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The Role of Jordan Blocks in the MoT-Scheme Time Domain EFIE
Linear-in-Time Solution Instability
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Abstract—The marching-on-in-time electric field integral equation (MOT-EFIE) and the marching-
on-in-time time differentiated electric field integral equation (MOT-TDEFIE) are based on Rao-Wilton-
Glisson (RWG) spatial discretization. In both formulations we employ the Dirac-delta temporal testing
functions; however, they differ in temporal basis functions, i.e., hat and quadratic spline basis functions.
These schemes suffer from linear-in-time solution instability. We analyze the corresponding companion
matrices using projection matrices and prove mathematically that each independent solenoidal current
density corresponds to a Jordan block of size two. In combination with Lidskii-Vishik-Lyusternik
perturbation theory we find that finite precision causes these Jordan block eigenvalues to split, and
this is the root cause of the instability of both schemes. The split eigenvalues cause solutions with
exponentially increasing magnitudes that are initially observed as constant and/or linear-in-time, yet
these become exponentially increasing at discrete time steps beyond the inverse square root of the
error due to finite precision, i.e., approximately after one hundred million discrete time steps in double
precision arithmetic. We provide numerical evidence to further illustrate these findings.

1. INTRODUCTION

An important next step in the field of computational electromagnetics (CEM) is the application of
Maxwell solvers to multiphysics problems [1]. Maxwell solvers such as the time domain finite element
method (TDFEM) and the finite difference time domain (FDTD) method are popular choices for
multiphysics simulations dealing with electromagnetics [1, 2]. Alternative Maxwell solvers based on
a Green function are time domain surface integral equations (TDSIEs). The TDSIEs have two major
advantages over TDFEM and FDTD [3]: 1) owing to the Green function, TDSIEs have incorporated
radiation conditions, whereas TDFEM and FDTD require proper truncation of the computational
domain; 2) TDSIEs require discretization of only the wave propagation media boundaries, whereas
TDFEM and FDTD require discretization of the full computational domain. These advantages could
reduce the computational domain and therefore computational complexity of multiphysics solvers by
replacing TDFEM and FDTD with TDSIEs as the Maxwell solver [4].

The best TDSIE formulation to use depends on the wave propagation medium [5]. To include perfect
electric conductors (PECs) in a multiphysics material library, the Marching-on-in-Time Time Domain
Electric Field Integral Equation (MOT-EFIE) solver and its time differentiated version (MOT-TDEFIE)
would be one of the most compact TDSIE representation of the electromagnetic wave propagation. The
MOT-(TD)EFIE solvers have the advantage that the unknowns at each time step only depend on the
unknowns found in previous time steps [6]. Research over the years has focused on improving the
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speed and stability of the MOT-(TD)EFIE solver. A comprehensive list of speed improvements for the
MOT-(TD)EFIE solver can be found in [5].

The stability improvements of the MOT-(TD)EFIE solver focus on two types of solution
instability [7]: numerical instability, i.e., solution instability due to improper discretization, and spectral
instability, i.e., instability of the solutions residing in the null space of the continuous (TD)EFIE
operator. Major breakthroughs in removing the numerical instabilities in the MOT-(TD)EFIE solver
are the exact integration techniques [8, 9] and a correct temporal discretization [10]. The MOT-
(TD)EFIE design by Van ’t Wout et al. [9] incorporates both numerical stabilization techniques, and it
is recognized that their implementation suffers from what is known as linear-in-time solution instability.
The linear-in-time solution instability is a spectral instability as numerically determined in [11]. Methods
such as the combined field integral equation (CFIE) [11], inclusion of the normal magnetic field [12],
dottrick Calderón preconditioned EFIE [7, 13], and the quasi-Helmholtz projectors to integrate loop and
differentiate star currents in time [14] or in the Laplace-domain [15] are all designed to reduce the size
of the continuous (TD)EFIE null space and deal with this linear-in-time solution instability.

Although the source of the linear-in-time solution instability is found to be the null space of the
continuous (TD)EFIE, the work in [11] does not specify why the null space manifests itself as a linear-in-
time solution. This question is partially answered in [7], with the companion matrix stability analysis [16]
of the MOT-(TD)EFIE. In [7], the authors suspect that dimension two Jordan blocks occur in the
companion matrix representation of the MOT-scheme related to the solutions in the null space of the
continuous (TD)EFIE and that the Jordan blocks are the cause of the linear-in-time instability.

Here, we take a closer look at the conjecture presented in [7] and demonstrate that Jordan blocks
of dimension two appear both in the MOT-EFIE and the MOT-TDEFIE companion matrix and are
caused by the combination of basis and testing functions in both space and time. Finite precision
effects in the representation will then lead to a splitting of these Jordan blocks that consequentially
introduce exponentially increasing solution magnitudes that initially appear as constant or linear-in-time
increasing magnitudes.

This paper is organized as follows. In Section 2, we review the formulation of the EFIE and
TDEFIE, discuss their respective null spaces, and give the traditional discretizations that result in
MOT-schemes. In Section 3, we perform a companion-matrix stability analysis of the MOT-(TD)EFIE
to identify the Jordan blocks and include the effect of finite precision on the stability of the MOT-
(TD)EFIE scheme. In Section 4, we validate our findings with numerical examples. We present our
conclusions in Section 5.

2. FORMULATION

A perfect electric conductive (PEC) surface, Γ, resides in a homogeneous background medium with
permittivity ε0 and permeability µ0 and resulting electromagnetic wave propagation speed c0 =
1/

√
ε0µ0. The incident electric field Ei(r, t) will reach the surface Γ after t = 0. The time-domain

electric field integral equation (EFIE) defined on Γ is given by [6],

n̂× n̂×Ei(r, t) = n̂× n̂×
∫
Γ
µ0

J̇s(r
′, τ)

4πR
dA′ − n̂× n̂×∇

∫
Γ

1

ε0

∫ τ
−∞∇′

s · Js(r′, t̄) dt̄
4πR

dA′, (1)

where (r, t) are the observer space-time coordinates; (r′, t′) are the source space-time coordinates;
R = |r − r′| is the distance between source and observer; τ = t − R

c0
is the retarded time function;

Js is the surface current density on the surface Γ; J̇s is the derivative of Js with respect to τ ; ∇′
s· is the

surface divergence operator with respect to the source coordinates r′; ∇ is the gradient operator with
respect to the observer coordinates; n̂ denotes the unit vector normal to the boundary Γ; and dA′ is
the infinitesimal area element over the source coordinates. The first surface integral on the right hand
side of (1) represents the vector potential, and the second surface integral on the right hand side of
(1) represents the scalar potential. The time-differentiated electric field integral equation (TDEFIE)
defined on Γ is obtained by taking the temporal derivative of Equation (1) with respect to t.

