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Design of the Outer-Rotor Coreless Bearingless Permanent Magnet
Synchronous Generator Based on an Improved MOPSO Algorithm

Junqi Huan and Huangqiu Zhu*

Abstract—The study of outer-rotor coreless bearingless permanent magnet synchronous generator
(ORC-BPMSG) is intended to pave the way for the future of high-speed flywheel energy storage systems.
A multi-objective parameter optimization method is proposed for the outer-rotor coreless bearingless
permanent magnet synchronous generator with the aim of improving the fundamental wave content of
the generator’s output voltage, reducing harmonics, and optimizing the suspension force at the same
time. Firstly, the basic parameters and operating principle of the generator are described. Then,
the response surface (RS) method is used to obtain the objective functions for the total harmonics
distortion (THD), the mean value of the suspension force and suspension force pulsation. The optimal
optimizations of the ORC-BPMSG are selected by establishing the pareto solution set through the
improved multi-objective particle swarm optimization (MOPSO) algorithm. Finally, the optimal ORC-
BPMSG prototype is fabricated, and the performance of the prototype is verified. The experiments
show that the optimized generator output voltage has fewer harmonics and operates reliably.

1. INTRODUCTION

Flywheel energy storage is a promising physical energy storage technology with the advantages of high
storage density, high instantaneous power, short charging time, easy measurement of charging and
discharging degree, long service life, and no harm to the environment [1–3]. When flywheel energy
storage is moving toward higher rotational speed and higher energy storage density, the addition of
magnetic suspension bearings reduces the friction between flywheel rotor and bearings and decreases
the loss. For the core of flywheel energy storage, high-speed motors, the advantages of zero friction, zero
loss, zero pollution, high speed, high precision, and long life can be achieved by using bearingless motor
technology to improve the performance of the whole flywheel energy storage system [4–7]. However, the
conventional bearingless motor operates at high speed because of the mutual attraction of the stator
core and permanent magnet magnets, which generates a large cogging torque, increases the torque
pulsation, and improves the difficulty of motor suspension [8–10]. A coreless bearingless permanent
magnet synchronous motor/generator is thus proposed [11, 12]. ORC-BPMSG has no mechanical loss,
No. cogging torque, and light weight, while the outer rotor design facilitates heat dissipation and
increases rotational inertia. ORC-BPMSG becomes a very ideal choice for generators for flywheel
energy storage.

The research on the prototype design of coreless bearingless permanent magnet synchronous
motor/generator is still in the initial stage, but the optimized design of general permanent magnet
synchronous motor/generator is still of reference significance. The research on the optimal design of
the prototype of ORC-BPMSG is still blank. There have been many studies for the optimal design of
permanent magnet synchronous generators. In [13], an approximate solution based on the mathematical
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model of the motor to solve the air gap and permanent magnet thickness is investigated to design a high-
efficiency surface permanent magnet synchronous generator by means of an empirical design formula
for the motor and finite element analysis. The coreless and bearingless permanent magnet synchronous
generator lacks empirical formulas, and the conventional design methods cannot design the parameters
well and quickly. In [14–16], the optimization method for the iron-coreless motor is chosen to optimize a
single parameter, ignoring the effect of that parameter on other motor performance indexes. The multi-
objective parameter optimization method is a method that optimizes multiple objectives and synergizes
multiple parameters and is well suited for the optimal design of the ORC-BPMSG. In [17–19], Taguchi’s
method is used to optimize multiple objectives, but the accuracy of Taguchi’s method is not high, and
the experimental data are few, which limits the optimization effect to some extent. In [20], a multi-
objective optimization method combining Taguchi method and response surface method improves the
shortcomings of Taguchi method, but the method is more complicated and time-consuming. In [21], a
multi-objective genetic particle swarm optimization algorithm is proposed and applied to the optimal
design of bearingless switched reluctance motors with short consumption time and high optimization
efficiency. The use of intelligent algorithms to optimize the design of motors has become a simple and
reliable design idea with good optimization results.

