuit
size, mismatching loss, and power consumption. Various multifunctional microwave circuits have
been successfully demonstrated, including antenna integrated with RF switch [1, 2], integrated filter
antenna [3–5], and even power amplifier integrated with antenna [6].

Bandpass filter (BPF) integrated single-pole double-throw (SPDT) switch (FIS), as depicted
in Figure 1, is another integrated/multifunction device. Many efforts, i.e., reused switchable L-
shaped resonator [7], dual-mode microstrip-cavity structures [8], suspended-controllable resonators [9],
standing-wave-filtering structures [10], capacitively-coupled LC resonators with loaded PIN diodes [11],
switchable T-shape resonators [12], distributed coupling quarter-wavelength resonator with loaded PIN
diode [13], in-house developed 3D-TSV-MEMS [14], and fractal stub-loaded resonator (F-SLR) [15], have
been developed to integrate filters and SPDT switches. Nevertheless, the aforementioned filtering-SPDT
switch works suffered from high insertion loss (IL) [11–14], low ports isolation [8–15], or low-frequency
selectivity [7–9].

The isolation of the RF filtering switch is also a major issue to avoid leakage currents. Nowadays,
intensive research is going on to develop high isolation of RF filtering integrated switches. In [16], a
common shorted stepped-impedance resonator technique is used and produces isolation of −58 dB.
In [17], two distributed coupling identical tri-mode resonator (TMR) pairs loaded with opposite
polarity PIN diodes are proposed and achieve high isolation of −50/ − 43 dB at the frequency band
of 0.9GHz/1.8GHz. The authors develope a new switch using substrate integrated suspended line
(SISL) technology in [9] and report that a multilayer produces better isolation below −40 dB at 1GHz.
In [18], a parallel switched fractal common feeding line switch to provide four identical coupling paths
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is proposed and produces the isolation of −45.7 dB at 0.99GHz. A type of bandpass filter (BPF)-
integrated SPDT switch using frequency-selective star-junction matching circuit technique is proposed
in [19]. The isolation achieved is −47.8 dB which operates around the 1GHz frequency. Although these
reported filter-integrated switches can provide high isolation, there is a trade-off in terms of the number
of switching elements (PIN diode) required to perform the function, resulting in an increase of bias
circuit complexity.

In this paper, a technique to design a bandpass filter integrated SPDT switch by using a capacitor
loaded ring resonator is proposed. The design and analysis of a ring filtering switch are described in this
paper. The design belongs to SPDT switch category, which is utilized in Time Division Duplex (TDD)
communication for simultaneous transmitting and receiving operations. A capacitor-loaded square ring
resonator is the basis of the proposed design. To select between allstop and bandpass responses, PIN
diodes are employed as switching components. The suggested design has been validated at 2.4GHz
through insertion loss, return loss, and isolation performance. The proposed integrated filtering switch
provided several benefits, including removing out-of-band signals, good filtering performance in the
ON-state, and high isolations in the OFF-state.

(a)

(b)

Figure 1. Diagram of (a) bandpass filter and SPDT switch, (b) cascaded BPF and SPDT switch
integrated filter SPDT switch [20].

2. BANDPASS FILTER DESIGN

2.1. Bandpass Filter Configuration

The bandpass filter’s development begins with implementing a square shape ring resonator, followed by
introducing a microstrip line coupled with the square resonator with a space a = 0.5mm. An L-shaped
slot was cut in the resonator feed line to suppress higher undesirable frequencies.

As illustrated in Figure 2, the ring resonator unit is parallel-coupled to the microstrip transmission
line. The entire length of the ring resonator is full wavelength at the resonance frequency, λ. The
wavelength is λ/4 for each l1 length, forming a square-shaped ring resonator.