Many mathematical steps in upcoming sections are similar for both the EFIE and TDEFIE. Hence,
we will denote the similar steps as sub-equations where sub-equation (a) is the step pertaining to the
EFIE, and sub-equation (b) is the step pertaining to the TDEFIE. Also, in some cases the symbols for
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the EFIE and TDEFIE steps have the same meaning but different values. In that case, the TDEFIE
symbol will have a ∂-superscript. If the main symbol has a ∂-superscript, a ∂-superscript is also implied
for all symbols in the subscript where such a definition exists to ease the notation, e.g., J∂ℓ = J∂

ℓ∂
.

2.1. Continuous Null Space

The stability analysis of the MOT-(TD)EFIE scheme starts from the identification of the null space of
the continuous (TD)EFIE operator. The null space consists of surface current densities that do not lose
their energy through electromagnetic radiation, e.g., the EFIE null space solutions consists of solutions
Js for which the right-hand side of (1) is zero. In literature there is a distinction between two types of
null space solutions [7]:

(i) Solutions Js for which the sum of the scalar potential and vector potential in (1) equals zero, but
the individual terms are not zero. These solutions Js are referred to as interior resonances and only
exist for closed PEC surfaces Γ.

(ii) Non-zero solutions Js for which the scalar potential and vector potential in (1) are equal to zero
individually. These solutions Js are called the DC solutions and occur for both open and closed
PEC surfaces Γ.

We focus on the null space pertaining to the DC solutions, as these have been linked to the linear-in-time
solution instability [11]. Expanding the surface current density as

Js(r, t) = Jr(r)Jt(t), J∂s (r, t) = J∂r (r)J
∂
t (t), (2a,b)

where Equation (2a) on the left is the solution to the EFIE, and Equation (2b) on the right is the
solution to the TDEFIE, then the respective DC null spaces consist of the solutions for which

∇s · Jr = 0 ∧ Jt = B, ∇s · J∂r = 0 ∧ J∂t = B + Ct, (3a,b)

holds with arbitrary non-zero constants B and C. Both (3a) and (3b) represent solenoidal surface
current densities. However, the solutions in (3a) are restricted to constant-in-time solutions, while (3b)
also admits linear-in-time solutions.

2.2. Discretization

To find a numerical approximation of the solution Js for the (TD)EFIE (1), the surface current density
is approximated as

Js(r, t) =
M∑

m′=1

N∑
n′=1

Jm′,n′fm′(r)Tn′(t), (4)

where Jm′,n′ is an expansion coefficient, fm′ the m′-th spatial basis function defined on Γm′ , and Tn′ the
n′-th temporal basis function. Substituting (4) in (1), multiplying the equation with the Dirac-delta
temporal test functions δ(t− n∆t) for n = 1, . . . , N and spatial test functions fm(r) for m = 1, . . . ,M
and integrating the result over t and Γm, we arrive at a linear system with coefficients, i.e., matrix
elements, given by the sum of the bilinear forms

An(fm, fm′ , Tn′) = µ0

∫
Γm

fm ·
∫
Γm′

fm′ Ṫn′(τn)

4πR
dA′dA, (5)

and

ϕn(fm, fm′ , Tn′) =
1

ε0

∫
Γm

∇s · fm
∫
Γm′

∇′
s · fm′

∫ τn
−∞ Tn′(t̄)dt̄

4πR
dA′dA, (6)

where τn = τ(n∆t) and Ṫn′ is the derivative of Tn′ with respect to t. Here, An and ϕn are the discretized
versions of the vector and scalar potential, respectively, in the right hand side of Equation (1). The
combination of spatial-temporal basis and test functions is not arbitrary as the stability of the MOT-
(TD)EFIE depends on it [10]. According to [10], the Rao-Wilton-Glisson (RWG) [17] functions are a
proper choice for the MOT-(TD)EFIE spatial basis, fm′ , and testing functions, fm. Although the spatial
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discretization is equal for both MOT-EFIE and MOT-TDEFIE, the temporal discretization is not. The
MOT-EFIE requires the hat temporal basis function [8],

Tn′ (t) =

 1−
∣∣∣∣ t− n′∆t

∆t

∣∣∣∣ , for −∆t < (t− n′∆t) ≤ ∆t,

0, otherwise,

(7a)

while the MOT-TDEFIE requires the quadratic spline temporal basis function [10],

T ∂n′ (t) =



1

2

(
t− n′∆t

∆t

)2

+
t− n′∆t

∆t
+

1

2
, for −∆t < (t− n′∆t) ≤ 0,

−
(
t− n′∆t

∆t

)2

+
t− n′∆t

∆t
+

1

2
, for 0 < (t− n′∆t) ≤ ∆t,

1

2

(
t− n′∆t

∆t

)2

− 2
t− n′∆t

∆t
+ 2, for ∆t < (t− n′∆t) ≤ 2∆t,

0, otherwise.

(7b)

These choices of spatial-temporal discerizations result in the MOT-EFIE (8a) and MOT-TDEFIE (8b),

Z0Jn = Ei,n −
n−1∑

n′=n−ℓ
Zn−n′Jn′ − Ztail

n−ℓ−1∑
n′=1

Jn′ , Z∂0J
∂
n = E∂i,n −

n−1∑
(n′)=n−ℓ∂

Z∂n−n′J∂n′ . (8a,b)

The matrices Zn−n′ and Z∂n−n′ are called the interaction matrices and have to be precomputed for
different values of n− n′ up to, see [11],

ℓ =

⌈
Rmax

c∆t

⌉
+ 1, ℓ∂ =

⌈
Rmax

c∆t

⌉
+ 2, (9a,b)

where Rmax is the largest possible separation between observer and source point on the discretized
surface Γ. The interaction matrix elements at row m and column m′ are defined as

Zn−n′(m,m′) = An(fm, fm′ , Tn′) + ϕn(fm, fm′ , Tn′), Ztail = ϕ̇n(fm, fm′ ,∆t), (10a)

Z∂n−n′(m,m′) = Ȧn(fm, fm′ , T ∂n′) + ϕ̇n(fm, fm′ , T ∂n′), (10b)

where Ȧn and ϕ̇n are the derivatives of An (5) and ϕn (6) with respect to t.

3. COMPANION MATRIX STABILITY ANALYSIS OF THE MOT-EFIE AND
MOT-TDEFIE

The stability of the MOT-(TD)EFIE can be analyzed using the corresponding companion matrix [16].
As we will use the companion matrix extensively in the next sections, we will first summarize how the
companion matrix relates to the stability performance of the MOT-(TD)EFIE.

