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Abstract—The evolution of computing and network technologies which involve thousands of devices
that are connected wirelessly to serve variety of applications in Internet-of-Things (IoT) draws significant
interest in locating the indoor objects. In our paper, we focuse on developing a hybrid source positioning
technique with off-the-shelf hardware modules. A rectangular corridor with a multipath environment
is considered in our work. For better localization accuracy, the corridor is classified into segments with
threshold RSS values. Based on the measurement data, segment-wise logarithmic regression models
are developed, and the performance in terms of Correlation Coefficient (R2) and Root Mean Square
Error (RMSE) is evaluated. For localization, basically trilateration is used. However, to overcome the
adverse issues due to the indoor environment such as flip ambiguity, uncertainty in range measurements,
circumscribing the circle’s scenarios, two circle intersection, dynamic circle contraction, and expansion
methods are used. Relevant Pseudocode algorithms are presented. The proposed hybrid method
significantly improves the localization accuracy. The standard deviation of errors in x and y directions
are about 16.75 cm, 66.24 cm in the first segment and 19.75 cm, 60.16 cm in the second segment. The
analysis and results are useful in establishing state of the art IoT and future generation 5G networks.

1. INTRODUCTION

Radio Frequency (RF) propagation analysis in indoor environments is useful for localization applications.
The latest trend in addressing localization is the use of off-the-shelf hardware transceiver modules.
These modules are readily available at a low cost and can be easily configurable. Because of the
growing demand due to several applications, there is a necessity to test the behavior of these modules
in different environmental conditions. Therefore, estimation of coverage and capacity of these modules
is very important in designing a wireless communication system. Nowadays indoor localization finds
applications in many ways, including finding instore items, patients in hospital rooms, etc. In such
instances, location is a critical input. To perform the localization, compared to the available techniques
in literature such as Time of Arrival (TOA), Time Difference of Arrival (TDOA), or other angular
techniques, Received Signal Strength (RSS) is an attractive approach since it does not require additional
hardware for range estimation and time synchronization. In addition, most popular wireless technologies
like Wi-Fi, ZigBee, RFID, and Bluetooth support the same type of RSS, TOA, and TDOA algorithms
[1, 2]. RSS measurements are not an easy task in an indoor environment due to multipath, reflection,
and refraction. With the best practices in range measurements, the errors in the RSS technique can be
minimized. Such an improved approach is very helpful in radio planning also for future generation 5G
networks.
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Recently, [3] presented their work on 2.4, 5.3, 28, 60, and 73.5GHz by developing an indoor path
loss prediction model with incorporating wall correction factors and suggested that the developed model
would be useful for planning wireless local area networks and also for 5G networks. In [4, 5], their
joint RSS-based localization method addressed the problem of detecting the unknown target position
in a distributed network in the presence of multiplicative fading, and low complexity fusion rules were
developed to achieve good performance in detecting the target position. Also, their proposed Generalised
version of the Rao test (G-Rao) was compared with the Generalised Likelihood-Ratio Test (GLRT) in
terms of performance and computational complexity and proved an attractive alternative solution to
GLRT in a distributed environment. [6] developed the cluster-based circle expansion algorithm by
adjusting the estimated distances dynamically using the estimated distance from the strong signal
module for improving the accuracy of trilateration. A similar type of work is also followed by [7]
for improving the localization accuracy. In this paper, we focus on modeling the indoor corridor
propagation path loss using the logarithmic regression and localization based on a segment-based circle
contraction/expansion algorithm.

We used low-cost off-the-shelf hardware modules to acquire the RSS data from modules and used
iterative procedure and bubble sorting algorithms to select the optimum RSS value to characterize the
channel. Poor quality of trilateration problems, such as “flip ambiguity” and one circle circumscribing
another circle, are critically analysed, discussed with reasons, and solved with hybrid localization method
by following certain conditions.

This paper is organized as follows. Relevant theoretical background with a summary of various
relevant trilateration scenarios is discussed in Section 2. Experimental setup, environment details,
and technical properties of modules are covered in Section 3. The relation between RSS and signal
propagation path, procedures on the selection of receiver’s data using iteration method, relevant
pseudocode algorithms for arriving localization solutions, and results are presented in Section 4. Finally,
conclusions are discussed in Section 5.

Notation: ∀ denotes for all; ∈ denotes an RSS belongs to a set; R denotes the location; dˆ denotes
the estimated model distance; ∨ denotes the compound statement of OR; ↓ Unicode represents the next
instruction; ∩ denotes common intersection values.

2. THEORETICAL BACKGROUND

There are two important aspects of indoor localization. One is to find out an optimal path loss model,
and the other one is to obtain the best trilateration approach to localize the source. In addition, optimal
receiver module placement for localization is useful for achieving better accuracy. The geometrical
changes in the placing of the modules always enlighten new types of problems and bring a new type
of method for arriving at the solutions [8, 9]. For several reasons a better configuration of placing the
sensor is important, notably, finding the trajectory path of the source, better energy saving with unused
nodes, and also for repairing the network in dead nodes with neighboring nodes. Our earlier results
indicate that by placing the modules at the vertices of an isosceles triangle will offer a wide separation
between the modules resulting in improvement of the Dilution of Precision (DoP) [10].

Consider a typical corridor experiment scenario with an office environment as shown in Figure 1.
Solid lines represent the real-time coverage area by the modules, and dashed circles represent the ideal
coverage scenario. Estimation of source position is critical in the shaded regions. The present work
concentrates on these shaded regions.