The resonator was designed based on microstrip equations (1) to (5). The list of equations involved
is shown below [21].
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where εr is the relative permittivity.
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where l is the line length.
β = k

√
εeff (5)

where k is the propagation constant.
The initial length (l1) and width (w) were 19.3mm and 2.8mm, respectively. However, it created

a resonance at 2.5GHz, and some tuning was done for resonant frequency shifting. Thus, the proposed
structure in Figure 2 was simulated in CST software on an FR4 substrate with a thickness of 1.6mm
and permittivity of 4.7. The optimized parameter values in (mm) are l1 = 19.6, Lm = 2.5, S = 21,
g = 0.5, W = 2.8, W2 = 2.48, a = 0.5, e = 11.5. The proposed filter unit is excited by Port 1 and
Port 2 feed lines of 50 ohms.

Figure 2. Proposed bandpass filter. Figure 3. Proposed filter loading with two
capacitors.

2.2. Bandpass Design Evaluation

The resonant frequency is known to be inversely proportional to inductance and capacitance. The
resonant frequencies can be moved to lower frequencies if the capacitance (C) of the resonator is
increased [22]. The lumped capacitor enhances the effective capacitance and reduces the filter size,
resulting in improved filter performance by enhancing the resonator’s stored energy. Therefore, two 1 pF
lumped capacitors were installed within the space between the square ring resonator and microstrip
transmission line. Figure 3 depicts the conventional schematic view of the bandpass filter with two
loaded lumped capacitors loaded within the space between the ring resonator and microstrip line. The
capacitors were placed at a distance of 5.75mm from the microstrip line center (denoted as point O in
Figure 3) along the y-axis. The proposed bandpass filter indicated in Figure 4 was simply simulated
and modeled using CST software.
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Figure 4. 3D model of the ring resonator structure in CST software.

C = C  + Cs d

L1

Ls
Z   = 50 Ohmo

Z   = 50 Ohmo

Figure 5. Equivalent circuit of the proposed BPF at 2.4GHz.

The bandpass filter shown in Figure 4 was modeled using a shunt series resonant branches equivalent
circuit [23] as shown in Figure 5.

The inductance and capacitance of the BPF were evaluated using the following equations [24]:

Cd + Cs =
π

ω0Zo
(6)

Ls =
1

ω2
0C

(7)

The inductance of the microstrip line was evaluated using the following equation [24]:

L1 =
1

ω0
× Zo × sin

(
2πl

λg

)
(8)

where ω0, the resonance, is (tuned) angular frequency, and λg is the guided wavelength.
The input impedance extracted from the equivalent circuit was evaluated using the following

equations [24]:

Zin =
j
[
ω2Ls (Cs + Cd)− 1

]
ωCd (1− ω2LsCs)

(9)

Ls and Cs are the shunt circuit of the design considered as a lossless resonator. Furthermore, the
installed capacitor (Cd) is distinguished from the natural capacitance of the resonator denoted as Cs.

When Zin = 0, the resonant frequency can be expressed as:

ω0 =
1√

(Ls)(Cs + Cd)
(10)
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The above equations show that the resonant frequencies move to lower frequencies if the resonator total
capacitance value C(Cs+Cd) is increased. This equation demonstrates that the greater the capacitance
value is, the lower the operating frequency is.

A parametric study for loaded capacitors value (Cd) was done, and the ideal value was determined
as indicated below to obtain optimum performance at 2.4GHz while maintaining a compact filter circuit.

As shown in Figure 6, the filter operating frequency is operational to the loaded capacitance values
(Cd). The bandpass filter has a central frequency of 3.7GHz; however, the center frequency changes to
lower values when a lumped capacitor Cd was applied. The resonant frequencies were reduced by 72
percent when two 1 pF capacitors were applied, implying that the addition of lumped capacitors leads
to smaller sizes. Furthermore, when the lumped capacitors were increased, the operational bandwidth
of the proposed filter decreases due to increases in the filter quality factor (Q) caused by a decrease in
radiation loss. This finding is consistent with the expectation, because the quality factor is defined as:

Q = ω0
Esto

Rloss
= ω0 (Cs + Cd)R =

ω0

B
(11)

where ω0 is a resonance (tuned) angular frequency, Esto the stored energy, Rloss the radiation loss, R
the resistance of the resonator, and B the bandwidth.