In the companion-matrix stability analysis, we consider the MOT-(TD)EFIE without excitation,
i.e., Ei,n = E∂i,n = 0 ∀ n in Equation (8). The MOT-EFIE solution Jn then depends on Jn′ for

n′ = n − 1, . . . , n − ℓ and the sum
∑n−ℓ−1

n′=1 Jn′ . The MOT-TDEFIE solution J∂n then depends on J∂n′

for n′ = n− 1, . . . , n− ℓ∂ . Column concatenation of these current density vectors will result in what is
known as the composite current density vector [16],

Cn =
[
Jn−1 · · · Jn−ℓ

∑n−ℓ−1
i=1 Ji

]T
, C∂

n =
[
J∂n−1 · · · J∂n−ℓ+1 J∂n−ℓ

]T
. (11a,b)

As ℓ∂ = ℓ + 1, see (9), the dimensions of Cn and C∂
n are equal for a given RWG discretization. The

companion matrix, Q, expresses the relation between two consecutive composite current density vectors,
i.e.,

Cn = QCn−1 = QkCn−k, C∂
n = Q∂C∂

n−1 =
(
Q∂
)k

C∂
n−k, (12a,b)
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and is consequently given by,

Q =



Q1 Q2 · · · · · · Qℓ Qtail

I 0 · · · · · · 0 0

0 I
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . . I 0 0

0 · · · · · · 0 I I


, Q∂ =



Q∂
1 Q∂

2 · · · · · · Q∂
ℓ−1 Q∂

ℓ

I 0 · · · · · · 0 0

0 I
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . . I 0 0

0 · · · · · · 0 I 0


, (13a,b)

where for i = 1, . . . , ℓ or i = 1, . . . , ℓ∂

Qi = −Z−1
0 Zi Qtail = −Z−1

0 Ztail, Q∂
i = −

(
Z∂0

)−1
Z∂i . (14a,b)

So, given an initial composite current density vector, one can compute the resulting composite current
density vector after any number of time steps k using the companion matrix to the power k. Therefore,
the stability of the MOT-EFIE and MOT-TDEFIE depends on boundedness of the matrix elements in
Qk and (Q∂)k, respectively.

The boundedness of the companion matrix power elements can be analyzed using the Jordan
Canonical Form (JCF) [7, 18],

Q = TΛT−1 ⇔ (Q)k = T (Λ)kT−1, Q∂ = T∂Λ∂
(
T∂
)−1

⇔
(
Q∂
)k

= T∂
(
Λ∂
)k (

T∂
)−1

, (15a,b)

where Λ and Λ∂ are Jordan matrices, i.e., a block-diagonal matrix, filled with the Jordan blocks Ωi and
Ω∂
i , respectively. The matrix T represents a complete vector basis for RM(ℓ+1), and T∂ represents a

complete vector basis RMℓ∂ . Each Jordan block is coupled to an eigenvalue of the associated companion-
matrix, i.e., λi are the eigenvalues of Q, and λ∂i are the eigenvalues of Q∂ . The number of Jordan blocks
pertaining to a single eigenvalue is equal to the geometric multiplicity of the eigenvalue, while the size
of these Jordan blocks depends on the algebraic multiplicity of the eigenvalue as the sum of Jordan
block dimensions is equal to the algebraic multiplicity [18]. The boundedness of Qk depends on the
boundedness of the elements of all Ωk

i . As long as all the associated eigenvalues have a magnitude
smaller than one, i.e., |λi| < 1, the Jordan block matrix powers remain bounded for all k independent of
the size of the associated Jordan block. On the contrary, if a single eigenvalue has a magnitude larger
than one, i.e., |λi| > 1, the associated Jordan block matrix power upper triangular elements will increase
exponentially with k independent of the size of the associated Jordan block. However, if |λi| = 1, the
associated Jordan block matrix power elements above its diagonal will increase binomially with respect
to k [18]. In that case, the Jordan block matrix power is bounded if and only if all the associated
Jordan blocks have dimension one. The above also holds for the Jordan blocks Ω∂

i with eigenvalues λ∂i .
Hence, the stability of the MOT-EFIE and MOT-TDEFIE depends not only on the magnitude of the
eigenvalues of the companion matrix but also on the dimension of the Jordan blocks with |λ| = 1, as
already suggested in [7].

3.1. Solenoidal and Non-Solenoidal Current Density in the MOT-(TD)EFIE

The surface current densities that belong to the DC null space (3) give rise to |λ| = 1 eigenvalues in the
companion matrix eigenvalue spectrum [7]. To understand how the DC null space solutions affect the
stability of the MOT-(TD)EFIE solution, we analyze how these solutions manifest themselves in the
companion matrix. To do that, we distinguish between RWG combinations that represent solenoidal
current densities and RWG combinations that represent non-solenoidal current densities.

The surface current density is represented using M linearly independent RWG basis functions as
in (4). Linear combinations of the RWG basis functions can be constructed to generate a basis consisting
of Θ linearly independent solenoidal, θm(r), and Ψ linearly independent non-solenoidal, ψp(r), basis
functions, i.e.,

[θ1, . . . , θΘ, ψ1, . . . , ψΨ]
T
= P [f1, . . . , fM ]

T
. (16)
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where Θ + Ψ = M and ∇ · θm = 0 and ∇ · ψp ̸= 0 holds for the new basis functions. The matrix P
is called a projection matrix [14]. The process is reversible, i.e., P is invertible, and a unique linear
combination of θm and ψp basis functions represents each RWG basis function. Although the use of a
projection matrix is similar to loop-star or loop-tree decomposition [14], they differ in the sense that the
loop-star/tree decomposition only includes local loops while the solenoidal basis functions, θm, include
both local and global loops, where global loops occur, e.g., on the surface of a torus.

Multiplication of P with the interaction matrices results in a new interaction matrix where θm and
ψp are the spatial testing functions. Similarly, multiplication of interaction matrices with PT results in
a new interaction matrix with θm and ψp as the spatial basis functions. So, the interaction matrices
with solenoidal and non-solenoidal basis and testing functions are based on the interaction matrices
with RWG basis and testing functions and are defined as the block matrices

PZn−n′PT =

[
Zθθn−n′ Zθψn−n′

Zψθn−n′ Zψψn−n′

]
, PZtailP

T =

[
0 0

0 Zψψtail

]
, (17a)

PZ∂n−n′PT =

[
Z∂θθn−n′ Z∂θψn−n′

Z∂ψθn−n′ Z∂ψψn−n′

]
, (17b)

where the elements of the block matrices are defined as

Zθθn−n′(m,m′) = An(θm,θm′ , Tn′), Z∂θθn−n′(m,m′) = Ȧn(θm,θm′ , T ∂n′), (18a,b)

Zθψn−n′(m, p′) = An(θm,ψp′ , Tn′), Z∂θψn−n′(m, p′) = Ȧn(θm,ψp′ , T
∂
n′), (19a,b)

Zψθn−n′(p,m
′) = Zθψn−n′(m, p′), Z∂ψθn−n′(p,m

′) = Z∂θψn−n′(m, p′), (20a,b)

Zψψn−n′(p, p
′) = An(ψp,ψp′ , Tn′) + ϕn(ψp,ψp′ , Tn′), (21a)