A multi-objective optimization method combining response surface method and modified multi-
objective optimization particle swarm algorithm (MOPSO) is proposed to be applied to ORC-BPMSG
in this paper. In Section 2, the basic structure and working principle are introduced. In Section 3,
the multi-objective optimization design of the ORC-BPMSG is carried out, detailing the selection of
objectives and factors, and the application of response surface and improved MOPSO. In Section 4, the
simulation results of the finite element model with optimal parameters are analyzed. In Section 5, the
experimental procedure and experimental results are presented to verify the theory. Conclusions are
drawn in Section 6.

2. BASIC STRUCTURE AND WORKING PRINCIPLE OF THE ORC-BPMSG

2.1. Basic Structure of the ORC-BPMSG

The ORC-BPMSG consists of a coreless stator, tile-shaped permanent magnets, suspension force
windings, power generation windings, and an outer rotor. Compared with conventional permanent
magnet synchronous motors, the stator of ORC-BPMSG is casted from epoxy resin material, which
greatly reduces the weight of the motor. Applying the ORC-BPMSG to flywheel energy storage provides
greater rotational inertia than an inner-rotor generator and allows more weight to be allocated to the
flywheel, allowing more energy to be stored. the ORC-BPMSG also compresses the length of the
flywheel system axially, allowing for a more compact structure. Since the stator does not have a core,
the generator operates without cogging torque, so the quality of the suspension force generated by the
suspension force winding is improved, and it is easier to ensure stable rotor suspension. The stator
is made of non-epoxy resin material, which not only is non-conductive but also has high mechanical
properties. The stator is a 36-slot structure, because it is a nonpermeable material, and the slot type
is a common pear-shaped slot. The permanent magnet with pole pair number 3 is attached to the
inner surface of the outer rotor, and the outer rotor is made of conventional 0.5mm silicon steel sheet
laminated. The power generation winding and suspension force winding are concentrically wound on
the stator slot with a pole pair number of 3 for the power winding and a pole pair number of 2 for the
suspension force winding. The winding on the side of the outer rotor is the power generation winding
for generating the induced voltage, and the winding away from the outer rotor is the suspension force
winding for generating the suspension force.

2.2. Principle of Suspension Force Generation

In the air gap space of a motor, if the magnetic field is not centrosymmetric, then the Maxwell forces
on the rotor are also not centrosymmetric. In order to suspend the rotor, a controlled unbalanced
magnetic field must be generated in the air gap space of the motor. The ORC-BPMSG, like conventional
bearingless motors, has two sets of windings embedded in the stator, one for generating electricity and
one for generating suspension force. The two sets of windings satisfy a relationship of 1 difference in
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the number of pole pairs, which is one of the conditions for a bearingless motor to be able to suspend
stably. The ORC-BPMSG proposed in this paper has a generation winding with the pole-pair number
PG = 3 and a suspension force winding with the pole-pair number PB = 2, which satisfies the condition
that the pole-pair numbers differ by 1. Figure 1 shows the radial suspension force mechanism analysis
diagram of the ORC-BPMSG, where NG is the generation winding, and NS is the suspension force
winding. When both windings are fed with alternating currents of the same frequency, each produces a
corresponding magnetic chain, and the chains at air gap 1 superimpose on each other and cancel with
each other at air gap 2. According to Maxwell’s tensor method, the rotor surface is subjected to a radial
suspension force in the positive direction along the y-axis, and by the same token, a suspension force
in the opposite direction can be obtained by passing a reverse current through the suspension force
winding NS . Thus, the suspension force can be generated in any direction by varying the current.
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Figure 1. Suspension force generation mechanism.

3. OPTIMIZED DESIGN OF THE ORC-BOMSG

3.1. Selection of the Optimization Objectives

The performance testing indexes of conventional generators are mainly voltage regulation rate and
harmonic distortion rate, while the performance of the suspension force of the ORC-BPMSG also needs
to be considered in the design process. In order to improve the carrying performance of the ORC-
BPMSG, reduce harmonics, increase the magnitude of the suspension force, and reduce the pulsation
of the suspension force, this paper proposes a multi-objective optimization design method based on
response surface and improved MOPSO. The optimization process of this method is shown in Figure 2.