The indoor signal strength measurements play a critical role in both localization and 5G
communication problems. Several researchers have reported their work on modeling aspects, and
it is well established that the performance of communication channels is a function of environment,
generation devices, different data rates, etc. [11–13]. [14] presented various wireless indoor positioning
systems and their analyses in terms of accuracy, scalability, cost, precision, robustness, and complexity.
Recently, [15] proposed a GNSS augmented Bluetooth Low Energy (BLE) based indoor localization
system by data fusion of GNSS and BLE. By the careful use of low-power modes for GNSS, inertial
sensing and the CC2640R2F blue tooth module with a Cortex M3 microcontroller, combined with a
LoRa backhaul provide a power-efficient navigation solution in an indoor office environment.

[16] presented a 3D Indoor Localization Based on Wi-Fi and built-in-sensors (3D-WFBS) with
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Figure 1. The receiver modules are at the vertices of an imaginary isosceles triangle of rectangular
shape office corridor.

the help of Fine Time Measurement Protocol. From the pedestrian’s real-time heading, walking speed,
received signal strength indication, and round-trip time collected fromWi-Fi access points and combined
for proximity detection sensors achieved 1m level indoor localization accuracy. Similarly, [17] proposed
RSS-based Indoor Passive localization using clustering and filtering in LTE networks. In all these
experimental scenarios, the role of hardware modules is critical. To solve indoor localization and
communication problems and to evaluate channel performance, a thorough investigation of measurement
data is essential.

To model the performance of off-the-shelf hardware modules in the indoor environment, in our
current work we considered the logarithmic (log-linear) regression model. It is mathematically expressed
as

y = β0 + β1 ∗ ln(x)

β1 =

∑(
lnxi − lnx

)
(yi − ȳ)∑(

lnxi − lnx
)2 ;

βo = ȳ − β1lnx

(1)

where ‘β0’ is the intercept and ‘β1’ the slope of the regression line, and ‘y’ the measured signal strength
at a distance of ‘x’ in meters. Logarithmic regression is a parabolic shape. The logarithmic regression
model is chosen because it more closely emphasizes the RSS measurements for distance range. It is
preferred because it fits well with measured data for a large variance [18]. The sensitivity of this model
is examined by various authors with Root Mean Square Error (RMSE), and it is found that the results
are stable and truly reflect in the localization result [19–21].

In the context of source localization for the indoor environment, there is no such good model
available to suit multipath characteristics except using the traditional trilateration or proximity
algorithms to mitigate the measurement errors [14]. The quality of the trilateration of circles is discussed
by [22] in terms of uncertainty, nonconsistency, ambiguity, and error propagation. The reported work
enables the researchers to observe the different geometric forms of trilateration circles and also helps
in avoiding poor trilateration for source localization. Table 1 presents the list of problem formulation
scenarios and their solutions relevant to our work [35].

For a given corridor, three-receiver modules M1, M2, and M3 are placed at the vertices (x1, y1),
(x2, y2), and (x3, y3) of an imaginary isosceles triangle as shown in Figure 1. The signal strengths
received at these three modules are RSS1, RSS2, and RSS3. The source is located at (xs, ys) on the
median line of the corridor. The radii of the theoretical coverage area offered by the modules are
estimated from the logarithmic regression model and are represented as r1, r2, and r3 (Table 1). In the
case of indoor RSS measurements, being random in nature multiple measurements are needed at each
predefined position. Out of these measurements for the selection of optimum value, we have to follow
the process of comparison with the modelled value. Whichever measured value is close to the modelled
value is considered as the optimum value. Based on such optimum values for each predefined position,
the entire corridor is divided into different segments. For each segment, a modified propagation path
loss model is evolved. In each segment, different scenarios may exist which are shown in Table 1 and
Figure 2.
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Table 1. Various scenarios of trilateration method for source localization.

S No Problem 

Formulation 
Scenario Mathematical Expressions  Eq. No.

1 Measured RSS1,

RSS2 and RSS3 are

nearly equal to

modelled RSS.

Figure 2(a). Three circles 

exactly intersect.

A = (
2(x3 −  x1 ) 2(y3 − y1 )

. .

2(x3 − x2 ) 2(y3 − y2 )
)

B = (
xs

ys
)

C = (
r1

2 − x1
2 − y1

2 − (r3
2 − x3

2 − y3
2 )

.

r2
2 − x2

2 − y2
2 − (r3

2 − x3
2 − y3

2 ) )
B = (AT .A) -1 .AT .C 

Based on the least square system, the estimated position is 

(2)

2 RSS2 and RSS3 are 

nearer to

modelled values

and causing flip

ambiguity

Figure 2(b). Two circle 

intersection. 

xs ,2 ,3 =
(x2 + x3 )

2
+

(x2 − x3)(r2
2 − r3

2 )

2D2
±

2(y2 − y3 )

D2
* K  ;

ys ,2 ,3 =
(y2 + y3 )

2
+

(y2 − y3 )(r2
2 − r3

2 )

2D2

2(x2 − x3 )

D2
* K

and constant k

=
1

4
(D + r2 + r3 )(D + r2 − r3 )(D − r2 + r3 )(−D + r2 + r3 ) 

distance between circles (D) =   (x2 − x1 )2 + (y2 − y1 )2

estimated source = (xs ,2 ,3 , ys ,2 ,3)

(3)

3 Severe noisy

measurements of

M2 and M3 results

in multipath.