Z∂ψψn−n′(p, p
′) = Ȧn(ψp,ψp′ , T

∂
n′) + ϕ̇n(ψp,ψp′ , T

∂
n′), (21b)

Zψψtail (p, p
′) = ϕ̇(ψp,ψp′ ,∆t). (22)

By replacing Qi and Qtail in (13a) by

QP,i = −
(
PZ0P

T
)−1

PZiP
T and QP,tail = −

(
PZ0P

T
)−1

PZtailP
T , (23a)

respectively, we can define the projected MOT-EFIE companion matrix QP . Likewise, we can define
the projected MOT-TDEFIE companion matrix Q∂

P by replacing Q∂
i in (13b) with

Q∂
P,i = −

(
PZ∂0P

T
)−1

PZ∂iP
T . (23b)

The projected companion matrices are similar to the original companion matrices, i.e.,

Q = DPTQPD
−1
PT , Q∂ = DPTQ∂

PD
−1
PT , (24a,b)

where DPT is a block-diagonal matrix with PT as blocks. These block matrices introduce only a
similarity transformation in the above expressions, and therefore the Jordan matrices in the JCF of the
companion matrix and the projected companion matrix are the same.

To find the Jordan matrix, we require the eigenvalues and eigenvectors of the projected companion
matrix. The eigenvalues can be found by solving the characteristic polynomial equations det(QP−λI) =
0 and det(Q∂

P − λ∂I) = 0. In Appendix A we have worked out these characteristic polynomials, and
regarding the roots for the case λ = 1 we come to the conclusion that both can be simplified to the
polynomial (

(λ(∂) − 1)2
)Θ

= 0. (25)
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The power Θ in the above equation implies that every basis function θm in both QP and Q∂
P is

associated with an eigenvalue λ = 1. The power of two in the above equation implies that each of
these eigenvalues has an algebraic multiplicity of two. In Appendix B we derive expressions for the
eigenvectors associated with λ = 1 and find that the geometric multiplicity of λ = 1 is Θ, indicating
a Jordan block of a dimension larger than one. Furthermore, in Appendix B we also show that each
eigenvector is associated with a unique generalized eigenvector. This implies that each of the Θ Jordan
blocks is associated with one eigenvector and one generalized eigenvector. Therefore, the dimension of
all Θ Jordan blocks for λ = 1 equals two.

Due to the similarity between the companion matrix and the projected companion matrix (24),
we can conclude that every linear combination of RWGs representing a linearly independent solenoidal
basis function is associated with λ = 1 with an algebraic multiplicity of two and geometric multiplicity
of one and a Jordan block of dimension two in both the MOT-EFIE and MOT-TDEFIE companion
matrix JCF-forms.

3.2. The Effect of Finite Precision on the MOT-(TD)EFIE Stability

The analysis in Section 3.1 does not hold when including finite precision as this will perturb the
interaction matrix values from their theoretical values, and the required recurrence relation (A6) is
lost. The effect of perturbations on the companion-matrix element values on the Jordan matrix Λ (15)
can be understood using the Lidskii-Vishik-Lyusternik perturbation theory [19]. The Lidskii-Vishik-
Lyusternik perturbation theory states that a perturbation of magnitude ϵ to a matrix with arbitrary
Jordan structures splits the eigenvalues of each individual Jordan block of dimension n in n shifted

eigenvalues where the shift is in the order of O(ϵ
1
n ) [19]. Each shifted eigenvalue is now part of a

one-dimensional Jordan block. In our case, the Jordan block is of dimension n = 2. Consequently, the
two eigenvalues of the dimension-two Jordan blocks for λ = 1 split into

• the eigenvalues λ1 = 1 + α1 and λ2 = 1 + α2 if α1, α2 ∈ R, where |α1| and |α2| are of the order
O(

√
ϵ), or,

• the eigenvalues λ1 = 1+α and λ2 = 1+α∗ if α ∈ C, where |α| is of the order O(
√
ϵ) and α∗ is the

complex conjugate of α.

Although α can be complex, the eigenvalues come in complex conjugated pairs, which is what should
be expected for a real-valued matrix. So, due to finite precision, we will lose the dimension-two Jordan
blocks in the JCF of the companion matrices, and we are left with a diagonal Jordan matrix Λ with
eigenvalues λ on the diagonal.

The composite current density vector Cn at a future time step k can now be determined via the
matrix multiplication TΛkT−1 (15). However, the perturbations will also change the matrices T in
an unpredictable manner. Therefore, the only conclusion that we can draw is that the surface current
densities in Cn will depend on a linear combination of the 2Θ shifted eigenvalues λkm = (1 + αm)

k,

2Θ∑
m

βm (1 + αm)
k =

2Θ∑
m

βm + k

2Θ∑
m

αmβm +
k(k − 1)

2

2Θ∑
m

α2
mβm + . . . , (26)

where βm results from the matrix multiplication TΛkT−1. If αm and βm are complex numbers, the
complex conjugates are also present in (26). Although all (1 + αm)

k are exponentially increasing in
magnitude with k, linear combinations of the (1+αm)

k eigenvalues permit different magnitude increases
in Cn:

(i) For k|αm| ≪ 1 ∀ m, the most dominant term in (26) is the first term, and Cn includes surface
current density magnitudes observed as constant in time;

(ii) For k|αm| ≥ 1 ∀ m, the first term is not the dominant term in (26), and Cn includes surface current
densities with magnitudes that increase exponentially with time. Due to the complex-conjugated
pairs in the sequence αm, some of the allowed exponentially increasing surface current densities
oscillate;
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(iii) In the transition region between points (i) and (ii), there might exist values of k where the second
term is the dominant term in (26), and Cn includes surface current densities with magnitudes that
are observed as linearly increasing with time. In the same transition region, the third or higher
order terms in (26) can also become dominant for values of k, although this remains less likely
as these values are proportional to powers of αm, which are very small. In that case, the current
density increases in magnitude as a higher order polynomial.

Although the surface current density magnitude can be observed as constant and/or linear with respect
to the discrete time step k, for values of k large enough, such that k|αm| ≥ 1 ∀ m, the surface current
density magnitude will always increase exponentially with k.

4. NUMERICAL EVIDENCE

In Section 3, we have proven that each linearly-independent solenoidal surface current density supported
by the MOT-EFIE and MOT-TDEFIE discretizations introduces a dimension-two Jordan block in their
respective companion matrices. Finite-precision effects in the representation will then lead to a splitting
of these Jordan blocks that subsequently introduce solutions with exponentially increasing magnitudes
that initially appear as constant or linear-in-time increasing magnitudes. We continue by providing
numerical examples to illustrate that the MOT-EFIE and MOT-TDEFIE behaviors are in line with the
theory provided in Section 3. We will address the following four assertions with numerical evidence.

