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Abstract—This paper studies the optimal design of a double-sided linear flux switching permanent
magnet motor (DLFSPM) to improve the average thrust generated by motor operation and reduce
the fluctuation range of thrust applying the Response surface methodology (RSM) and Particle Swarm
Optimization (PSO). An analytical mathematical model of the electromagnetic thrust force of the
DLFSPMs is developed. The functional model of the optimization parameters and objectives based on
the RSM is constructed. The finite element analysis (FEA) is used to carry out numerical experiments
on the geometric structure design variables. PSO is applied to an optimization tool for optimizing the
DLFSPMs’ mover structure parameters. Finally, the FEA comparison and analysis of the optimization
results with the initial results reveal a significant improvement in the electromagnetic characteristics of
the DLFSPMs. The feasibility and effectiveness of the optimization method are verified by the FEA
results.

1. INTRODUCTION

Linear Motor (LM) has received extensive attention and applications in recent years because it does
not require intermediate mechanical conversion devices such as mechanical gears. Compared with
rotating motors, linear motors have a simpler structure, lower cost, better flexibility and dynamic
performance [1, 2]. Permanent Magnet Linear Synchronous Motor (PMLSM), as its representative
product, has the advantages of high efficiency, high-speed, high-power factor, etc., and it is widely
used in traction drive, precision lathe, automatic production, and other fields. As a special permanent
magnet linear motor, DLFSPMs has small axial force and large thrust density compared with traditional
permanent magnet linear motor. Its development has attracted more and more attention from scholars
and industry [3]. Refs. [4–6] proposed DLFSPMs for rail transit traction system, and thrust density
and thrust fluctuation are its two important indicators. However, with the development of technology,
the industry’s requirements for these two indicators are getting higher.

In order to solve the above shortcomings in the optimization design of the motor and improve
the efficiency of the solution, researchers now mostly introduce computer optimization algorithms into
the optimization design of the motor. In [7], Wang et al. used GA for PMLSMs thrust optimization
design. Compared to traditional optimal algorithms, GA is more responsive and more accurate, but
tends to get stuck in local optimal solutions. Sun et al. introduced a multilevel optimization strategy
for multi-objective optimization of IPMSM. They applied Pearson correlation coefficient analysis and
cross-factor variance analysis techniques to evaluate the correlation between design parameters and
optimization objectives, and approximated the FEA results by Krigingmodel [8]. In [9], researchers
have used fuzzy method and sequential Taguchi method for the optimal design of IPMSM, while
they introduced a fuzzy inference system to transform the multi-objective optimization problem into a
single-objective optimization problem. These have achieved relatively good optimization results. Shi et
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al. integrated Taguchi method, fuzzy theory, and sequential optimization strategy and proposed a fuzzy-
based sequential Taguchi robust optimization method for the optimal design of five-phase permanent
magnet motors in [10]. In [11], Pan and Fang used the random forest algorithm to train the parameters
of the permanent magnet arc motor and then obtain the regression model. The advantages of this type
of machine learning are quickly training speed and high degree of fit. But it requires a large amount of
sampling point data, and the regression model is difficult to express using mathematical relationships.

This paper proposes an optimization method to improve the performance of DLFSPMs, which aims
to further increase the thrust density of DLFSPMs and reduce the range of thrust fluctuations, while
avoiding the shortcomings of existing methods. The application of this method combines Response
Surface Method (RSM) and Particle Swarm Algorithm (PSO). RSM is used to construct the model to
be optimized, and PSO is applied to solve the global optimal solution of the optimized model.

The structure of the article adopts the following arrangement. Section 2 introduces the initial motor
topology and electrical characteristics of the DLFSPMs. In Section 3, the optimization of parameters
is determined on the basis of the mathematical model, and the results are verified by FEA. In Section
4, the response surface model of this experiment is constructed and evaluated, and the design of the
mover structure of DLFSPMs is optimized. The performances of the original and optimized DLFSPMs
are compared through FEA, and some conclusions are provided in Section 5.

2. INITIAL STRUCTURE AND PARAMETERS OF DLFSPMS

2.1. Establishment of the DLFSPMs Model

The purpose of this study is to increase the average thrust and reduce the range of thrust fluctuations
by designing and improving the structural parameters of the DLFSPMs. At the beginning of the design,
the main structural parameters and electrical characteristics of the DLFSPM motor are defined. Fig. 1
shows the two-dimensional structure of the initial structure of DLFSPMs.

