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Sea-Surface Slow Small Target Detection Based on Polarimetric
Multi-Domain Feature Fusion

Chun-Ling Xue1, *, Fei Cao1, Qing Sun2, Jian-Feng Xu1, and Xiao-Wei Feng1

Abstract—A target detection method based on polarimetric multi-domain feature fusion is proposed
in this paper to improve the detection performance of slow small targets on the sea. Firstly, a complex
symmetric matrix was established based on the Pauli scattering vector. On the basis of an analysis on
the matrix, the Takagi decomposition method was adopted to extract the normalized polarimetric
maximum eigenvalue to characterize the echo signal. Secondly, a real symmetric Hurst exponent
matrix was constructed by processing the echo signal of the polarimetric radar, and the normalized
polarimetric Hurst exponent was extracted by the eigenvalue decomposition method. Thirdly, the
normalized polarimetric Doppler peak height was extracted through the Doppler peak height algorithm.
Finally, by fusing multi-domain features, a false alarm controllable detector was constructed through
the convex hull algorithm. The results of experimental analysis on the measured datasets indicate
that when the parameters are the same, compared with the traditional detection methods based on
polarimetric features, the proposed method presents better robustness in the case of short observation
time and low signal to clutter rate.

1. INTRODUCTION

When a radar detects targets on the sea, the receiver synchronously receives the scattering echo from
the sea surface, namely the sea clutter. It is prone to overshadow the echo signal of small targets and
undermine the detection performance of radar [1]. In terms of the sea clutter under the illumination of a
high-resolution radar with a low gazing angle, its amplitude distribution obtained by statistical methods
is non-Gaussian, non-stationary, nonlinear, and with a long trail [2–4]. Thus, it is difficult for modelling.
Moreover, in frequency domain analysis, the Doppler frequency of slow small targets usually shifts within
a wide frequency band of sea clutter, which increases the difficulty of distinguishing targets from sea
clutter [5]. In recent years, the radar cross-section (RCS) of the target radar has become smaller with
the development of stealth technology, which makes it more difficult for a radar to detect low, slow, and
small targets. Therefore, how to optimize the performance of radar detection of slow small targets on
the sea has become an important research direction in the development of radar detection technologies
in recent years.

In view of the above characteristics of sea clutter, some scholars have explored target detection
methods based on features. Literature [6] pointed out that the sea clutter approached fractal at a certain
scale interval based on the research on the fractal theory of sea clutter, but the performance of target
detection decreased when the clutter was beyond the interval. In [7], three features of time and frequency
domains were used for the sea surface target detection, and a new idea of feature fusion was proposed.
In [8], the multi-domain features of time, frequency, and fractal dimensions were used for information
fusion, which improved the detection performance of targets on the sea in a single polarimetric channel.
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According to the research on scattering characteristics of sea clutter in [9, Chapter 2], the echo signal
from the polarimetric radar contained rich target information. With the development of ubiquitous
radar technologies, based on the polarimetric radar, some scholars have carried out research on the
detection of targets on the sea at low gazing angles [1, 10–12]. In [10], the distance between entropy
and anisotropy (DBEA) was obtained by the polarimetric eigenvalue decomposition method, and the
empirical threshold was combined for target detection. In [1], the coherent decomposition method of
the polarimetric covariance matrix was adopted to obtain three polarimetric scattering components.
In [11], the five-dimensional features were extracted from two polarimetric decomposition angles for
target detection. However, the method can generate inaccurate decomposition results and have poor
anti-interference ability. Also, in [12], on the basis of the classic tri-feature method, the performance of
detecting targets on the sea at short observation time was improved by fusing polarimetric time-domain
and frequency-domain features, while the in-depth exploration has not been carried out on the features
of other transform domains.