(i) In Section 4.1 we show that we have a correct implementation of the MOT-EFIE and MOT-TDEFIE
solvers as proposed in [9];

(ii) In Section 4.2 we provide evidence that for each linear combination of RWGs representing a linearly
independent solenoidal surface current density, we observe two eigenvalues close to λ = 1 in the
MOT-EFIE and MOT-TDEFIE companion matrices;

(iii) In Section 4.3 we provide evidence that the eigenvalues close to λ = 1 have an offset α, where |α| is
proportional to the square root of the precision with which the interaction matrix was calculated.
Furthermore, we show that finite-precision arithmetic causes the offset α in the MOT-EFIE and
MOT-TDEFIE implementations;

(iv) In Section 4.4 we provide evidence that the presence of Jordan blocks in combination with finite-
precision effects causes exponentially increasing solutions, which initially appear as constant and/or
linear-in-time increasing solutions.

4.1. MOT-EFIE and MOT-TDEFIE Implementation

For assertion (i), we compare our surface current density results to the MOT-TDEFIE results published
by Vechinski and Rao [20]. Although the MOT-TDEFIE implementation in [20] suffers from late-time
instability, most likely due to a low-accuracy interaction matrix, the results remain stable in the region
of interest.

The PEC scatterers in [20] and used in our numerical validation experiment are a 4m2 plate, see
Figure 1(a), and a 1m3 cube, see Figure 1(b). Both objects are excited by an incident x̂-polarized
Gaussian plane wave travelling in the negative ẑ-direction, i.e.,

Ei(r, t) = x̂
1√
π
exp

(
−(c0(t− t0) + r · ẑ))2

)
[V/m], (27)

where t0 is the separation time at time t = 0 between the Gaussian pulse center and the coordinate
system origin in lm. The unit lm in this context is known as lightmeter, i.e., the time it takes for the
wave front to travel a distance of 1m. The values for t0 for the plate and cube are t0 = 6 lm and
t0 = 6.5 lm, respectively. The parameters required by the implementation in [9] are set to ϵedge = 10−8,
ϵvertex = 10−8, a fifth order Dunavant’s Gaussian quadrature rule and ∆t = 0.25 lm.

The surface current densities induced by the Gaussian plane wave (27) sampled on the PEC scatterer
surfaces computed using the MOT-EFIE and MOT-TDEFIE, as shown in Section 2, are shown in
Figure 1. As can be seen in Figure 1, the results of our MOT-EFIE and our MOT-TDEFIE are
similar, where the relative root mean square deviation of the MOT-TDEFIE solution with respect to
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(a) (b)

Figure 1. A comparison of the Gaussian plane-wave (27) excited surface current density solution,
Jx(t), of our MOT-EFIE and MOT-TDEFIE implementation with the solutions presented by
Vechinski et al. [20] for (a) a 4m2 PEC plate with Jx(t) = x̂ · Js([1, 1, 0], t), and (b) a 1m3 PEC
cube with Jx(t) = x̂ · Js([0.5, 0.5, 1], t). The red and blue dots in the mesh represent the sample and
origin locations, respectively.

the MOT-EFIE solution is 1.18 · 10−2 in Figure 1(a) and 1.24 · 10−2 in Figure 1(b), indicating a correct
implementation of the two solvers. Furthermore, our MOT-EFIE and MOT-TDEFIE results are similar
to the surface current density solutions of the MOT-TDEFIE published in [20] that we visually sampled
and plotted in Figure 1, where the relative root mean square deviation of our MOT-TDEFIE solution
with respect to the MOT-TDEFIE by Vechinski an Rao solution is 6.9 ·10−2 in Figure 1(a) and 6.5 ·10−2

in Figure 1(b), and the relative root mean square deviation of our MOT-EFIE solution with respect
to the MOT-TDEFIE by Vechinski and Rao solution is 6.2 · 10−2 in Figure 1(a) and 6.4 · 10−2 in
Figure 1(b). The difference between our results and the results presented in [20] can be explained,
as our implementation has an analytic evaluation of the underlying integrals for the potentials and
their derivatives compared to the implementation in [20]. This difference in implementation results in
a difference in the result but also in the stability of the two implementations. This establishes our
confidence in our implementation.

4.2. Number of Jordan Block Eigenvalues

For assertion (ii), we compare the number of eigenvalues close to λ = 1 in the companion-matrix
representation to the number of linear RWG combinations representing a linearly independent solenoidal
current density in Figure 1. The PEC plate in Figure 1(a) is an example of an open simply connected
surface for which each set of RWGs that share an interior node represents a linearly independent
solenoidal surface current density [21]. We count 42 interior nodes. Therefore, we expect 84 eigenvalues
close to λ = 1. The PEC cube in Figure 1(b) is an example of a closed simply connected surface for
which each set of RWGs that share a node can represent a solenoidal surface current density, and the
number of linearly independent sets is equal to the number of nodes minus one [21]. We count 131
nodes. Therefore, we expect 262 eigenvalues close to λ = 1.

The eigenvalues of the companion matrices based on the interaction matrices used in Figures 1(a)
and 1(b) are presented in Figures 2 and 3, respectively. Similar eigenvalue distributions have been
presented in literature [7, 12, 15] for the MOT-TDEFIE companion matrix corresponding to a PEC
spherical scatterer. Counting the number of eigenvalues close to λ = 1, we count 84 eigenvalues in
Figure 2(b) and 262 eigenvalues in Figure 3(b) for both the MOT-EFIE and MOT-TDEFIE. These
numbers are in line with assertion (ii).

To illustrate that assertion (ii) also holds for non-simply connected surfaces, we have constructed
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Figure 2. (a) The eigenvalues λ of the MOT-EFIE (×) and MOT-TDEFIE (◦) companion matrices
based on the corresponding interaction matrices used to compute the surface current density on the
PEC plate in Figure 1(a). (b) The eigenvalues in (a) close to λ = 1.
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Figure 3. (a) The eigenvalues λ of the MOT-EFIE (×) and MOT-TDEFIE (◦) companion matrices
based on the corresponding interaction matrices used to compute the surface current density on the
PEC cube in Figure 1(b). (b) The eigenvalues in (a) close to λ = 1.

the RWG-mesh shown in Figure 4(b). Here, the RWGs can represent a single solenoidal current
density indicated by the red arrow. Therefore, we expect to find two eigenvalues close to λ = 1 in
the corresponding companion matrix eigenvalues. The eigenvalues of the companion matrices based on
the interaction matrices resulting from the mesh in Figure 4(b) and the solver settings mentioned in
Section 4.1 are presented in Figure 4. As expected, we observe two eigenvalues close to λ = 1 for both
the MOT-EFIE and MOT-TDEFIE companion matrices in Figure 4(b).