Figure 1 shows that the linear motor adopts a long secondary structure, and the length of the stator
is greater than the length of the mover. The primary mover is composed of five double-H-shape and
two H-shape magnetic cores. The PM are arranged between the conductor cores, and it is magnetized
in the direction of motion of the motor [12]. We define the structural parameters of DLFSPM which
are shown in Table 1.

Figure 1. Initial model of DLFSPMs.

Table 1. Structural parameters of initial model.

Parameter (mm) Value Parameter (mm) Value

Stator pole pitch 9.9 Stator tooth width 4.455

Stator tooth height 2.1 Stator yoke 11

Mover tooth width 4.455 Mover tooth height 2.8

Mover yoke 9 Mover pole pitch 14.85

PM length 4 Air gap 1
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2.2. Electromagnetic Performance of the Initial Model

As a widely accepted method for modeling electric motors, FEA simulates a real motor system by using
mathematical approximations. It divides the motor model into a finite number of simple and interacting
elements, which enables the approximation of a real system with a finite number of units to an infinite
number of unknown quantities. In this paper, the FEA mesh structure of DLFSPM is shown in Fig. 2.
Using FEA software to simulate the initial model of the DLFSPM motor, the following results are
obtained:

Figure 2. The mush structure of DLFSPMs.

(1) Figure 3 shows the simulation results of no-load back-EMF. The FEA results for the no-load
EMF are illustrated in Fig. 3(a). The three-phase no-load EMF amplitudes of the DLFSPMs initial
model are VAmax = 17.01V, VBmax = 18.37V, and VCmax = 16.75V. Fig. 3(b) shows the harmonic
distortion rate of the electromotive force of the A-phase winding, and the horizontal axis represents the
harmonic order. The third harmonic has the greatest impact, and its harmonic distortion rate is 6.82%.
The total harmonic distortion (THD) rate is 7.27%.

(a) (b)

Figure 3. The simulation results of EMF of no-load.

(2) The magnetic density cloud of the initial model of DLFSPMs is shown in Fig. 4(a). The
magnetic density is distributed in the range of 0 ∼ 2.3Tesla. The brighter the color is, the more serious
the magnetic saturation is. Fig. 4(a) shows that the magnetic saturation can be found in three positions:
the mover yoke, mover teeth, and stator teeth. This will cause the core of the mover to heat up and
reduce the service life of the motor.

(3) The simulated thrust waveform is shown in Fig. 4(b). The average thrust of the initial model of
DLFSPMs is 385.37Newton. In addition, the thrust fluctuation coefficient (Frip) reflects the fluctuation
of thrust:

Frip =

√
Fmax − Fmin

Favg
(1)
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(a) (b)

Figure 4. Characteristics of the primary DLFSPMs. (a) The magnetic density cloud of the initial
model. (b) Thrust simulation results of the initial model.

The thrust fluctuation coefficient of the initial model calculated from Eq. (1) is Frip = 0.6768. Favg and
Frip of the initial model cannot meet the requirements of the traction drive field.

Based on the above analysis, it is necessary to optimize the structural parameters of the initial
model for DLFSPMs.

3. PARAMETER SELECTION BASED ON ANALYSIS MODEL

The work to be accomplished in this section is to determine the parameters to be optimized with
the mathematical model of the DLFSPMs thrust. First of all, the following assumptions are effective
here [12, 13]:

1) Assume that the permeability of the core is infinite.

2) The relative permeability of permanent magnets will not change.

3) The magnetic field changes only in the direction perpendicular to motor operation.

4) Ignore the magnetic flux leakage of the air gap.

Based on above assumptions, the thrust of DLFSPMs (F ) can be expressed as:

F = Fem + Fcog = FPM + Fr + Fcog (2)

where FPM , Fr, Fcog represent the permanent magnet thrust component, reluctance thrust component,
and detent force. They can be expressed as:

Fr =
1

2
IT ·

(
d

dx
L

)
· I (3)

FPM =
d

dx

(
ΨT

PM · I
)
= NphI ·

dϕm

dx
(4)

Fcog = −1

2
ϕ2
m · dRg

dx
(5)

where I represents the armature current, and its amplitude is Im. The length of magnetic circuit is
expressed in terms of L. ϕm represents the air gap flux. Air gap magnetoresistance is represented by
Rg. x represents the displacement of the motor mover. Eq. (4) can continue to expand as:

FPM =
dΨPMa

dx
· ia +

dΨPMb

dx
· ib +

dΨPMc

dx
· ic =

3

2
· 2π
τρ

ΨmIm · cosα (6)
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where Ψm is the amplitude of the flux linkage of each phase winding. α represents the phase difference
between the armature current and the EMF. Combining formulas (3)∼ (5) can be expressed as:

F =
1

2
IT

(
d

dx
L

)
I +NphI ·

dϕm

dx
− 1

2
ϕm

dRg

dx
(7)

According to the relationship among magnetomotive force, magnetic density, and magnetoresis-
tance, the thrust of DLFSPMs can be changed by changing the magnetomotive force and magnetore-
sistance of each part.