The selected capacitors value can be used to adjust the BPF central frequency across various
operating bands. For example, a 1 pF value was used for the capacitor to alter the resonance frequency
from 3.5GHz (WiMAX) band to the lower 2.4GHz (WLAN) band.

Also, a downshift in operating frequency has resulted in the miniaturization of the overall resonator
size. Based on Equations (9) and (10), the miniaturized bandpass filter is easily realized by applying
the parallel two 1 pF lumped capacitors (Cd).

The simulated S-parameters (|S11| and |S21|) results of the proposed bandpass filter are illustrated
in Figure 7. The filter is operated at a center frequency of 2.4GHz with 100MHz bandwidth. The
matched return loss was −25 dB, while the achieved insertion loss was −2 dB at the band of interest.

Figure 6. |S11| of the proposed filter with
different values of lumped capacitor.

Figure 7. |S11| and |S21| simulated results of the
BPF filter.

Figure 8 shows the prototype of the proposed bandpass filter. The layout total size of the filter
structure is 26mm× 26mm.

The filter-designed simulation results using CST and measurement results using vector network
Analyzer (N5242A) from Keysight Technologies are presented in Figure 9. The simulated and measured
return losses were better than −25 dB at 2.4GHz, while the measured insertion loss was around −2.1 dB
at the band of interest. There is a good agreement between the two results; however, a slight shift in
the center frequency from 2.4GHz to 2.42GHz is observed in the measured result, which is due to the
permittivity variation of the FR-4.



258 Nasser et al.

Figure 8. Prototype of the proposed filter. Figure 9. The simulated and measured |S11| and
|S21| for the bandpass filter.

3. FILTER INTEGRATED SPDT SWITCH

The configuration of the proposed filter integrated SPDT switch design based on the square ring
resonator, presented in Section 2, is shown in Figure 10.

At first, the square ring filter resonator is symmetrically mirrored to build a single-pole-double-
throw switch (SPDT) having bandpass filtering function and reasonable isolation between transmitter
and receiver. The filter ring resonator at the receiver side (Port 2) is a mirror image of the filter
resonator at the transmitter side (Port 1) to minimize detuning of one side with respect to another as
both arms operate at the same frequency band. Then, the filter integrated SPDT switch structure is
extended to a three-port design by adding another microstrip transmission line section with a third port
(Port 3) or known as the antenna port. Both switch transmission paths share this common microstrip
transmission line at Port 3.

Generally, this filter integrated SPDT switch was designed to switch the RF signal between
transmitter and receiver modes with a good bandpass filtering response. The series PIN diodes (D2 and

Figure 10. Proposed filter integrated SPDT switch simulated structure.
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D3) were used for this purpose. Transmission line open stub resonator (d) was connected to the shunt
PIN diodes (D1 and D4) to achieve additional isolation improvement. The addition of the transmission
line stub resonator (d) provided additional current path flow, and hence further isolation was achieved.

3.1. Transmitter Mode

Filter integrated SPDT switch structure was designed to route the RF signal between transmitter
mode (Tx) and receiver mode (Rx) while keeping a good filtering response simultaneously. Figure 11
represents the circuit operation of the proposed RF filtering switch in transmitter mode. When the RF
input power is induced to the Tx port (Port 1), the ring filter R1 is activated, and the ring filter R2 is
deactivated so that Port 2 is directly grounded through a 50Ω resistor.

Figure 11. Circuit diagram of the proposed filtering switch (Transmitter mode).

In this state, the RF signal transmitted from Port 1 (Transmitter) to Port 3 (Antenna) is considered
an insertion loss. The transmitter chain should produce very low RF signal leakage. The isolation
between Port 2 (Receiver) and Port 1 (Transmitter) is attained from the deactivated state of the PIN
diode (D3) in the receiver chain.