Figure 2(c). One circle 

circumscribes 

another circle. 

xs =
r2 (x3 − x2 )

(r3 − r2)
+ x2 ; ys =

r2 (y3 − y2 )

(r2 − r3)
+ y2

The estimated source = (xs , ys )

(4)

4 For M2 and M3

signals coming

from different

directions without

interference. Figure 2(d). Two circle 

intersection. 

xs =
r2(x3 − x2 )

(r3 + r2 )
+  x ; y =  

r2 (y3 − y2 )

(r2 + r3 )
+ y2

The estimated source = (xs , ys) 
(5)
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The four problem scenarios which we came across in our experimentation are summarized in the
table. Scenario 1 represents the case when all the three measured RSS values are well fitted. In the
second scenario, the RSS values of the two modules are similar whereas the RSS of the third one is such
that its circle is not intersecting the other two circles. The intersection of circles at two points is due to
flip ambiguity, and one of them is source position. Several localization solutions fall under this scenario
because distributed localization is performed with a sparsely connected wireless network. The third
scenario is an uncertainty situation realized from noisy ranging measurements in multipath conditions.
In this case, potentially RSS values of two modules are interfering with each other either constructively
or destructively. In such a case, all the three circles are not intersecting at the same point; also one
circle circumscribes another circle; and approximate localization has arrived from the tangency point
of the latter two circles. The fourth and the last scenario is very similar to the third scenario where
multipath propagation conditions exist. Unlike the third scenario, no circle is circumscribing the other
circle. For example, at the center of the corridor where the two modules are placed opposite to each
other, a breakpoint occurs, and dual slope models are applied. Therefore, the condition for arriving
at the localization solution is different from scenario three. In Table 1, to classify different localization
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scenarios, the measured RSS (RSS meas) values are compared with RSS values due to logarithmic
regression model (RSS model). The relevant mathematical expressions for localization solutions for all
four scenarios are given in the table. The Summary of Reviewed works and Distinctive Characteristics
along with present work are presented in Table 2.

2.1. Computational Complexity

In the proposed method, we considered three modules in an isosceles triangle shape to cover the
rectangular office corridor. For a localization process, it is important to know how many receiver
modules are essential. Generally, it is assumed that a large number of receiver modules lead to better
localization solutions; however, this assumption is to be reconsidered as it leads to increased complexity.
The complexity involved here is the selection of algorithms for an optimal number of modules to deal
with this problem. The suggested dynamic circle expansion/contraction algorithms will help in solving
this problem. Salient features of the computational complexity are summarised in Table 3.

3. EXPERIMENTAL SETUP

Experiments are conducted in the ground floor corridor (3.57 × 21m) of the Research and
Entrepreneurship (R & E) Hub of CBIT. The hub is a newly constructed two-year-old building with
reinforced concrete and a polished stone corridor. Office rooms, a pantry, a large conference hall, and a
mini-conference room are located on either side of the corridor. The doors of the rooms are made of steel
and have glass windows. The flooring is with natural granite stone, and the sidewalls are embedded with
polished marbles. The floor plan is as shown in Figure 3. The effect of granite stone surface roughness,
the smooth surface of marble, and the electrical properties of the surrounding environment created
interest in our work. Such type of environment creates strong reflections, multipath, and shadowing
effects on the wave propagation. Besides, the corridor is similar to the rectangular waveguide, and the
theory for wave propagation in waveguides motivated us to develop an optimum path loss model in the
corridor for future generation 5G networks. From Figure 3, it is clear that the experiment location is a
source of multipath for the considered operating frequencies.

Length: 21m

Width: 3.57m

Figure 3. Floor plan of indoor corridor at R&E Hub, CBIT.

In such a scenario, knowledge of the effects of building materials and structures on wave propagation
is essential. When such information is available, a system designer can do a thorough analysis of
measurement data. Several experimental results on the attenuation of an electromagnetic wave in
indoor corridors are reported by various authors [23–25]. Similarly, the electrical properties of interior
construction material are discussed by [3, 26–29]. [30] summarized the electrical properties of various
materials.
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Table 2. Summary of reviewed works and distinctive characteristics along with present work.

S No Author Related Work Distinctive Characteristics Conclusions of work

1
Hema Achanta

et al., [8, 9]

Optimum Sensor

Placement of Receiver

Modules in the 3D

scenario.

The source is uniformly

distributed in a sphere and

sensors are placed outside a

larger concentric sphere.

The Fisher Information matrix

is used for optimizing the source

position by maximizing the

smallest eigenvalue.

Simulation results showed

that optimum sensor

placement has a better

performance compared to

arbitrary sensor placement.

2

Robert J. C.

Bultitude

[11]

Reported Continuous

wave propagation

experiments at 910MHz

in an indoor

environment.

Reported statistics such as

power and phase variations

concerning time.

CDF for CW fading signal is

presented for indoor

environment.

The received power varies

at R−1.8, where R

represents the distance

and diffraction losses

(10 to 15 dB).

3
A. D. Sarma

[12]

Reported propagation

experimental results at

60GHz.

Ott and Thompson’s model is

used to discuss the significance

of the refractive index. Practical

aspects of models are explained.

Meteorological conditions

play an important

role in oxygen absorption

at 60GHz frequencies.

4
T. S. Rappaport

[13]

Reported multipath

propagation

measurements

at 1300MHz.

Multipath spread, mean excess

delay, RMS Delay Spread, and

magnitude of Transfer function

multipath are observed.

Estimated path loss is

highly correlated with

distance. Average values

of all multipath channel

parameters are presented.