Based on the polarimetric radar, this paper proposes a target detection method based on
polarimetric multi-domain feature fusion. Firstly, a complex symmetric matrix was constructed by
the Pauli scattering vector, and the Takagi decomposition method was adopted to extract the time-
domain normalized polarimetric maximum eigenvalue (NPME). Secondly, the normalized polarimetric
Hurst exponent (NPHE) and normalized polarimetric Doppler peak height (NPDH) were extracted from
the fractal and frequency domains, respectively. Finally, a false-alarm controllable convex hull detector
was constructed by fusing multi-domain features to achieve the detection of slow small targets on the
sea.

2. OBJECT DETECTION MODEL AND MEASURED DATASETS

2.1. Object Detection Model

The detection of targets on the sea by polarimetric radar was generally deemed as a binary hypothesis
testing problem [12], and the detection model is

H0 :

{
rJ (n) = cJ (n)
rJ,p (n) = cJ,p (n)

H1 :

{
rJ (n) = sJ (n) + cJ (n)
rJ,p (n) = cJ,p (n)

n = 1, 2, · · · , N ; J = HH,V V,HV, V H; p = 1, 2, · · · , P (1)

where the null hypothesis H0 represents that there is no target in a bin to be tested. The alternative
hypothesis H1 represents that there are targets in the bin. r(n), s(n), and c(n) represent radar echo,
target echo, and sea clutter echo, respectively. n, p, and J represent the pulse sequence, reference bin,
and polarimetric channel, respectively. N and P represent the pulse length and the number of reference
bins, respectively.

2.2. Measured Dataset

The verification experiment in this paper adopts the shared measured datasets of the IPIX radar [13].
The datasets were collected in Dartmouth in 1993 by experimental staff at McMaster University.
Specifically, the foam ball is 1m in diameter covered with metal strips as a target. The radar carrier
frequency is 9.34GHz, and the sampling frequency is 1 kHz. Each dataset contains 14 bins, and the
sampling pulse of each bin is 131072. Table 1 presents other related parameters. The selected measured
datasets in Table 1 cover a variety of sea states, polarimetric channels, and signal to clutter rate (SCR).
SCR is calculated as follows [7]:

SCR = 10 log10

(
PT − PC

PC

)
(2)

where PT represents the average power of the echo signals of the target bins. PC represents the average
power of echo signals of clutter bins.
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Table 1. Description of IPIX radar datasets.

File Primary Target Second Target SCR/dB Wave/m

#26 7 6, 8 5.5 1.1

#54 8 7, 9, 10 14.8 0.7

#280 8 7, 9, 10 5.8 1.6

#310 7 6, 8, 9 2.7 0.9

#320 7 6, 8, 9 11.5 0.9

3. TARGET DETECTION METHOD BASED ON POLARIMETRIC
MULTI-DOMAIN FEATURE FUSION

Based on the analysis on polarimetric radar echo signals, their multi-domain features are extracted
from the time domain, fractal, and frequency domain, respectively. A false alarm controllable detector
is constructed by fusing multi-domain features and adopting the convex hull algorithm. In the following
feature analysis, the observation time is all selected as 512ms, and the adjacent data segments are
processed by sliding 64 points each time.

3.1. Polarimetric Multi-Domain Features

3.1.1. Normalized Polarimetric Maximum Eigenvalue

Sinclair scattering matrix is the basic recording unit of polarimetric radar, and its elements describe the
scattering characteristics of a target under different polarimetric channels. Based on the Pauli matrix
decomposition and reciprocity theorem (i.e., SHV = SV H) [11], the polarimetric scattering matrix can
be vectorized as a Pauli scattering vector kP , which is expressed as follows:

kP =
1√
2
[ SHH + SV V SHH − SV V 2SHV ]

T
(3)

where SJ (J = HH,V V,HV, V H) is the element of the Sinclair scattering matrix. The first capital
letter of the subscript indicates the received polarimetric mode; the second capital letter of the subscript
indicates the transmitted polarimetric mode; and [·]T denotes the transpose. The first element of Pauli
scattering vector denotes the single scattering from a plane surface, and the second and third elements
denote the diplane scattering from corners with a relative orientation of 45◦, respectively.