The initial parameters of the ORC-BPMSG proposed in this paper are shown in Table 1.
Finite element simulations are carried out for the initial prototype parameters, and the initial

prototype no-load EMF waveform and EMF waveform are shown in Figure 3(a) when the load is three
500Ω resistors connected in a star shape. The voltage regulation rate ∆U is calculated as

∆U =
U0 − U

U0
× 100% (1)

where U0 is the no-load voltage, and U is the load voltage.
From the RMS value substitution can be calculated to get the voltage adjustment rate of 0.44%,

which is much less than 5%. The voltage regulation is small because the internal resistance of this
generator is very small, and the current variation produces a small voltage drop. So optimization of the
voltage regulation rate is not considered.
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Figure 2. Process of optimization.

Table 1. Main parameters of the ORC-BPMSG.

Parameter Value

Output power 3 kW

Rated speed 8 00 rpm

Slots 36

Rotor outer diameter 170mm

Rotor inner diameter 136mm

Stator outer diameter 116mm

Air gap length 2mm

Permanent magnet thickness 8mm

Polepair number of generation windings 3

Polepair number of suspension force windings 2

Pole-arc coefficient 0.8

The fast Fourier transform of the band-loaded counter-electromotive force waveform is shown in
Figure 3(b), and the total harmonic distortion rate is calculated from Eq. (2).

THD =

√
U2
2 + U2

3 + . . .+ U2
n

U1
× 100% (2)

where Un is the effective value of nth harmonic, and U1 is the effective value of the fundamental wave.
The total harmonic distortion rate of the initial prototype is obtained as 19.8%.
The outer rotor is subjected to a suspension force as shown in Figure 3(c), and the suspension

force pulsation Fripple is defined as the ratio of the peak-to-peak and average suspension force, whose
expression is:

Fripple =
Fmax − Fmin

Favg
× 100% (3)

After calculation, Favg is 288 N, and Fripple is 3.3%. Because the voltage regulation rate better
meets the performance index in the four objectives, the harmonic distortion rate, average suspension
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Figure 3. (a) No. load and load EMF waveform. (b) FFT frequency spectrum of EMF. (c) Suspension
force waveform.

force, and suspension force ripple are preferentially selected as the optimization objectives for response
surface analysis.

3.2. Design Factor Selection and Response Surface Modelling

The ORC-BPMSG uses epoxy resin material for the stator, so changes in the dimensions of the stator
slot pattern do not affect the performance of the generator, and the number of design factors available
is much reduced. In this paper, the pole-arc coefficient, permanent magnet thickness, air gap length,
and outer rotor thickness are selected as design factors as shown in Figure 4.

The response surface method is a statistical method, which uses reasonable tests to obtain certain
data, uses a multiple quadratic regression equation to fit a functional relationship between the factors
and the response values, and seeks the optimum parameters through analysis of the regression equation.
For situations where there are fewer factors and objectives, the Box-Behnken design method is more
economical than the central composite design method as it does not require multiple consecutive tests
and has a smaller number of test combinations.

Table 2 gives the upper and lower limits for the values of the pole-arc coefficient α, permanent
magnet thickness d, air gap length δ, and outer rotor thickness L. According to the Box-Behnken
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Figure 4. Schematic diagram of design factors in 1/6 models.

Table 2. Levels of design factors.

Level −1 0 +1

α 0.7 0.85 1

d (mm) 7 8 9

δ (mm) 1 1.5 2

L (mm) 15 17.5 20

method Eq. (4), 29 sets of tests are required for the four factors.

N = 2k × (k − 1) + C0 (4)

where k denotes the number of factors, and c0 denotes the number of repetitions of the central test
point, often taking a value of 5 under the four factors, used to estimate the test error, but the same
test points in the simulation, to obtain the same calculated results, in fact a total of 25 trials.