5
Liu et al.,

[14]

Provided an overview of

the existing wireless

indoor positioning

systems, techniques,

and solutions.

Typical Location estimation

schemes are analyzed.

Fingerprinting technique

is discussed in detail.

Different performance

measurement systems

are evaluated and

discussed at length.

6
Dai et al.,

[15]

Proposed GNSS

augmented Bluetooth

Low Energy (BLE) based

indoor localization system

by data fusion of

GNSS and BLE.

Developed hardware with a

microcontroller, GNSS module,

Bluetooth module, active

Bluetooth beacons, LoRa, and

MEMS sensors and performed

real-time experimentation.

The proposed method

achieved better than

4ms accuracy in

an indoor office

environment.

7
Y. Yu et al.,

[16]

Proposed a hybrid

localization technique

using Wi-Fi finite time

measurements and

smartphone

in-built sensors.

Used adaptive extended Kalman

filter algorithm for estimating

pedestrians’ real-time heading,

and walking speed. Combining

with Wi-Fi Access points

estimated the range.

With the proposed

algorithm ‘3D-WFBS’ a

meter level accuracy in

a typical indoor

environment is achieved.

8
Zheng et al.,

[17]

Proposed an LTE network

environment for indoor

localization.

WKNN is used for classifying

the regions and obtaining

localization results which are

compared with the LTE

network environment.

Proved that the

proposed LTE network

environment gives 24%

better accuracy than

the WKNN method.

9
T. Sridher et al.,

(proposed work)

Presented hybrid source

localization technique.

Optimum path loss models are

derived. Corridor segmentation

is done. Concentrated on

performance degraded

parameters to improve

the localization accuracy.

Achieved better

segment-wise standard

deviation errors in

x and y directions.
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Table 3. Computational complexity in hybrid localization.

Problem Formulation Mathematical Expression Complexity

Model formation with

Noisy Ranging

measurements in

Extended Corridor

environment

RMSEmes(p) =

√∑n
q=1(RSSmodel p,q−RSSmes p,q)

2

n

Poor range measurements

due to isosceles

triangle shape and

multipath environment are

avoided by analyzing

RMSE values of

modules 2 and 3.

Selection of

optimum RSS value
RSS = find{min(di), measured RSS}

The least-square estimation

method finds the distance

error and later on uses

the bubble sort algorithm

for finding the nearest

value to the model.

Grouping segments

RMSEM1,M2,M3 ={
RMSEM1<RMSEM2,M3 ∨RMSEM1,M2,M3 ↓
RMSEM1>RMSEM2,M3 ∨RMSEM1,M2,M3 ↑

The iterative procedure

selects the minimum

RMSE value in the

segments. The selection

of RMSE depends upon

the evolved new model.

Flip Ambiguity

Localization Solution arrived from Eq. (3).

Where r2, r3 are replaced with r′2, r
′
3

r′2,3 = r2,3 −
(
r1
2

)
RSSM2,M3 > RSSthreshould

r′2,3 = r2,3 +
(
r1
2

)
RSSM2,M3 < RSSthreshould

The mirror image

of the results confuses

the localization. The

solution can be arrived

with dynamic

circle expansion.

One circle circumscribes

another circle due

to Severe noisy

measurements of M2

and M3 resulting

in a multipath.

Localization Solution arrived from Eq. (4).

Where r2, r3 are replaced with r′2, r
′
3

r′2,3 = r2,3 −
(
r1
2

)
RSSM2,M3 > RSSthreshould

r′2,3 = r2,3 +
(
r1
2

)
RSSM2,M3 < RSSthreshould

Failure in trilateration

is overcome by the

presented technique.

The ceiling of the corridor is made up of white Plaster of Paris (POP) gypsum boards supported
with pendant linear LED lights along the roof of the corridor. POP is supported by metal studs made of
steel. During the experiment, the doors of all the rooms closed to facilitate a line-of-sight environment
also. By examining the electrical characteristics of the corridor environment, it is obvious that the
attenuation levels experienced by the propagating waves are different for different materials.

Five Wi-Fi transceiver modules (ESP 8266), micro USB cables, and a laptop (4GB RAM) for
data logs are used in the experiments. The supply voltages for the modules range from 2.5 to 3.6V.
The modules operate in the frequency range of 2412–2484MHz. The typical operating frequency is
2400MHz [36]. Modules have an in-built 8-bit microcontroller. Two types of codes are run on this
microcontroller. The first one is the application code, where the signal strength measurement code has
been written in it. The latter one is the firmware. It is a low-level code that supports the application
code. The current consumption is between 15µA and 400mA. Wi-Fi is included in these transceivers.

During the experiment, these modules are programmed to work as both transmitter and receiver.
These modules are powered by an external power supply. Modules user id (Service Set Identifier:
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SSID) is visible to the Wi-Fi operated devices. Modules are placed at the vertices of an isosceles
triangle (A, B, and C) with an adjacent side length of 10.6m as shown in Figure 1 to achieve a better
Dilution of Precision (DoP) in source localization. The adjacent channel reduction ratio 31 dB makes
the interference insignificant. The transmitter and receiver modules are placed at a height of 75 cm from
ground level to avoid the ground reflections. A program is developed to estimate the received signal
strength and is installed in the receiver modules. Experiments are conducted for source localization
based on the signals received from the fixed receivers. The results of these experiments are intended
for examining the efficiency and scalability of the proposed localization approach and for developing a
prototype system for source localization in the office environment. The measurement system consists of
receivers in predefined locations while the source was moved along the centerline of the corridor. The
RSS at each of the three-receiver modules is recorded for each source position along the center line of
the corridor for every 0.25m. The sampling period of RSS measurements is 1 sec. These experiments
are conducted in the daytime on weekdays, with personnel moving throughout the corridor. Therefore,
there is a minor influence of the shadowing effect and pedestrian traffic on the measurements.