4.3. Proportionality of |α| to the Square Root Error

For assertion (iii), we mimic finite-precision errors in the calculations of the interaction matrices Zn−n′ by
multiplying the Zn−n′ matrix entries by uniformly distributed random numbers in the range 1+[−σ, σ],

and we denote the resulting perturbed matrix as Z̃n−n′ . The coefficient σ is a predetermined scaling

coefficient. In a similar way, we mimic errors in Z∂n−n′ and name the resulting matrix Z̃∂n−n′ . Doing so,
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Figure 4. (a) The eigenvalues λ of the MOT-EFIE (×) and MOT-TDEFIE (◦) companion matrices
based on the corresponding interaction matrices which are based on the mesh in (b). The red arrow on
the mesh in (b) indicates the only solenoidal current density allowed by the RWG discretization. (b)
The eigenvalues in (a) close to λ = 1.

we introduce a relative error σ in all non-zero matrix entries. In accordance with the Lidskii-Vishik-
Lyusternik perturbation theory, see Section 3.2, the eigenvalues close to λ = 1 of the companion matrices
based on Z̃n−n′ and Z̃∂n−n′ should exhibit an offset α, where |α| scales as O(

√
σ).

The eigenvalue offset |α|, as a function of σ, corresponding to the PEC plate and PEC cube
interaction matrices used in Figures 1(a) and 1(b), respectively, are shown in Figures 5 and 6,
respectively. As the O(

√
σ) proportionality holds for σ ≥ 10−14, it has allowed us to put the eigenvalues
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Figure 5. The offset |α| of the (a) MOT-EFIE and (b) MOT-TDEFIE companion matrix eigenvalues
close to λ = 1 as function of σ. The (◦)-markers around σ ≈ 10−15 indicate values that are computed
using the companion matrices constructed with the PEC plate interaction matrices, (a) Zn−n′ and (b)
Z∂n−n′ , used for the simulation in Figure 1(a). The (×)-markers indicate values that are computed using

the companion matrices constructed with the perturbed PEC plate interaction matrices, (a) Z̃n−n′ and

(b) Z̃∂n−n′ . The black dashed line represents the O(
√
σ) proportionality of |α|. The red dashed line

indicates the offset |α| due to finite precision arithmetic.
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(a) (b)

Figure 6. The offset |α| of the (a) MOT-EFIE and (b) MOT-TDEFIE companion matrix eigenvalues
close to λ = 1 as function of σ. The (◦)-markers around σ ≈ 10−15 indicate values that are computed
using the companion matrices constructed with the PEC cube interaction matrices, (a) Zn−n′ and (b)

Z̃∂n−n′ , used for the simulation in Figure 1(b). The (×)-markers indicate values that are computed using
the companion matrices constructed with the perturbed PEC cube interaction matrices, (a) Zn−n′ and

(b) Z̃∂n−n′ . The black dashed line represents the O(
√
σ) proportionality of |α|. The red dashed line

indicates the offset |α| due to finite precision arithmetic.

shown in Figures 2(b) and 3(b), i.e., the eigenvalues of the original interaction matrices (σ = 0), into
perspective and have an estimate of the relative error in the calculation of the MOT-EFIE and MOT-
TDEFIE interaction matrix entries. The corresponding |α| is indicated by the dark blue (◦)-markers
in Figures 5 and 6. The values indicated by (◦)-markers deviate around σ ≈ 10−15. A relative error of
this magnitude is typical for the double precision arithmetic in which we have performed the interaction
matrix calculations. Therefore, we are convinced that finite precision arithmetic in the MOT-EFIE
and MOT-TDEFIE implementations is what prevents the occurrence of a perfect 2 × 2 Jordan block
and causes the Jordan blocks to split. Note that the maximum offset |α| for σ = 10−16 is of a similar
magnitude to the maximum offset for σ = 0, as indicated by the red dashed line in Figures 5 and 6, as
the error is dominated by the finite precision error.

4.4. The Linear-in-Time Solution Instability

For assertion (iv), we recompute the current density shown in Figure 1(a) and Figure 1(b) but replace

the interaction matrices in (8) by the perturbed interaction matrices Z̃n−n′ and Z̃∂n−n′ created in

Section 4.3. As seen in Section 4.3, the eigenvalue offset increases as O(
√
σ); therefore, we expect

a large impact on the current density related to the Jordan blocks.
The MOT-EFIE and MOT-TDEFIE surface current density magnitudes on a PEC plate for different

values of the perturbation σ are shown in Figure 7. The MOT-EFIE and MOT-TDEFIE surface current
density magnitudes on a PEC cube for different values of σ are shown in Figure 8. The linear-in-time
solution instability for σ = 0 in Figures 7 and 8 is similar to what can be found in literature [10, 11, 15]
in the sense that the surface current density magnitude decreases with time until it reaches a point
where the surface current density starts to increase linearly with time. The alterations to the interaction
matrices seem to have little to no impact on the “correct”-region of the surface current density magnitude
in Figures 7 and 8. However, it greatly affects what happens to the linear-in-time solution instability.

The type of surface current density magnitudes allowed by the split Jordan blocks as explained
in Section 3.2 can be observed in Figures 7 and 8, i.e., constant, linear-in-time and exponential-in-
time surface current density magnitudes. The transition between types due to a shift of the dominant
term in Equation (26) is also observed. Additionally, as the Jordan block eigenvalue offset increases
with σ, the exponential increase starts at earlier time steps, which is in line with the eigenvalue offset
proportionality to O(

√
σ).
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(a) (b)

Figure 7. The surface current density magnitude |Jx| at discrete time steps k on the PEC plate as
computed in Figure 1(a), but with the perturbed interaction matrices. (a) The MOT-EFIE (8a) solution

where Zn−n′ is replaced by Z̃n−n′ . (b) The MOT-TDEFIE (8b) solution where Z∂n−n′ is replaced

by Z̃∂n−n′ . The regions where the simulation result is “correct”, or where it exhibits a “constant”,
“linear”, or “exponential” behavior due to the splitted Jordan block eigenvalues are indicated by dashed
boundaries.

(a) (b)

Figure 8. The surface current density magnitude |Jx| at discrete time steps k on the PEC cube as
computed in Figure 1(b), but with the perturbed interaction matrices. (a) The MOT-EFIE (8a) solution

where Zn−n′ is replaced with Z̃n−n′ . (b) The MOT-TDEFIE (8b) solution where Z∂n−n′ is replaced

with Z̃∂n−n′ . The regions where the simulation result is “correct”, or where it exhibits a “linear”, or
“exponential” behavior due to the split Jordan block eigenvalues are indicated by dashed boundaries.

Based on these results we can conclude that finite precision effects, combined with the presence
of Jordan blocks, are responsible for the instability of these MOT-EFIE and MOT-TDEFIE solvers.
Furthermore, we have confirmed for higher σ that the instability is an exponentially increasing surface
current density magnitude initially observed as constant or linear-in-time. As the theoretical framework
in Section 3.2 has been confirmed with these results, we predict that the σ = 0 solutions are
also exponentially increasing solutions that are initially observed as linear-in-time and will become
exponential-in-time solutions around discrete time steps equal to the inverse square root of the finite
precision error, i.e., for k = t/∆t ≈ 108 time steps in double precision arithmetic.