The extraction method of the normalized polarimetric maximum eigenvalue is as follows. The
convolution of the Pauli scattering vector is carried out to obtain the complex symmetric matrix of
the single-view echo, and then to obtain the multi-view expectation matrix at the observation time.
Afterwards, the Takagi decomposition method is adopted to solve the non-negative real number diagonal
matrix of the expected matrix and to extract the largest eigenvalue. Finally, the maximum eigenvalue
of the bins to be tested is compared with the sum of the maximum eigenvalues of each bin extracted at
the corresponding observation time. The quotient is the NPME feature at the time domain.

The specific steps of extracting the feature are as follows:
a) Find the expectation of the complex symmetric matrix. Based on the Pauli scattering vector

kP , the complex symmetric matrix of the single-view echo is constructed by means of the convolution
operation. The expectation of the echo complex symmetric matrix founded at the observation time is
marked as M, and the equation is

M =
⟨
kP ⊗ kT

P

⟩
=

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 (4)

where ⟨·⟩, ⊗, and superscript T denote expectation, Kronecker product, and transpose, respectively.
The matrix M obtained by convolution and expectation processing can suppress clutter and noise
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interference, and improve the SCR. The elements of M are as follows:

T11 =
1

2

⟨
(SHH + SV V )

2
⟩

T12 = T21 =
1

2

⟨
(SHH)2 − (SV V )

2
⟩

T13 = T31 = ⟨(SHH + SV V )SHV ⟩

T22 =
1

2

⟨
(SHH − SV V )

2
⟩

T23 = T32 = ⟨(SHH − SV V )SHV ⟩
T33 = 2

⟨
(SHV )

2
⟩

(5)

b) Choose the largest eigenvalue ofM. The Takagi decomposition method was adopted to obtain the
diagonal matrix Λ composed of non-negative real numbers, then to extract the largest eigenvalue [14].
The decomposition equation M is

M = UΛUT (6)

where U is a unitary matrix, and the diagonal element Λ is set as λ1 ≥ λ2 ≥ λ3 ≥ 0. The maximum
eigenvalue λ1 represents the main scattering component in the radar irradiation area after smoothing.

c) Extract NPME. To reduce the influence of the echo fluctuation at different observation times
and scale differences in the fusion of features in different transform domains, a comparison between the
maximum eigenvalue of the bin to be tested and the sum of the maximum eigenvalues of bins at the
corresponding observation time is conducted in the paper. The quotient is NPME and marked as ξ1.
The feature is computed by

ξ1 =
λ1

P∑
p=1

λ1,p

(7)

where λ1,p denotes the largest eigenvalue of the pth bin. For inhomogeneous sea clutter along range
bins, the denominator of Eq. (7) can fit the variation of sea clutter level with range.

Figure 1 shows the NPME histograms of sea clutter and target of the #54 and #310 datasets.
The results in Figure 1(a) indicate that under high SCR conditions, the NPME of sea clutter is mainly
concentrated in the interval [0, 0.1]. The NPME of the target is mainly concentrated in the interval [0.3,
0.5]. Obviously, the target and sea clutter were of high separability. The results in Figure 1(b) indicate
that the distribution of sea clutter and target becomes wider with the decrease of SCR. The NPME
of the sea clutter is mainly concentrated in the interval [0, 0.1], while that of the target is relatively
scattered, approaching uniform distribution. Both are partially intersected. The figure illustrates that
the separability of NPME decreases with the reduction of SCR, so other features need to be fused to
improve the separability of target and sea clutter.
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Figure 1. NPME Histograms of sea clutter and target of the (a) #54 and (b) #310 datasets.
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3.1.2. Normalized Polarimetric Hurst Exponent

Fractal characterizes the roughness of the system and shows the difference in terms of self-similarity
between natural objects and man-made objects. When a radar irradiates the sea surface, there is also
a fractal difference between the naturally formed sea clutter and the echo signals of man-made targets.
In a single polarimetric channel, the fractal characteristics fluctuate greatly. Hence, in this section,
the multi-dimensional fractal information contained in the polarimetric radar echo signal is utilized to
construct a polarimetric Hurst exponent matrix. Then, the eigenvalue decomposition method is adopted
to obtain the NPHE of the matrix.