In our experiment, as the source moves towards the other end of the corridor, the localization
solution is not satisfactory due to huge multipath interference from the surroundings. Therefore, we
placed another receiver module M4 at location D, exactly opposite to module M1 and at a distance of
22m. By considering the RSS values from modules M2, M3 and M4, better localization accuracy is
achieved.

4. RESULTS AND DISCUSSION

In this section, initially, we examined the relation between Received Signal Strength (RSS) and
propagation path distance using the logarithmic regression model. Later on, we investigated the selection
of receivers data from the high signal strength measurements for indoor localization using the iterative
method and subsequently estimated the source position using the trilateration principle.

4.1. Examining the RSS and Propagation Path Distance

In our early work, we employed a straightforward linear regression method to estimate the distance
between the source and the receiver [10]. However, this model provides a poor localization solution
leading to large positional errors. The reasons are examined in the present work. One of the reasons is
that in the trilateration method, the three circles are not intersecting at a common point. This is the
most common uncertainty in trilateration under noisy ranging measurements, especially in an indoor
environment. The second reason is that the measured data trend is following a cone shape on the plot
between the model and measured data indicating that the error due to the model does not have constant
variance [34]. The presence of non-constant variance suggests that there are some unusual RSS samples
in the data which must be studied closely to make a better model.

So, in this work, we focused on improving the localization accuracy by choosing an appropriate
ranging estimation model. To address this aspect, we worked on establishing a relation between the
RSS and propagation path distance using the logarithmic regression model. In our examination, to
model the propagation path of the wave under an indoor environment the logarithmic regression model
is preferred for the following reasons: the first one is propagating radio wave’s wavefront divergence.
Wavefront divergence is the edge of the propagating wave. As the wavefront propagates spherically, its
surface enlarges; consequently, its power density decreases with the square of the distance [30]. The
indoor environment makes the propagating wave to fluctuate due to multipath and attenuation, causing
the RSS to be nonlinear. The point where the signal strength fluctuates with different slopes is called
the breakpoint. The region after the breakpoint is similar to the behavior of the logarithmic curve at
a decibels distance, unlike the linear curve. A large number of path loss models are represented in
terms of dual slopes for the cases of the corridors and tunnels [31]. The second reason for preferring
the logarithmic regression model is that the logarithmic expressions are a more convenient means of
transforming a highly skewed variable into one that is more approximately normal. Due to these reasons,
we preferred logarithmic regression in this current work.

The direct path distances from the source to receiver modules are considered as ‘d1’, ‘d2, and ‘d3’
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Figure 4. Experiment scenario at R&E Hub, CBIT.

(Figure 4). The source positions along the centerline of the corridor are represented as S1, S2, S3, . . . , S21.
The estimated logarithmic regression models for M1, M2, & M3 in the corridor can be expressed
respectively as:

y1 = −57.90− 5.25 ∗ ln (d1) 1 < d1 < 21 (6)

y2 = −45.73− 5.566 ∗ ln (d2) 1.8537 < d2 < 10.6506 (7)

y3 = −54.6− 3.669 ∗ ln (d3) 1.8537 < d3 < 10.6506 (8)

where ‘yi’ is a modelled RSS value at a distance of d1, d2, and d3. Corresponding regression plots for
measured data are shown in Figure 5.

(a) (b) (c)

Figure 5. (a) M1 logarithmic regression curve. (b) M2 logarithmic regression curve. (c) M3 logarithmic
regression curve.

The RSS values along the corridor assume a parabolic shape (Figure 5). The plots show the
behavior of homoskedasticity [32]. In most of the locations, RSS values follow the models. It implies
that the errors are normally distributed. Also, from Figure 5, we can observe that at very few locations
the RSS values are deviating from the models. This results in a non-constant variance in the error
at these locations. This can be observed in the RMSE plot at the corresponding locations (Figure 6).
These locations are influencing the models and subsequently the performance of localization. Apart
from estimating the RMSE, the quality of obtained models (Eqs. (6), (7), and (8)) are examined with
statistical parameters namely Correlation Coefficient (R2) and Adjusted R2 (Table 4).

Table 4. Performance parameters for modules data.

S No Module R2 Adjusted R2

1 M1 70.47% 70.43%

2 M2 40.4% 40.3%

3 M3 16.09% 15.96%
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(a) (b) (c)

Figure 6. (a) RMSE for M1 data. (b) RMSE for M2 data. (c) RMSE for M3 data.

Seg1 

Seg2 

Figure 7. Division of M1 data segments in the corridor.

RMSE values due to the three modules M1, M2, and M3 are shown in Figure 6. The higher RMSE
values could be due to the influence of corridor materials, multipath, measurement error, antenna
positioning, etc., R2 shows how best the data fit the model. The chances of improving the model by
introducing a new parameter are represented by adjusted R2. These two parameters for M1 are above
50%, and in the other two cases, they are far less than 50%. These values clearly show the necessity
of improving model accuracy. Therefore, to improve the performance of the models, the corridor is
divided into 2 segments. For each segment of data, a new appropriate model is framed to best fit the
experimental data (Figure 7).