The test method uses finite element simulation, where the test points, i.e., combinations of different
values of the four factors, are substituted into the ORC-BPMSG model modelled parametrically in
advance, and the simulation yields the values of each objective under each test point. The calculated
data (29 sets) for the four factors and three objectives are then used with Design Expert Software to
generate the response surfaces for each objective and factor as shown in Figure 5.

A fit function for each response surface is also obtained, which can be used to predict a specific
level of response for each of the factors. The following equation simplifies the coefficients and removes
the terms with weak effects:

THD =− 230.6 + 539.9× α+ 2.1× d− 4.3× α× d

− 4.1× α× δ + 0.1× d× δ − 264.5× α2

+ 0.2× δ2

Fripple =− 13.0 + 23.2× α+ 0.7× d− 0.7× δ+0.4× L

− 0.1× α× d− 5.1× α× δ − 7.3× α2

− 0.1× d2 + 1.2× δ

Favg =− 316.2 + 759.3× α+ 45.0× d− 3.5× δ+0.2× L

+ 1.5× α× d− 3.8× α× δ − 1.0× d× δ − 410.3× α2

− 1.2× d2 + 0.5× δ2

(5)
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Figure 5. Response surface of each objective.

R2 is an important measure of the error between the response surface model and the actual model and
is known as the coefficient of determination, calculated as shown in Eq. (6):

R2 =

∑
(ŷ − ȳ)2∑
(y − ȳ)2

(6)

where ŷ is the value calculated according to Eq. (5), ȳ the average of the 29 sets of objectives, and y
the actual value of the objective.

The closer the value of R2 is to 1, the more accurate the model is. The R2 for each of the
three models is greater than 0.95, satisfying the optimization premise. As can be seen from Figure 5,
the [α d δ L] at the better point of each model takes different values. Therefore, this paper uses the
particle swarm optimization algorithm with a view to obtain the pareto optimal solution set for the three
objective functions and further selecting the optimal solution that best fits the optimization objective.

3.3. Optimization Based on Improved MOPSO

MOPSO is a population-based intelligent optimization algorithm proposed based on the idea of imitating
the foraging behavior of a flock of birds. Assuming that the problem is in D-dimensional space, the
velocity vector and position vector are defined as:{

Vi = (Vi1, Vi2, . . . , Vid)

Xi = (Xi1, Xi2, . . . , Xid)
(7)

Then the update equations of velocity and position can be expressed as:{
Vid(t+ 1) = φVid(t) + c1 × rand1()(pBestid(t)−Xid(t)) + c2 × rand2()(gBestd(t)−Xid(t))

Xid(t+ 1) = Xid(t) + Vid(t+ 1)
(8)
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where φ is the inertia weight coefficient; c1 and c2 are acceleration coefficients; and rand1 and rand2 are
two random numbers generated within [0, 1], respectively. pBest id represents the best position found
by the ith particle so far; gBestd is the best position found in the whole population; and t represents
the number of current iterations.

When the particles of ordinary MOPSO converge too fast, they will shrink toward the local optimum
within a few generations, a phenomenon that leads to similar search behaviors among individuals and
the loss of population diversity. In this paper, we propose an improved velocity update equation with
linear decreasing inertia weights and adaptive detection vectors

Vid(t+ 1) = φVid(t)+c1 × rand1()(pBestid(t)−Xid(t))+c2 × rand2()(gBestd(t)−Xid(t))

+c3 × rand3()(R(t)−Xid(t))

φ = φmax −
φmax − φmin

T
· t

R(t) =
xdmax + xdmin

2
+

xdmax−xdmin

2
· e−2t · cos(2πu)

(9)

where φmax is the maximum inertia weight, which takes the value of 0.9; φmin is the minimum inertia
weight, which takes the value of 0.2; T is the maximum number of iterations; u is a random number
in [0,1]; and xdmax and xdmin are the upper and lower bounds of the problem, respectively.