136 Van Diepen et al.

5. CONCLUSION

The relation between the linear-in-time solution instabilities of the MOT-EFIE and MOT-TDEFIE,
based on RWG spatial discretization and linear hat and quadratic spline temporal basis functions,
respectively, and their respective null spaces has been studied. A theoretical analysis based on
projection matrices demonstrated that the recurrence relation in the interaction matrix elements results
in dimension-two Jordan blocks with eigenvalues equal to one in the MOT-EFIE and MOT-TDEFIE
companion matrices for each linear combination of RWGs representing a linearly independent solenoidal
surface current density. In practice, due to finite precision arithmetic, the recurrence relation is lost,
and the eigenvalues in each Jordan block split into two eigenvalues where, according to the Lidskii-
Vishik-Lyusternik perturbation theory, the eigenvalue offset is proportional to the square root of the
finite precision error. Numerical experiments on PEC scatterers confirmed that: the number of split
eigenvalues is equal to twice the number of independent solenoidal surface current densities; the Lidskii-
Vishik-Lyusternik perturbation theory holds; finite precision is enough to split the eigenvalues in the
Jordan blocks in these MOT-EFIE and MOT-TDEFIE implementations; and the split eigenvalues
eventually cause exponentially increasing solution magnitudes that are initially observed as constant
and/or linear-in-time but become exponentially increasing at discrete time steps beyond the inverse
square root of the error due to finite precision, i.e., t/∆t ≈ 108 in double precision arithmetic.

APPENDIX A. ALGEBRAIC MULTIPLICITY

To simplify the determinants det(QP − λI) and det(Q∂
P − λ∂I), we will split the matrices into 2 × 2

block matrices, i.e.,

δ = det (QP − λI) = det

[
F G

K L (λ, λ− 1)

]
, (A1a)

δ∂ = det
(
Q∂
P − λ∂I

)
= det

[
F∂ G∂

K L
(
λ∂ , λ∂

) ] , (A1b)

where F = QP,1 − λI, F∂ = Q∂
P,1 − λ∂I, G is a row block-vector containing QP,i for i = 2, . . . , ℓ

and QP,tail (23a) as blocks; G
∂ is a row block-vector containing QP,i for i = 2, . . . , ℓ∂ (23b) as blocks,

K = [I,0, . . . ,0]T ; and L(β1, β2) is a block-matrix where the first lower-block-diagonal is filled with
identity matrices I, and the diagonal blocks are filled with matrices −β1I except for the last block entry,
which is filled with the matrix −β2I. If the inverse of L

−1 exists, the determinant can be computed using
the Schur complement of the matrix, i.e., δ = det(L(λ, λ)) det(F − GL−1(λ, λ − 1)K). Owing to the
structure of L(β1, β2), the inverse can be computed using a row division by −β1 for the rows containing
−β1I, a row division by −β2 for the rows containing −β2I, and then applying forward substitution. As
K has I as the first and only non-zero block entry, we require only the first block-column of L−1(β1, β2),
which is given by [−1

β1
I,

−1

β2
1

I, . . . ,
−1

βM−1
1

I,
−1

β2β
M−1
1

I

]T
, (A2)

where M indicates that L is an M × M block matrix. Multiplying the above block-column by the
remaining block-vector the following matrices are defined as

GL−1(λ, λ− 1)K = − 1

λ
QP,2 −

1

λ2
QP,3 − . . .− 1

λℓ−1
QP,ℓ −

1

(λ− 1)λℓ−1
QP,tail, (A3a)

G∂L−1(λ∂ , λ∂)K = − 1

λ∂
Q∂
P,2 −

1

(λ∂)
2 Q

∂
P,3 − . . .− 1

(λ∂)
ℓ−2

Q∂
P,ℓ−1 −

1

λℓ∂−1
Q∂
P,ℓ . (A3b)
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The determinant of L is also readily computed owing to its matrix structure, i.e., det(L) =
det((−β2)(−β1)

M−1I). Combining all of the above, we can simplify the determinants in (A1) to

δ = det

(
−(λ− 1)(−λ)ℓ−1

(
QP,1 − λI+

ℓ∑
i=2

1

λi−1
QP,i +

1

(λ− 1)λℓ−1
QP,tail

))
, (A4a)

δ∂ = det

(−λ∂)(−λ∂)ℓ
∂−2

Q∂
P,1 − λ∂I+

ℓ∂∑
i=2

1

(λ∂)
i−1

Q∂
P,i

 , (A4b)

where we have combined the two determinants, i.e., the determinant due to det(L) and the other
determinant due to det(F−GL−1K), into a single determinant of a matrix polynomial. As all matrices
are multiplied by the same eigenvalue power and all companion matrices multiplied by the same matrix
inverse, see Equations (23a), (23b), further simplification of the above equations is possible, i.e.,

δ = det

[ Zθθ0 Zθψ0

Zψθ0 Zψψ0

]−1
det

(
(−1)ℓ+1

(
(λ− 1)

ℓ∑
i=0

[
Zθθi Zθψi

Zψθi Zψψi

]
λℓ−i+

[
0 0

0 Zψψtail

]))
, (A5a)

δ∂ = det

[ Z∂θθ0 Z∂θψ0

Z∂ψθ0 Z∂ψψ0

]−1
 det

(−1)ℓ
∂

 ℓ∂∑
i=0

[
Z∂θθi Z∂θψi

Z∂ψθi Z∂ψψi

]
λℓ

∂−i

 . (A5b)

In finding the solutions to δ = 0 and δ∂ = 0, the determinant of the matrix inverse in the above
expressions is irrelevant as an invertible matrix always has a non-zero determinant. To find the
eigenvalues for which the second determinants in Equations (A5a), (A5b) equals zero, it is important
to note the recurrence relation in the matrix elements, owing to the piecewise constant derivatives of
the time-expansion functions Ṫ0 (7a) and T̈ ∂0 (7b), i.e.,

Zxx′
n = Axx′

n −Axx′
n−1 +Bxx′

n , (A6a)

Z∂xx
′

n =
1

2
Axx′
n −Axx′

n−1 +
1

2
Axx′
n−2 +B∂xx′

n , (A6b)

where the matrix elements of Axx′
i are

Axx′
n (m,m′) =


0 for n < 0

µ0

∫
Γm

xm(r) ·
∫
Γm′

xm′(r′)

4πR
dA′dA, for nc∆t ≤ R < (n+ 1)c∆t

0 otherwise,

(A7)

and
Bxx′
n = ϕ(x,x′, T0(τn)), B∂xx′

n = ϕ̇(x,x′, T ∂0 (τn)). (A8a,b)