Additionally, the ON state of PIN diode D2 allows the RF signal to transmit to Port 3 (Antenna)
easily. Obviously, in this operation, the isolation between transmitter and receiver results from the
allstop behavior of ring filter R2 at the receiver (receiver) side. In addition, filtering of the transmitted
signals results from the bandpass capability of the ring filter (R1) at the transmitter side. As a result,
an all-pass response was produced by transmission line open stub resonator S1. On the contrary, a
shunt PIN diode in the receiver (Rx) arm D4 is switched ON with voltage control of +5V. As a result,
the bandstop response is produced by transmission line open stub resonator S2.

3.2. Receiver Mode

As shown in Figure 12, during the receiver mode operation, RF signals flow from the antenna (Port 3)
to the receiver (Port 2). When the RF input power is induced to the Rx port (Port 2), the ring filter
R2 is activated, and the ring filter R1 is deactivated so that Port 1 is directly grounded through a
50Ω resistor. During this state of operation, RF signals propagate from antenna to the receiver (Rx).
In this mode, series PIN diode D3 is activated, whereas shunt PIN diode, in the receiver chain, D4 is
deactivated with voltage control, 5V.

The ring filter R2 acts as a bandpass filter during this condition, while the ring filter R1 acts as an
allstop filter. Furthermore, the ON state of PIN diode D3 allows the RF signals to transmit through
Port 2 freely.
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Figure 12. Circuit diagram of the proposed filtering switch (Receiver mode).

Obviously, in this operation, the isolation between the two arms results from the allstop response
of R1 at the transmitter side. In addition, filtering of the transmitted signals results from the bandpass
capability of ring filter R2 (at the receiver side). In this scenario, a shunt PIN diode in the transmitter
(Tx) arm D1 is switched ON with voltage control of +5V. As a result, a bandstop response was produced
by transmission line open stub resonator S1. On the contrary, a shunt PIN diode in the receiver (Rx)
arm D4 is switched OFF with voltage control of −5V. As a result, an all-pass response was produced
by transmission line open stub resonator S2.

Figure 13 shows the current distribution of the proposed filter integrated SPDT switch at 2.4GHz.
As observed in Figure 13(a), when the structure works at transmitter mode (Port 1 is excited), a strong
current flowed along the filter resonator 1. The current on the receiver side (Filter Resonator 2) is
considerably suppressed. On the contrary, when the structure is in receiver mode (Port 2 is activated),
the current mostly concentrates on the filter resonator 2. The current on the channel of the transmitter
side (Filter Resonator 1) is very weak, as can be observed in Figure 13(b). This current distribution
indicated that good filtering performance and extremely excellent port-to-port isolation was obtained.

(a) (b)

Filter Resonator 1 Filter Resonator 2

Figure 13. Current distribution of the proposed filter integrated SPDT switch at (a) transmitter mode
and (b) receiver mode.



Progress In Electromagnetics Research C, Vol. 122, 2022 261

4. SIMULATION AND MEASUREMENT RESULTS OF FILTER INTEGRATED
SWITCH (FIS)

To testify the feasibility of the theoretical and simulated analysis carried out in Section 3, the proposed
filtering switch was fabricated as shown in Figure 14. The design performance was validated by
comparing simulated results with their measured counterparts. The FR4 material with a relative
permittivity (εr) of 4.7 and a thickness of 1.6mm was used to fabricate the proposed filtering switch
design. The low-cost PIN diodes with part numbers of BAP64-02 from NXP were used to switch between
the two transmission paths (Port 1 and Port 2). The states of the PIN diodes were controlled by the
bias circuits with a voltage of 5V through a capacitor and inductor with values of 10 pF and 10 nH,
respectively. The value of resistors at the input of biasing circuit was set to 47Ω to limit the biasing
current of PIN diodes.

Figure 14. Prototype of the suggested filter
integrated SPDT switch.

Figure 15. Simulation and measurement return
loss of the filter integrated SPDT switch at Tx
mode.

The fabricated module of the proposed filter integrated SPDT switch design was based on a square
ring filter resonator. The total size of the proposed filter integrated switch is 66mm × 70mm. The
filter-integrated SPDT switch was designed for wireless applications in 2.4GHz bands and was built
using the microstrip model in CST software.