A new detection vector (R(t)−Xid(t) is added to enable the particles to cover a larger range of
solution space with a larger probability using an adaptive variable detection radius R(t). The velocity
update equation of the algorithm shows that the population members can explore the unvisited regions
in the solution space with a larger probability. A large detection radius facilitates enhanced exploration
behavior of the particles by moving them away from the current region and driving them to search for
other regions. A small detection radius enhances the exploitation of the best solution of the particle
by an adequate search of a small area near this best solution. A large inertia weight is given at the
beginning of the iteration, which gradually decreases as the search proceeds. This ensures that the
algorithm has a large speed step at the beginning of the search in order to detect a better region at the
global scale and to be able to do a refined search around the extremes at a later stage.The improved
MOPSO is less prone to fall into local optimal solutions and has higher convergence accuracy and
diversity compared to the traditional MOPSO.

After 200 iterations, the non-dominated solution set, i.e., the pareto solution set, is obtained, as
shown in Figure 6. It can be seen from Figure 6 that the best choice is at the corner of the curve in

Figure 6. Pareto solution set.
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order to obtain the optimal THD and suspension force harmonic level, while the suspension force size at
the corner is greater than 300 N, which is the very ideal value to take. There are various combinations
of [αd δ L] to choose from near the red dot in Figure 6. The nearby points are listed in order to choose
the combination with parameters that are easier to manufacture and use less material, while obtaining
the same optimization effect. Obviously, the combination of serial number 6 [0.7 9 1.4 15] in Table 3
shows a small thickness of the outer rotor, which not only reduces the mass, but also has a lower cost,
while the length of the air gap is within a reasonable range, so the final optimized parameters are shown
in Table 4 and compared with the initial parameters.

Table 3. Levels of design factors.

α d (mm) δ (mm) L (mm) THD (%) Favg (N) Fripple (%)

1 0.7 8.8 2 15.2 9.847 304.2 1.95

2 0.7 8.9 2 15 9.850 305.2 1.93

3 0.7 9 1.7 20 10.343 312.3 1.69

4 0.7 9 1.6 20 10.385 312.7 1.69

5 0.7 9 1.6 20 10.423 313.0 1.68

6 0.7 9 1.4 15 10.690 315.3 1.72

7 0.7 9 1 18 11.431 321.6 2.15

Table 4. Final optimized factor combinations.

Factors Initial value Optimized value

α 0.8 0.7

d/mm 8 9

δ/mm 2 1.4

L/mm 17 15

4. RESULTS ANALYSIS

In order to verify that the optimized parameters are effective, finite element simulations are performed
for the ORC-BPMSG model with the new key parameters, and then compared with the finite element
simulation results of the initial prototype model.

Figure 7(a) shows the force on the outer rotor of the initial prototype and the optimal ORCBPMSG
model. It can be seen that the suspension force Favg is increased by 22%, which is greater than 300
N. The suspension force pulsation Fripple is calculated and obtained. The suspension force pulsation
is reduced from 3.3% to 1.8%, and the suspension force pulsation Fripple is reduced by 45% after
optimization compared to before optimization.

Figure 7(b) is the spectrum obtained by fast Fourier transform of the electric potential. The
fundamental wave content of the optimal ORC-BPMSG is much improved, and the higher harmonics
content is much reduced. The THD of the optimal ORC-BPMSG is calculated by the formula of THD,
which is 10.71%, while the THD value of the initial prototype model is 19.8%, which is reduced by
45.9%.

This paper compares the performance of the traditional MOPSO with the linear decreasing inertia
weight MOPSO and the improved MOPSO. The improved MOPSO is validated using the benchmark
function ZDT1. Table 5 shows the comparison of the three MOPSO algorithms in three performance
metrics. The generation distance (GD) is an indicator to evaluate the convergence. The spacing (SP)
reflects the distribution of the whole solution set in space, and the diversity (DIV) reflects the breadth of



20 Huan and Zhu

(a)

(b)

Figure 7. Comparison before and after optimization. (a) Suspension force waveform. (b) FFT
frequency spectrum of EMF.

the solution set. For each algorithm, experiments are conducted with the number of particles 50 and the
number of iterations 200, and the average value of each metric is calculated by repeating 20 times. The
comparison revealed that the GD of the improved MOPSO decreased by 26.25% and the DIV increased
by 40.81%, proving that the improved MOPSO has higher convergence accuracy and diversity. Despite
the increase of SP by 16.12%, the distribution of the solution set is still more uniform. The above proves
that the improved MOPSO has better performance.