The specific steps of extracting the feature are as follows:
a) Construct a random walk process of the radar echo. Firstly, to suppress the influence of Gaussian

white noise, the radar echo signal is preprocessed by zero mean. Assuming that the radar echo signal
in any polarimetric channel is rJ(n), the zero-mean value sequence yJ(n) is obtained by removing the
mean value. The equation is as follows:

yJ (n) = rJ (n)− µJ

µJ =
1

N

N∑
n=1

rJ (n)
(8)

Secondly, the random walk process zJ(n) of the radar echo signal is obtained on the basis of the
new sequence yJ(n). The equation is as follows:

zJ (n) =

n∑
i=1

yJ (i) (9)

b) Choose the maximum eigenvalue of the polarimetric Hurst exponent matrix. The amplitude
sequence of sea clutter shows multifractal characteristics in a certain scale range. More specifically, this
is a power-law relation, i.e., Hurst index [15]. Since the existence of a target affects the change of Hurst
index of sea clutter, the Hurst index feature can be used for target detection. The power law relation is

FJ (m) =
⟨
|z (k +m)− z (k)|2

⟩1/2
∼ mHJ

k = 1, 2, · · · , N −m; J = HH,V V,HV, V H (10)

where m and HJ denote the scale and Hurst exponent in the J polarimetric channel, respectively.
FJ(m) denotes the cumulates corresponding to m scale.

The target to be tested is a man-made object, and its energy is mainly concentrated on the
maximum eigenvalue of the matrix. In comparison, the sea clutter is regarded as a natural object,
and its energy is relatively dispersed. Therefore, the maximum eigenvalue of the matrix can be selected
as the feature to improve the separability of target and sea clutter.

Based on the reciprocity theorem, the Hurst exponents in HH, V V , and HV polarimetric channels
are selected to generate a Hurst exponent vector. Then, the polarimetric Hurst exponent matrix Z is
constructed through convolution. Z is a real symmetric matrix, and the maximum eigenvalue of the
matrix can be obtained by the eigenvalue decomposition method. The equations are as follows:

Z = W ⊗WT = QVQT

W = [ HHH HV V HHV ]
T

ε = max (V)

(11)

where W and Z are the vector and matrix of Hurst exponent, respectively. ε is the largest eigenvalue
of Z. Q is an orthogonal matrix composed of eigenvectors of Z. V is a real diagonal matrix. The first
equation in (11) is the eigenvalue decomposition of the Hurst matrix; the second equation is the vector
of Hurst exponent; and the third equation is to extract the maximum value of real diagonal matrix.

c) Extract NPHE. To reduce the influence of echo fluctuation at different observation times and
scale differences in the fusion of features in different transform domains, the maximum eigenvalue ε of
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the bin to be tested was compared with the sum of maximum eigenvalues of bins at the corresponding
observation time to obtain the NPHE, which was marked as ξ2. The feature is computed by

ξ2 =
ε

P∑
p=1

εp

(12)

where εp denotes the largest eigenvalue of the pth bin extracted by the Hurst index method.
Figure 2 shows the NPHE histograms of sea clutter and target of the #54 and #310 datasets.

Obviously, the sea clutter and target bins have similar distribution under the two kinds of SCR. The
NPHE of the sea clutter is mainly concentrated in the interval [0, 0.1], and the NPHE of the target bins
is mainly concentrated in the interval [0.05, 0.4]. They have a small overlap between 0.05 and 0.15. In
addition, it can be seen from Figure 2(b) that the feature proposed in this section still has separability
under low SCR conditions, and it presents a different distribution from that in Figure 1, indicating that
this feature is highly complementary with NPME.

(a) (b)

Figure 2. NPHE histograms of sea clutter and target of the (a) #54 and (b) #310 datasets.

3.1.3. Normalized Polarimetric Doppler Peak Height

According to the definition of Doppler peak height (DPH), DPH reflects the proportion of the main
energy in the frequency domain [12]. In terms of the polarimetric radar, the previously selected
eigenvalues are optimized to extract the NPDH in the frequency domain.