In the above expressions x and x′ can be replaced with θ and ψ to obtain the recurrence relations
for the interaction matrix blocks in Equations (A5a), (A5b). Substituting the recurrence relations
in Equations (A6a), (A6b) in the summation expressions in (A5a), (A5b) allows the following
factorizations

ℓ∑
i=0

Zxx′
i λℓ−i = (λ− 1)

ℓ−1∑
i=0

Axx′
i λℓ−1−i +

ℓ∑
i=0

Bxx′
i λℓ−i, (A9a)

ℓ∂∑
i=0

Z∂xx
′

i λℓ
∂−i =

1

2
(λ− 1)2

ℓ∂−2∑
i=0

A∂xx′
i λℓ

∂−2−i +

ℓ∂∑
i=0

Bxx′
i λℓ

∂−i. (A9b)

The interaction matrix summation in Equation (A5a) was already multiplied by (λ − 1), so we arrive
at matrix polynomials with a common factor (λ− 1)2 for both the summations in Equation (A5a) and
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Equation (A5b). The common factor can be isolated from the polynomials, resulting in the following
factorization(

ℓ−1∑
i=0

[
Aθθ
i (λ− 1)2Aθψ

i

Aψθ
i (λ− 1)2Aψψ

i

]
λℓ−1−i +

[
0 0

0 (λ− 1)
∑ℓ

i=0B
ψψ
i λℓ−i + Zψψtail

])[
(λ− 1)2IΘ 0

0 IΨ

]
,

(A10a)1

2

ℓ∂−2∑
i=0

[
A∂θθ
i (λ∂ − 1)2A∂θψ

i

A∂ψθ
i (λ∂ − 1)2A∂ψψ

i

]
λℓ

∂−2−i +

[
0 0

0
∑ℓ∂

i=0B
∂ψψ
i λℓ

∂−i

][ (λ∂ − 1)2IΘ 0

0 IΨ

]
,

(A10b)
where the superscripts of the identity matrices indicate their respective dimensions. Since the
determinant of the product of two square matrices can be written as the product of the determinants
of each matrix, a solution to both δ = 0 and δ∂ = 0 is

det

([
(λ(∂) − 1)2IΘ 0

0 IΨ

])
= 0 ⇔

(
(λ(∂) − 1)2

)Θ
= 0. (A11)

APPENDIX B. GEOMETRIC MULTIPLICITY AND JORDAN BLOCK DIMENSION

To determine the number of Jordan blocks corresponding to λ = 1 in the JCF of projected companion
matrices QP (23a) and Q∂

P (23b), we have to find all linearly independent vectors v and v∂ for which

(QP − I)v = 0,
(
Q∂
P − I

)
v∂ = 0, (B1a,b)

holds. If we formulate the vector as

v = [v1, . . . , vℓ, vtail]
T
, v∂ =

[
v∂1 , . . . , v

∂
ℓ−1, v

∂
ℓ

]T
, (B2a,b)

then

v1 = · · · = vℓ = 0, v∂1 = · · · = v∂ℓ , (B3a,b)

owing to the identity-block row structure in (QP − I) and (Q∂
P − I), respectively.

Equation (B1a) can be simplified to[
0 0

0 Zψψtail

][
vθtail
vψtail

]
= 0, (B4)

where we have split vtail in two subvectors vθtail and vψtail. The matrix Zψψtail (22) is invertible,

see Appendix C. This implies vψtail = 0, and we can define Θ linearly independent eigenvectors v.
Consequently, the geometric multiplicity of λ = 1 in the JCF of QP is Θ.

Equation (B1b) together with Equation (B3b) can be simplified to

ℓ∂∑
i=0

[
Z∂θθi Z∂θψi

Z∂ψθi Z∂ψψi

]
v∂1 =

[
0 0

0
∑ℓ∂

i=0B
∂ψψ
i

][
v∂θ1

v∂ψ1

]
= 0, (B5)

using the recurrence relation in Equation (A6b). The matrix
∑ℓ∂

i=0B
∂ψψ
i is invertible, see Appendix C.

This implies v∂ψ1 = 0, and we can define Θ linearly independent eigenvectors v∂ . So, the geometric
multiplicity of λ = 1 in the JCF of Q∂

P is Θ.
Since λ = 1 has geometric multiplicity Θ and algebraic multiplicity 2Θ, the associated eigenspace

is incomplete. To determine the size of each of the Jordan blocks for this subspace, we require the
generalized eigenvectors v+ and v∂+ [22], which should satisfy

(QP − I)v+ = v,
(
Q∂
P − I

)
v∂+ = v∂ , (B6a,b)
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for each independent eigenvector v or v∂+, respectively. The solutions to the above equations can be
found by exploiting the recurrence relations in Equation (A6) and are given by

v+ = γv + [vtail, . . . ,vtail]
T , v∂+ = γ∂v∂ −Dv∂ , (B7a,b)

where D is a diagonal matrix with subsequent diagonal elements [0, 1, . . . , ℓ∂ − 1], and one is free to
choose a value for the scaling coefficients γ and γ∂ . Equation (B7) implies that for each of the Θ
independent eigenvectors we find an associated and independent generalized eigenvector. Therefore,
the dimension of each of the associated Jordan blocks is two.

APPENDIX C. INVERTIBLE MATRICES

The matrices Zψψtail (22) and
∑ℓ∂

i=0B
∂ψψ
i (A8) are equal except for a scaling coefficient, i.e., the elements

of the matrices are defined as

ℓ∂∑
i=0

B∂ψψ
i (p, p′) = ϕ̇(ψp,ψp′ , 1) =

1

∆t
Zψψtail (p, p

′). (C1)

The one in the above expression represents a constant unit function over the entire time domain and
is the result of the summation of the temporal basis functions T ∂0 (7b), i.e.,

∑
n T

∂
0 (τn) = 1. As the

matrices are scaled versions of one another, if Zψψtail is invertible then
∑ℓ∂

i=0B
∂ψψ
i is also invertible.

The matrix Zψψtail (22) is real and symmetric and for Zψψtail to be invertible

xTZψψtailx > 0 for x ̸= 0, (C2)

needs to hold. Because

∇′
s ·

Ψ∑
p′=1

xp′ψp′ = 0 if and only if xp′ = 0 for p′ = 1, . . . ,Ψ, (C3)

as ψp′ are linearly independent non-solenoidal basis functions, and a linear combination of ψp′ can
never represent a solenoidal surface current density due to the invertibility of the projection matrix P
in Equation (16), the integrand is strictly positive, which implies that

xTZψψtailx = ∆t

∫ ∫
1

ϵ0

∇′
s ·

Ψ∑
p′=1

xp′ψp′

2

4πR
dA′dA > 0 for x ̸= 0. (C4)

Thus Zψψtail and therefore
∑ℓ∂

i=0B
∂ψψ
i are invertible.
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