Because of the completely symmetric bandpass filter unit on both sides of the structure, the signals
at the two output ports are exactly the same. Thus, in the following sections, only the transmitter
mode (Tx) operation is investigated, by which Port 1 is switched ON and Port 2 switched OFF.

Figure 15 displays the simulated and measured results of the proposed filter integrated SPDT
switch based on symmetric square ring filter resonators. When D2 and D4 PIN diodes are in ON status
and D1 and D3 in OFF status, the circuit is in Tx mode, whereby Port 1 is ON-state, and Port 2 is
blocked. Similarly, it acts as Rx mode when D2 and D4 PIN diodes are in OFF status and D1 and D3
in ON state. In both cases, the proposed filter integrated SPDT switch operates at 2.4GHz. As can be
observed from Figure 15, the return loss of the ON-state Port 1 (|S11|) was above −25 dB at 2.4GHz,
featuring efficient bandpass responses and good input port matching at the Tx port. The simulated
return loss was less than −25 dB at 2.4GHz, while the measured return loss was less than −40 dB.

In Figure 16, the simulation and measurement results for the isolation between Tx and Rx are
compared and found in good agreement. At 2.4GHz resonant frequency, more than −50 dB isolation
was achieved in both simulation and measurement results. By observing the circuit performances at
the resonant frequencies, the simulated isolation, |S21|, was −55 dB while the measured isolation was
−51 dB. It was found that the isolation is always higher than −25 dB and −27 dB in simulation and
measurement, respectively, within the overall frequency range from 1.1 to 4GHz. Further improvement
in the port-to-port isolation was obtained by cascading a single shunt PIN diode with transmission line
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Figure 16. Simulated and measured isolation of
the proposed filter integrated SPDT switch at Tx
mode.

Figure 17. Simulated and measured insertion
loss of the proposed filter integrated SPDT switch
at Tx mode.

stub resonator (d) at each arm of the proposed design.
Figure 17 further illustrates that the proposed filter integrated SPDT switch has a low insertion loss

at Port 3. The obtained insertion loss was −2.1 dB at a resonant frequency of 2.4GHz with a 0.1GHz
bandwidth. As can be seen in Figure 17, the simulation result for insertion loss was −2.1 dB, while
the measurement value for insertion loss was −2.17 dB. However, there is a minor discrepancy between
measurement and simulation results which is attributable to parasitic capacitance and inductance of
PIN diode, substrate tolerance, and solder wire resistance [25]. According to the equations from [21–
26], it could be concluded that theoretically, zero insertion loss, |S13|, can be obtained if single series
connected PIN diode (in ON state) is cascaded with the ring resonator. However, in the implemented
design, the insertion loss is slightly different from zero. It can be rationally assumed that the total
obtained insertion loss is cumulative of the series connected PIN diode loss and the ring filter resonator
loss.

Table 1. The summarization of operating cases of the filter integrated SPDT switch.

Receiver Mode Transmitter Mode

Voltage bias 2 and 4 -5 V +5 V

Voltage bias 1 and 3 +5 V -5 V

PIN diodes (D2 and D4) OFF states ON states

PIN diodes (D1 and D3) ON states OFF states

Ring Filter (R1) Allstop characteristics Bandpass characteristics

Ring Filter (R2) Bandpass characteristics Allstop characteristics
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The results demonstrate that the proposed filtering switch has two operational modes, as clarified
in Table 1.

5. PARAMETRIC STUDY

To obtain the best performance at 2.4GHz while maintaining a small filter integrated SPDT switch
size, a parametric analysis for the proposed design critical parameters was done, and the ideal values
are determined as will be indicated below. The study of the essential dimensions (d, Lm) through filter
integrated SPDT switch return loss and isolation performance is presented in the following discussion.

Figure 18(a) depicts the return loss of the proposed design with various transmission line stub
lengths (d). It is obvious that there is a negligible shift in the resonant frequency for all length values.
In addition, no significant change was observed in the return loss of the proposed design. To compromise
the matched return loss response and high isolation, the parameter value of d = 15.7mm was chosen
for the proposed design.