The specific steps of extracting the feature are as follows:
a) Find the average DPH of the polarimetric channel. Firstly, the DPHJ in the four polarimetric

channels was calculated according to [12]. Then, its arithmetic mean value is calculated, marked as
DPH. The equation is as follows:

DPH =
1

4
(DPHHH +DPHV V +DPHHV +DPHV H) (13)

b) Extract NPDH. To reduce the influence of echo fluctuation at different observation times and
scale differences in the fusion of features in different transform domains, the average DPH of the bin to
be tested obtained in Eq. (13) is compared with the sum of the average DPH of bins at the corresponding
observation time. The quotient is NPME and marked as ξ3. The feature is calculated by

ξ3 =
DPH

P∑
p=1

DPHp

(14)

where DPHp denotes the average DPH of the pth bin.
Figure 3 shows the NPDH histograms of sea clutter and target of the #54 and #310 datasets.

This indicates that the NPDH histograms of the sea clutter bins in the two datasets have a similar
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(a) (b)

Figure 3. NPDH histograms of sea clutter and target of the (a) #54 and (b) #310 datasets.

distribution, and the NPDH mainly concentrate in the interval [0, 0.1]. In addition, the NPDH
distribution center of the target bins approaches that of the sea clutter bins with the decrease of
SCR. Its feature is mainly distributed in the interval [0.05, 0.25], showing a different distribution from
NPME and NPHE. This indicates that the features of the three transform domains are characterized
by high complementarity.

4. OBJECT DETECTION METHOD

During the detection of unknown targets on the sea, it is easier to obtain the sea clutter data than
target echo signals. Thus, the targets are usually detected as the anomaly of sea clutter. Based on the
convex hull algorithm’s characteristics such as controllable false alarms and good visual effect in anomaly
detection, a target detection method of the paper was constructed by combining full polarization multi-
domain feature fusion and the false alarm controllable convex hull algorithm [1]. Among them, the
optimal decision region’s equation for solving the false alarm controllable convex hull algorithm is{

Ωc = argmin
Ω

{Volume (Ω)}

s.t. # {i : ξc ∈ Ω} = I × (1− Pf )
(15)

where Ωc represents the optimal decision region of the training samples. Ω represents the feature space
of the training samples. #{A} represents the number of the A. ξc represents the polarimetric multi-
domain feature vector of the training sample. I represents the number of sea clutter training samples.
Pf represents the set false alarm probability.

When the polarimetric multi-domain feature vector ξt of bins to be tested is in Ωc, it is judged as
H0; otherwise, it is H1. The basic process of the target detection method is shown in Figure 4. The
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Figure 4. Flow chart of target detection based on polarimetric multi-domain feature fusion.
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superscripts c and t in the figure represent the training set and the test set, respectively. The process
mainly includes a training module and a detection module.

Figure 5 shows the feature space distribution of target and sea clutter bins of #54 and #310
datasets obtained by the method in this paper. In the figure, the red ‘∗’ represents the target, and the
blue ‘o’ represents the sea clutter. The blue part surrounded by the polyhedron is a decision region with
a false alarm probability of 10−3. It is obvious that the feature space determined by the multi-domain
feature vectors in this paper shows higher separability under the two kinds of SCR.

(a) (b)

Figure 5. Multi-domain feature spaces and convex-hull decision regions of the (a) #54 and (b) #310
datasets.

5. EXPERIMENTS AND ANALYSIS

5.1. Detection Performance of the Method at Different Observation Times

In this section, the proposed method is used to calculate the detection probability (Pd) of the dataset
in Table 1 at the observation time of n (ranged from 7 to 12). For other parameters, the false alarm
probability (Pf ) is set as 10−3. Adjacent data segments are processed by sliding 64 points each time,
and the obtained sample size of each dataset is more than 20000, which meets the test conditions of the
convex hull algorithm.