Table 5. Comparison of MOPSO algorithms.

Algorithm GD SP DIV

Traditional MOPSO 1.68× 10−4 0.45 32.75

Linear decreasing inertia weight MOPSO 1.20× 10−4 0.31 53.37

Improved MOPSO 8.85× 10−5 0.36 75.15
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5. EXPERIMENT RESULTS

The prototype motor is manufactured according to the new motor design parameters obtained after
optimization. Figure 8 shows the experimental platform. The generator shown in the experimental

Figure 8. Experimental platform.

Figure 9. Control diagram of the ORC-BPMSG.
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platform is a 36-slot, 6-pole ORC-BPMSG, and the prime mover on the right is an asynchronous
motor with a rated speed of 3000 rpm. This experiment needs to verify the THD optimization, and
the generation of high harmonics is not necessarily related to the generator speed, so the 3000 rpm
asynchronous motor is chosen to drive the rotor of the ORC-BPMSG, which can verify the waveform
distortion of the generator’s electric potential in a safer and more economical scenario. Controllable
and stable suspension force is the key to the operation of the ORC-BPMSG. The vibration amplitude
of the optimized ORC-BPMSG rotor becomes smaller than the initial prototype under the control of
the same control algorithm, then it can be verified that the suspension force pulsation is mitigated.

The system block diagram of the ORC-BPMSG is shown in Figure 9. For the control of the output
voltage of the conventional PM synchronous generator, the PWM rectifier module is often added, and
the classical control methods used for PM synchronous motors, such as vector control and direct torque
control, can be used to control the PWM rectifier module. In order to verify the basic performance of
the optimized prototype motor, the prototype motor has no PWM rectifier module added, so only the
control schematic of the suspension force winding is available. For the control of the suspension force
winding, a TMS320F28335 is used as the processor to generate a controllable PWM signal to control the
suspension force control module. The displacement sensor uses an eddy current sensor model Qh8500,

Figure 10. FFT spectrum of oscilloscope.

(a) (b)

Figure 11. Displacement before and after optimization in x- and y-direction. (a) Radial displacement
before optimization. (b) Radial displacement after optimization.
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and the relative displacement can be calculated by converting the displacement signal of the rotor off-
center into a 0–3V voltage signal, which is then transmitted to the TMS320F28335. When the rotor is
not eccentric, the output voltage is 1.5V. The experiment needs to suspend the ORC-BPMSG stably,
and then use the prime mover to drag the ORC-BPMSG to run.

Figure 10 shows the electric potential waveform and FFT plots generated by the optimized
experimental prototype during stable operation with the prime mover dragging at 3000 rpm. It can
be seen that the THD is 11.6%, which meets the optimization expectation.

Figure 11 shows the rotor displacements in x and y axes before and after optimization. The
maximum displacement of the rotor in the x- and y-directions after optimization is changed from 85µm
and 94µm to 50µm and 48µm. It can be obtained that the fluctuations of the force in the x- and
y-directions are reduced by 41% and 49%, respectively.

6. CONCLUSION

For the ORC-BPMSG, a multi-objective optimization method based on improved MOPSO is proposed
in this paper, which includes establishing the response surface and finding the optimal solution efficiently
using improved MOPSO. The optimized ORC-BPMSG is compared with the pre-optimized model using
finite element software, and the important indicators of the generator, voltage regulation rate, and
total harmonic distortion rate are analyzed in details. The comparison before and after optimization
is also performed for the suspension force. From the simulation results, it can be concluded that
the performance of the optimized generator has been greatly improved. The optimized harmonic
components are less; the harmonic distortion rate is weakened by 45.9%; the average value of the
suspension force is also improved by 22%; and the pulsation of the suspension force is lower by 45%
than before. Finally, the performance of the optimized ORC-BPMSG is experimentally verified.
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