Figure 5 shows a part of the mover’s 3-D structure of the initial model of DLFSPMs. According
to the above analysis, changing the parameter values of mover tooth width (Hst1), permanent magnet
magnetization length (LPM ), mover tooth height (Lst3), and mover yoke width (Lsy) will cause the
thrust of the DLFSPM motor to change.

Lst1

Hst1

Lst2
Lst3

Lsy

Lbm

Lpm

Hst2

Hsc

lα

Figure 5. 3-D structure of part of the mover in the initial model of DLFSPMs.

We apply FEA to calculate Favg and Frip for different DLFSPMs operating conditions as shown
in Fig. 6. It depicts the trends and conflicts between the two optimization objectives, which lays the
foundation for the later multi-objective optimization.
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Figure 6. Variation of optimization objective with design variables.

4. STRUCTURAL PARAMETERS OPTIMIZATION OF DLFSPM

In this paper, the parameters of DLFSPMs mover structure are optimized by associating PSO and
RSM. To define the objective function, this is the aim of RSM. As for the PSO, it is used to determine
the optimal solution.

4.1. Construct the Objective Function

First, the objective function is completely established by RSM. It is often used for statistical application
work. Its principle is: to find the relationship between the response and design variables, and establish
a response surface model between them [14].



44 Zhao et al.

Before using RSM, determining the response and design variables is necessary. Define the response
y1 and y2 as the average thrust (Favg) and thrust fluctuation coefficient (Frip) of DLFSPMs, respectively.
Define the design variables xi (i = 1, 2, 3, 4) as Hst1 LPM Lst3 Lsy, respectively. The level value of each
variable is shown in Table 2. Each design variable has three levels. Level −1, 0 and 1 are defined as
the minimum, average, and maximum values of the parameters in this paper, respectively.

Table 2. Parameter level.

Level
Design Variable (mm)

x1 x2 x3 x4
1 3.4 2 0.8 9

4.1 3.5 1.8 13

1 4.8 5 2.8 17

We use the Central Composite Design (CCD) to build the sample distribution [12], and FEA is
applied to calculate the results of each set of samples. The total number of samples is 31, and a summary
of the results can be found in Table 3.

Table 3. The results of sample distribution and FEA.

EXP. x1 x2 x3 x4 Favg Frip

1 3.2 2 0.8 9 465.224 0.619

2 4.8 2 0.8 9 417.588 0.664

. . . . . . . . . . . . . . . . . . . . .

3 3.4 3.5 1.8 13 450.646 0.537

31 4.8 3.5 1.8 13 503.559 0.685

After getting the sample data, using RSM to construct objective function. The relationship between
design variable (xi) and response (yi) can be expressed as:{

y1 = f1(xi)
y2 = f2(xi)

(i = 1, 2, 3, 4) (8)

In the classic RSM, the form of quadratic polynomial is usually selected as the response model:

y = β0 +
n∑

i=1

βixi +
n∑

i=1

n∑
j=1

βijxixj + ε (9)

where x, β, and ε represent design variables, regression coefficients, and random errors, respectively.
Express Eq. (9) in matrix form:

Y = Xβ (10)

where X = [1, x1, . . . , xk, x
2
1, . . . , x

2
k, x1x2, x1x3, . . . , xk−1xk]. β is calculated according to the least

square method [15]:

β =
(
XTX

)−1
XTY (11)

where Y is the matrix of response. XT is the transposed matrix of X.
According to Table 3 and Equations (8)∼ (11), the objective function of the DLFSPMs to be

optimized can be obtained:

y1 = −491.2085 + 364.7574x1 + 29.7377x2 − 53.0676x3 − 34.5124x4
−62.3067x21 − 24.1607x22 + 6.3191x23 − 2.197x24 + 18.802x1x2
+10.582x1x3 + 5.95x1x4 − 8.497x2x3 + 3.352x2x4 − 0.86x3x4 (12)
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y2 = −0.9981 + 1.1896x1 + 0.0476x2 + 0.0324x3 − 0.1265x4
−0.1383x21 + 0.0245x22 − 0.0255x23 + 0.004x24 − 0.0171x1x2
+0.007x1x3 + 0.012x1x4 + 0.0152x2x3 − 0.0004x3x4 (13)

4.2. Evaluation of Regression Results

After obtaining the functional relationship between the response and design variables, it is necessary to
evaluate the regression result of the objective function. The decision coefficient R2 is given by:

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳi)
2

(14)

where yi, ȳi, and ŷi respectively represent the true, average value, and predicted results of the test data.
According to Eq. (14), the decision coefficients of Eqs. (12)∼ (13) are R2

1 = 99.05% and R2
2 = 98.12%.