Figures 6(a)–(e) are detection probability curves obtained by this method at different observation
times, and Figure 6(f) is a curve of average detection probability. The black solid line in the figure
represents a detection probability curve obtained by using a Fast Fourier transform (FFT) with a
fixed frequency range of 1024Hz during the NPDH feature extraction. The blue dotted line represents
the detection probability curve obtained by using FFT, and its frequency range is determined by the
observation time. The comparison among Figure 6 indicates that in #280 and #320, the black solid line
shows that there is local fluctuation at the observation time of 256ms. Because the frequency range of
FFT is fixed during the extraction of NPDH features, when the observation time is less than 1024ms,
the FFT decentralizes the energy of clutter in radar echo signals. This affects the detection performance
of the proposed method and results in the fluctuation of detection probability at the observed time series
of some datasets. The blue dotted line is the detection probability curve obtained in NPDH feature
with variable frequency range, showing that the detection probability of each dataset is consistent with
the overall change trend of Figure 6(f) with the increase of observation time. However, the detection
probability is lower than that of this method when the observation time is less than 512ms. It can
also be seen from Figure 6 that with the increase of observation time, the detection performance of the
proposed method presents an overall upward trend, and the detection performance stays well.

5.2. Comparison of Detection Performance of Different Methods

The detection performance of the proposed method and the existing 4 polarimetric feature detection
methods will be compared in this section [1, 10–12]. For convenience, the method in [10] is referred
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Figure 6. Detection probability of different datasets at different observation times. (a) #26, (b) #54,
(c) #280, (d) #310, (e) #320, (f) mean value.

to as the distance between entropy and anisotropy (DBEA) methods. The one [12] is referred to as
the tri-feature method in four polarization channels (Tri-FPC). The one in [1] is referred to as the tri-
polarization-feature method (3D-PFM). The one in [11] is referred to as the combined characteristics
of polarization method (CCPM).

Figure 7(a) shows the detection probabilities of the 5 methods in different datasets when the false
alarm probability is 10−3. Figure 7(b) shows the curve of the dataset’s average ROC obtained by the
5 methods. In terms of parameter selection, the observation time is 512ms, and the adjacent data
segments are processed by sliding 64 points each time.

It can be seen from Figure 7(a) that the detection performance of the traditional detection method
is greatly affected by sea states and SCR. The proposed method and Tri-FPC method have better anti-
interference ability and mediate the problem of instability of polarimetric decomposition. The reason
is that they fuse multi-domain features, complement each other from different transform domains and
improve the target detection performance. It is worth noting that the detection performance of the
proposed method is better than that of the Tri-FPC method in low SCR and high sea states, but this

P
d

 P
d

(a) (b)

Figure 7. Detection performance of five methods. (a) Detection performance in different datasets. (b)
ROC curves.
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advantage decreases with the rise of sea states. Figure 7(b) compares the average detection probability
of the 5 detection methods with the change of false alarm probability, illustrating that these methods
have large differences when the false alarm probability is low. The sequence of their detection probability
is: the proposed method > Tri-FPC method > CCPM method > 3D-PFM method > DBEA method.
However, the differences gradually decrease with the increase of false alarm probability. This is because
the improvement effect of multi-domain feature fusion reaches a bottleneck with the increase of false
alarm probability. Furthermore, the performance of these detection methods fluctuates to a certain
extent due to the influence of complex sea conditions. However, the proposed method in this paper
shows better robustness, with an average detection probability greater than 90%, followed by the Tri-
FPC method, whose average detection probability is greater than 80%. The other detection methods
have relatively low detection performance.

6. CONCLUSION

In this paper, aiming at the difficulty of detecting slow small targets in complex sea conditions, a better
distinguishable area between sea clutter and targets is obtained by fusing the multi-domain features
based on the feature extraction of polarimetric radar echo signals. The comparative experimental
analyses indicate that the proposed method has better robustness than other traditional methods when
the SCR is low, and the observation time is less than 512ms. What needs to be pointed out is that the
features of different transform domains extracted in this paper have different distributions. Thus, how
to use this distribution characteristic for target detection is also the next research direction.
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