Initially, regression models are developed for 0–6m of the corridor for all three modules. In this
range, the RMSE values are higher for all modules. From Figure 7, we can notice that the signal
strength values greater than −67 dBm are considered as the first segment. We can also observe in the
figure that even after the S6 location the measured values are better than −67 dBm. But these are far
away from the model. To optimize source position, a valid RSS measurement that is close to the model
is considered in our experiment. For that measurement, only the relevant model is applied. The new
regression models for the first segment are expressed as:

y1 = −55.2435− 8.1058 ∗ ln (d1) 1 < d1 < 6 (9)

y2 = −45.4349− 6.9688 ∗ ln (d2) 4.8411 < d2 < 9.6662 (10)

y3 = −36.61− 11.26 ∗ ln(d3) 4.8411 < d3 < 9.6662 (11)

A similar procedure is followed to examine these new regression models with the help of RMSE, R2,
and adjusted R2 values (Table 5).

It is obvious from Figures 8(a) and 6(a) that in the range of 1–6 meters the RMSE values are
improved due to the new model. However, at the location of S3, the RMSE is large for both M2 and
M3. Therefore, we can expect a large error while performing the source localization at this location.
The reasons for the large error at location 3 are examined based on Figures 5(a) & 5(b) results.

Figure 9 compares the measurements with the improved model (Eqs. (10) and (11)). When the
source is at location S3, and M2 and M3 measured data are far away from the new model. It indicates
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Table 5. The performance parameters of new model data.

S No Module R2 Adjusted R2

1 M1 89.93% 89.87%

2 M2 38.44% 38.1%

3 M3 50.88% 50.8%

(a) (b) (c)

Figure 8. (a) M1 RMSE estimation using model y1. (b) M2 RMSE estimation using model y2. (c) M3
RMSE estimation using model y3.
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Figure 9. (a) Module 2 new regression model. (b) Module 3 new regression model.

that the measured RSS values are severely affected by surrounding environment noise. This S3 location
in the corridor is falling in scenario 3 of Table 1. For all other locations in the corridor of the 1–6 meter
range, the RMSE is very low (Figures 8(b) and 8(c)). Therefore, the localization comes in the scenario
of either 1 or 2 (Table 1).

Similarly, analysis is carried out for the second segment. In the second segment, a 6–11 meters
corridor range is considered (highlighted with red color in Figure 7). Before evolving the new model
in these locations, the previous models (Eqs. (9), (10) & (11)) are examined. If these models perform
well with these measured data, then these models can be extended to these locations. Otherwise, a new
model is necessary. A similar analysis is followed for the remaining locations up to 21m in the corridor.
For example, the extended model and corresponding RMSE for M1 in the locations of S1 to S11 are
shown in Figure 10.
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Figure 10. (a) regression curve upto 11 meters. (b) RMSE upto 11 meters. (c) Regression curve upto
16 meters.

The model performs well up to S10 location (RMSE ≤ 4). However, at the S11 location, the model
does not satisfy the measurement data, and the same is reflected in the RMSE plot (Figure 10(b)). At
the S11 location, the propagating signal experiences large path loss and fluctuations due to the nearby
environment where M2 and M3 are located. Therefore, this model is not suitable at this location
(S11 location) and is called a breakpoint. It has arrived from the analysis of measurement data in
Figure 10(c), which is close to the breakpoint distance arrived from Eq. (12) of [23].

dbreak =

√
a

λ
meters (12)

where a is the maximum dimension of the corridor (21m), and ‘λ’ is the wavelength of the propagating
wave. The breakpoint arrives at 13 meters. The localization solution for S11 comes under scenario 2
(Table 1).

In our experiment, the idea of framing the segments in the corridor is for the improvement of
the localization accuracy with the proposed model. When the source is moved along the center of
the corridor, each receiver module collects the signal strength and SSID information. Later on, this
information is transferred to the post-processing unit for further localization purposes. The receiver
modules are placed in different locations in the corridor. The environment around the modules is
different for different modules, so the effects are different necessitating a unique model for each module.

As M1 is on the centerline of the beginning of the corridor, estimating the propagation path distance
from the source is straightforward (Eq. (13)).

For M1:

d1 =

{
e

−(RSS+55.243)
8.1058 , RSS ≥ −70 dBm

e
−(RSS+30.287)

15.189 , RSS < −70 dBm
(13)

However, model equations for M2 and M3 are different as they are positioned on either side of the
centerline. The region among M1, M2, and M3 is considered the first segment. The rest of the region
is the 2nd segment.

To know in which segment the source lies M1 data modelling is necessary. Once it is known the
modelling of M2 and M3 data can be done. If the source is in the first segment, then the signal received
by M1 is stronger than the signal received from the source in the second segment (Figure 11). A similar
analysis for M2, M3 is discussed by [33] for identifying the source position using the geometry of a half
plane-symmetric lens. Based on these concepts, the proposed models for estimating the distance for M2
and M3 are expressed as:

For M2:

d2 =

{
e

−(RSS+45.43)
6.97 , ∀RSS for segment A

e
−(RSS+49.1)

2.09 , ∀RSS for segement B
(14)
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Figure 11. Representation of source position in the corridor as a half symmetric planes.

M1 (0,0) 

d1=2.94 M3 (10.5, 1.785); d3 = 5.59

M2(10.5, -1.785); d2 =9.33 

Desired source `S'

Figure 12. Localization at source S3 position.