Figure 7 purposes the comparison of the true and predicted distributions of the average thrust and
thrust fluctuation coefficient of the data in Table 4. The results of FEA coincide well with the predicted
results of RSM. Therefore, the objective functions (12)∼ (13) have the characteristics of high sensitivity
and good fitting accuracy, which meet the requirements of this optimization design.

Figure 7. Distribution of true and estimated values.

Table 4. Parameters of PSO.

Parameter Value

Particle population 20

ωmax 0.9

ωmin 0.4

Acceleration factor (c1, c2) 2

Tmax 500

4.3. The Process of Optimization

The details of PSO can be found in [16]. Due to its simplicity and controllability, PSO has been widely
applied to solve target optimization problems [17]. The parameters of PSO are shown in Table 4. We
apply the PSO toolbox of MATLAB software to perform iterative calculations.
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In addition, PSO has a powerful single-objective optimization performance, so it is necessary to
introduce weight coefficients to improve the objective function. Here, the value of the weight coefficient
is 0.5. According to Eqs. (12)∼ (13), the new objective function can be defined as:

Y = −0.5y1 + 0.5y2 (15)

PSO stops running after 500 iterations. Fig. 8 shows the results of PSO operation. The results show
that PSO obtains the global optimal solution after 14 iterations of calculation. The optimal solution is:{

Hst1 = 4.13mm LPM = 2.97mm
Lst3 = 1.51mm Lsy = 16.03mm

(16)
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Figure 8. The result of PSO.

4.4. Optimization Results

We take the obtained Eq. (16) into the DLFSPMs model for FEA calculation and obtain the following
optimization results:

(1) The FEA results about no-load back-EMF after optimization are purposed in Fig. 9(a). The
amplitude of the no-load back EMF after optimization is increased by about 61.1% compared with
Fig. 3(a).

(2) The comparison result of initial and optimal models about the harmonic distortion rate of the
A-phase winding no-load back EMF is illustrated in Fig. 9(b). Comparing Fig. 9(b) with Fig. 3(b),

(a) (b)

Figure 9. No-load back-EMF of optimized DLFSPMs. (a) Waveform of three-phase. (b) Comparison
chart of harmonic analysis between initial and optimized models.
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(a) (b)

Figure 10. Characteristics of optimized DLFSPMs. (a) The density cloud map. (b) Comparison of
thrust of the initial and the optimized model.

the influence of the 3rd harmonic is reduced after optimization, and it is reduced to 2.99%. The total
harmonic distortion (THD) is reduced to 3.28%.

(3) Figure 10(a) shows the optimized DLFSPMs magnetic density cloud map. Compared with
Fig. 4(a), it can be seen that the magnetic saturation phenomenon at the mover yoke, mover teeth,
and stator teeth has been greatly improved. The magnetic density is distributed in the range of
0 ∼ 1.98Tesla. This will make the motor run more stable.

(4) The comparison result of thrust is purposed in Fig. 10(b). The average thrust of the optimized
model is 570.587Newton. The thrust fluctuation coefficient is reduced to 0.4125. Through RSM-PSO
parameter optimization calculation, the average thrust value of DLFSPMs is 48.06% higher than the
initial model, and the thrust fluctuation of DLFSPM is reduced by 36.09% compared with the initial
model.

5. CONCLUSION

This paper proposes a method to optimize the design of the mover structure of DLFSPMs by combining
RSM and PSO. The average thrust of the motor is increased and the range of thrust fluctuations
reduced. This article uses the RSM-based objective function building method. And decision coefficients
are used to evaluate the regression degree of the objective function. The results show that the objective
function fitted by RSM has the characteristics of high degree of fitting and perfect fitting accuracy. The
feasibility of applying RSM to construct DLFSPMs optimization model is verified. In this paper, an
optimal design of DLFSPMs with an approach combines PSO and RSM, and the optimization results
are verified by FEA. No-load back-EMF peak value has been increased and THD reduced to 3.28%.
The magnetic saturation phenomenon has been greatly improved. The motor runs more stably. In the
end, the average thrust has been greatly improved, and the thrust fluctuation has become lower than
before optimization. Therefore, the DLFSPMs optimization design method combining RSM and PSO
can easily and effectively obtain the target optimal mover structure parameters.
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