(a) (b)

Figure 18. Simulated filtering switch performance with different d: (a) |S11|, (b) isolation.

Figure 18(b) compares the isolation performance of filter integrated SPDT switch with altering
the length of transmission line stub ‘d’. As observed, the isolation (|S21|) of the filtering switch (FIS)
achieved higher than −50 dB at 2.4GHz operating frequency. Meanwhile, the isolation performance
was better than −25 dB within a frequency range from 1 to 4GHz. It can be observed that the best
performance was achieved at d = 15.7mm.

Figure 19 displays the bandpass filter’s simulated |S11| and isolation with different microstrip line
widths ‘Lm’. The dimensions of Lm were varied from 2.5mm to 0.6mm. As observed, the operating
frequency was shifted to lower values when transmission line width was decreased. It was observed
that the resonant frequency was shifted to the center frequency of the ring resonator at 2.4GHz by
increasing m. In Figure 19(a), the return loss (|S11|) shows a matched return loss response at 2.4GHz
when Lm = 2.5mm, but by decreasing Lm to lower than 2.5mm, it lowered the |S11| response, thus a
trade-off between high isolation and matched |S11| was found when the optimal microstrip line width,
Lm, was selected in the ring resonator design. This was because of the decrease in coupling spacing,
concurrently with the decrease of Lm, thus strengthening the ring and microstrip line couplings.

Filtering switch isolation performances with changing the microstrip line width (Lm) are compared
as presented in Figure 19(b). As observed, the isolation performance of the filter integrated SPDT switch
(FIS) reached greater than −40 dB at 2.4GHz resonant frequency. Meanwhile, the isolation performance
was better than −25 dB within a frequency range from 1 to 4GHz. It can be observed that the best
performance was achieved at Lm = 2.5mm.

A comparison between the proposed reconfigurable filter integrated SPDT switch possesses dual-
functions (switching and filtering) simultaneously, and the reference filtering switch is summarized in
Table 2. However, most of the reported designs in this literature produced high insertion loss and low
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(a) (b)

Figure 19. Simulated filtering switch performance with different Lm: (a) |S11|, (b) isolation.

Table 2. Comparison of recently published filtering switches with the proposed design.

References
Filter

Topology

Frequency

(GHz)

IL

(dB)

Iso

(dB)

PIN diodes

per channel

[27] BPF-SPDT-LC resonator 1 −2.7 −42 3

[28] BPF-SPDT-Quasi-Lumped-Element 0.612 −2.8 −41.4 2

[19] BPF-SPDT-Switched Magnetic Coupling 0.9 −1.52 −42 3

[17] BPF-SPDT tri-mode resonator 0.99 −1.87 −50 4

[16] BPF-SPDT-Stepped-Impedance Resonator 1 −1.99 −58 6

[12] T-shape resonator 2.45 −4 −30.6 3

[18] BPF-SPDT-Switched Fractal Common Feeding Line 0.99 −1.76 −45 3

This

work
Square Ring Resonator 2.4 -2.1 -52 2

isolation. As can be shown, the filter integrated SPDT switch introduced in this study has comparable
and satisfactory performances in terms of insertion loss and port-to-port isolation. Furthermore, the
proposed design utilized a lower number of PIN diodes per channel to obtain the required isolation
performance.

6. CONCLUSION

In this paper, a dual-function filter integrated SPDT switch based on a capacitor loaded ring resonator
has been designed, fabricated, and measured for 2.4GHz wireless applications. Square ring bandpass
filter theory was studied and then implemented in the construction of a filter integrated SPDT switch.
The proposed reconfigurable filtering switch can be switched between allstop and bandpass filter
operations. The proposed switchable filter structure was successfully designed using CST software.
More than −50 dB isolations, higher than −10 dB return loss, and low insertion loss were obtained in
the realized performance, with good consistency between the simulated and measured results. These
attractive features make the proposed filtering switch useful for many system applications such as time
division multiplexing, multibeamforming array circuit, MIMO system, and other applications operating
in 2.4GHz band.
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