For M3:

d3 =

{
e

−(36.614+RSS)
11.2648 , ∀RSS for segmentA

e
−(53.3109+RSS)

6.1075 , ∀RSS for segmentB
(15)

4.2. Source Localization

Once RSS-based distance estimation is done successfully, the next step is source localization. We used
a circle-based geometric trilateration algorithm. For various localization scenarios, we developed tiny
pseudo-code algorithms (Table 1). These algorithms help in the decision process for obtaining better
accuracy. The advantage of these algorithms is its simplicity in implementation and easy to analyze
the problems in localization. The source can be localized based on the intersection of the coverage area
circles of M1, M2, and M3 modules. Each coverage area is due to respective modeled data. The larger
the coverage area is, the more the localization error is. The source becomes non-localizable if it does
not lie within the coverage area of any two circles. In our work, we consider the source movement one
dimensional; therefore, the intersection of any two overlapping circles gives the localization. As the
source moves from Module 1 to the bisector point M2–M3, the signal strength at M1 decreases whereas
at M2, M3 strength improves. Therefore, M2 and M3 coverage area is used for localization purposes.
When the source moves towards the other end of the corridor, the RSS of all the modules decreases
necessitating new models which consider environmental losses.

Initially, the signal strength information received by M1 is used for dividing the corridor into
segments for developing individual model equations. Then with the help of information from M2 and
M3 along with the M1 model the source position is estimated.

During this stage, data profiling, data cleaning, and removing outliers are performed with
customized methods. For selecting the optimum RSS value w.r.t the developed model a pseudo-code
algorithm is developed (Algorithm 1). The same procedure is implemented for both segments.

Similarly, the pseudo-code for identifying the segment based on hierarchical segmentation from top
to down order is given in Algorithm 2. We assigned a threshold to these segments and observed the
behavior of measured RSS in the corridor environment in the context of segmentation. Initially, two
independent models 1–6m and 6–11m are developed. Based on the correlation coefficient between these
models, the two are combined to one effective model. The pseudo-code for combining the clusters is
shown in Algorithm 3.
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Algorithm 1 Pseudo code for selection of RSS.

Input: Measured RSS value, True distance
Output: Nearest RSS value
1: RSSi ∈ R/Measured Data at each location {RSS1, RSS2, . . . , RSS30}
2: di/Original distance
3: for each measured RSS value do
4: Calculate Eq. (8)/obtain model distance

5: di = |di − d̂|/Difference between original and model distance
6: RSS = find {min(di), measured RSS}/find minimum difference and concern RSS value
7: end/store the nearest RSS value

In our study, the experiment environment consists of four types of scenarios (Table 1). The
intersection of circles will evaluate the source position. It depends upon the selection of any two
circles, because of the 2-D environment.

Algorithm 2 Pseudo code for identifying segments.

Input: Measured RSS samples
Output: Estimated distance of all three modules
1: RSSMi ∈ R/Data at each location from all three modules {RSS1, RSS2, . . . , RSS30}
2: Identify the M1, M2, and M3 data using SSID information
3: Apply logarithmic regression for M1 data for throughout the corridor
3: Calculate Correlation Coefficient R2

4: for every measurement at each ith measurement location
5: do RMSE
6: if RMSEM1> defined error then \ at each measured location for M1
7: define segment with RSSthreshould
8: do thenearest RSS sample selection algorithm
9: Repeat the steps from 3 to 8 for M2, M3

10: if RMSEM1,M2,M3 =

{
RMSEM1<RMSEM2,M3 ∨ RMSEM1,M2,M3 ↓
RMSEM1>RMSEM2,M3 ∨ RMSEM1,M2,M3 ↑ then

11: segment is ‘well behaved’
12: for each ‘well behaved’ segment do
13: trilateration
14: end

Algorithm 3 Pseudo code for combing the segments.

Input: Measured RSS value, True distance
Output: clustered data
1: RSSi ∈ R/Measured Data at each location {RSS1, RSS2, . . . , RSS30}
2: di/Original distance
3: for i = 1 to n/number of locations
4: Segi = {RSSi> RSSthreshould}/above threshold RSS are considered as segment
5. end for
6. Segi = {Seg1, Seg2, . . . , Segn}
7. while size (Segi) > 1 do
8. (Seg1, Seg2) = minimum R2(Seg1, Seg2)
9. remove Seg1, Seg2 from existing Segi
10. add {Seg1, Seg2) as new segment
11. Segi = Segi+1
12. end while
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Table 6. Localization comparison between three modules to selective two modules.

S No
True Source

Position

Least Square principle

with all three modules

Selection of modules in

arriving localization

1 (1, 0) (1.21, −0.49) Not Applicable

2 (2, 0) (2.23, −1.47) (2.02, −0.23)

3. (3, 0) (2.99, 7.82) (2.02, 2.13)

4. (4, 0) (3.64, −0.58) (3.76, 0.14)

5. (5, 0) (4.89, 0.78) (4.88, 0.33)

6. (6, 0) (6.20, −0.16) Not Applicable

Initially, we followed two estimation procedures for source localization. In the first procedure,
straightforward localization is estimated using the trilateration procedure, whereas in the second
procedure we estimated the source position using the selected module’s data based on the scenarios
(Table 6). In this way, better position accuracy is achieved. However, at a few locations, the localization
error is large. For example, at source position ‘S3’ the localization error is large in both the procedures.
The distances estimated using developed models and their localization scenario is shown in Figure 12.

It is similar to localization scenario 3, and one circle circumscribes the other. The M3 coverage is
very small. It is due to constructive interference of the signals at receiver M3 leading to ranging errors
at this location. The red color dot represents the expected source position. In most cases, circles do not
intersect at a common point. Recently, several authors have addressed this type of problems [7, 6, 22].
In our work, we have concentrated on the analysis of data. Both strong signal at M3 and improper
intersection of M1, M2 are the main reasons for the wrong position estimation. The possible solution
for improving accuracy is to go for a ‘circle contraction’ method. The method is similar to the work
proposed by [6] for addressing the noisy ranging measurements in indoor environments. In their work,
the coverage area of circles is expanded until the circles intersect each other. However, in our method,
at this location, we followed circle contraction for M2 and M3 data. The radius of the circle after
contraction/expansion (d′) is given as,

d′2,3 = d2,3 −
(
d1
2

)
RSSM2,M3 > RSSthreshould (16)

d′2,3 = d2,3 +

(
d1
2

)
RSSM2,M3 < RSSthreshould (17)

In Eqs. (16) & (17) the subtraction or addition denotes the circle contraction or expansion depends
on the deviation of RSS from the threshold model values. The threshold values of RSS are considered
as limits for avoiding over contraction or expansion. In both these equations, the RSS value of ‘d1’ is
considered as the reference distance. Using Eq. (16) the source localization at ‘S3’ arrives as (2.927,
0.323) and compares well with the true value.

In Figure 13 the dashed circles represent the contracted circles corresponding to M2 and M3
modules. The intersection of M1, M2 gives the localization of the source as (2.92, 0.32); (2.65, −1.27).
Due to flip ambiguity, the solution has two solutions. The pseudo-code for implementing the circle
expansion or contraction is shown in Algorithm 4.

Toward the end of the corridor, in our experiment, we have come across a scenario where no circle
is intersecting with the other. This type of problem is solved by modeling the data with empirical
models. For this, we analyzed the measured data at those locations. The abnormal data is rectified
by incorporating the particular environment loss into the model equation. The attenuation rate due to
drywall is calculated as (ITUR 2015)

A = 1636
σ

ϵr
(18)

where ‘σ’ denotes the conductivity (S/m), and ‘εr’ denotes the relative permittivity (F/m). These two
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Figure 13. Localization of S3 using the circle
contraction method.

Figure 14. Localization of source in the R & E
floor corridor.

Algorithm 4 Pseudo code for circle expansion/contraction.

Input: Measured RSS value
Output: Source Position

Start

1. C1, C2, C3 are circles drawn from the three receivers

2. Check C1 ∩ C2 ∩ C3

3. If yes

4. Peform trilateration

5. If not

6. If C1∩ C2 then do

7. two circle intersection

8. Else check Contract/Expand C2 by a suitablemodel

9. Return step 6 and 7

10. Else exit

11. Perform C1 ∩ C3

12. Retrun step 6 and 7

13. Else

14. Perform C2 ∩C3

15. Return step 6 and 7

16. Else

17. Circle expansion failed then do

18. Analyze the measured data

19. Repeat from step 1

End

parameters are the functions of frequency. At 2.4GHz the values for drywall are 20 dB/m. According
to the wave propagation environment, the attenuation rate is considered as positive or negative. The
modified model equations at these locations are represented as the

y = β0 + β1 ∗ ln (x) + γ (19)

where ‘γ’ represents the wall correction factor used as the constant to improve the model equation in
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the segments. The improved model equations are used at ‘S20’ where the RSSM1,M2,M3 much deviate
from the models. The localization at ‘S21’ is solved by placing the fourth receiver module at 22 meters
from the corridor, and the source position is estimated at S21 location.

From the above analysis, the arrived localization in the corridor in all 21 locations is shown in
Figure 14. Except at very few locations in segment two, the remaining locations’ localization in the
corridor is satisfactory. The standard deviation values of localization are summarized in Table 7.

Table 7. Segment wise localization errors.

Segment Coordinates Standard Deviation

First segment

(1–11 locations)

X 0.16m

Y 0.46m

Second Segment

(11–21 locations)

X 0.19m

Y 0.61m

The presented results in terms of accuracy may not compete with the results due to the latest
localization devices, but our proposed method with low cost hardware is still better and useful for some
of the localization applications like in indoor shopping malls, vehicle tracking, and localization of goods
in industries.

5. CONCLUSIONS

Localization plays a vital role for Internet-of-Things and 5G communications. This paper presents a new
indoor localization technique based on logarithmic regression model and circle expansion/contraction
methods. The experiments are performed with off-the-shelf hardware modules which operate at 2.4GHz.
We characterized the corridor into segments based on RSS values to improve localization accuracy.
Accordingly, new model equations are framed in the segments. We presented the pseudo-codes for
performing the segmentation. The localization scenarios faced in the given environment with suitable
conditions are addressed, and the relevant numerical computations are given. The significance of
the optimum placement of modules at the vertices of an isosceles triangle for better localization is
also presented which facilitates easy implementation of circle contraction or expansion methods. The
dynamic selection of modules improved the localization accuracy in x and y directions. Also, the
hybrid computational techniques improved the localization accuracy in the cases of non-intersection of
circles. These results and analysis could be useful for developing the future generation 5G networks in
indoor office corridor environments. Adoption of the presented hybrid source localization method in
the extended indoor corridor region where most of the data experiences a noisy environment may be
further improved by techniques such as machine learning. The usefulness of the proposed mechanism in
flip ambiguity which occurs in sparsely connected networks can be investigated. Further, the proposed
work can also be extended to grid-based localization in residence areas.
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