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Scattering of Electromagnetic Waves by Impedance Biconical
Vibrators in a Free Space and in a Rectangular Waveguide

Mikhail V. Nesterenko*, Andrey V. Gomozov, Victor A. Katrich,
Sergey L. Berdnik, and Victor I. Kijko

Abstract—A problem of scattering of electromagnetic waves by thin impedance biconical vibrators
in a free space and in a rectangular waveguide is solved by an asymptotic averaging method and a
generalized method of induced electromotive forces (EMF). An influence of the change of vibrator
radius upon energy and spatial characteristics is numerically studied. Theoretical results are compared
with the experimental data.

1. INTRODUCTION

An additional parameter for obtaining the given electrodynamic characteristics of cylindrical vibrator
antennas can be a change in the radius of the cross section of the vibrator along its length. Such
radiators (scatterers) can be located in free space, half-space, a rectangular waveguide or a resonator. If
the radius of the vibrator increases from the center of the antenna to its ends according to a linear law
(biconic vibrator), then such an antenna resonates at a smaller geometric length and is more broadband
than a vibrator of constant radius. Starting from the classic publication of Shchelkunov [1], antennas
of this type have attracted the attention of many researchers (see, for example, [2–10] and references to
them); however, all of them are devoted to calculating the characteristics of a radiating vibrator excited
at the center by a concentrated EMF. At the same time, to analyze the receiving antennas, it is necessary
to know the induced current in a scattering vibrator excited by an incident electromagnetic wave. This
problem is also of independent applied importance in the study of the scattering characteristics of
material bodies of complex configuration [11].

In this article, solutions for problems of electromagnetic wave scattering by thin impedance
vibrators of variable cross-sectional radius located in free space and in a rectangular waveguide are
obtained. Moreover, for clarity and comparative analysis, the solutions were carried out by different
methods. The electrodynamic characteristics of such antennas are investigated and compared with
experimental data.

2. IMPEDANCE BICONICAL VIBRATORS IN A FREE SPACE

2.1. Problem Formulation and Initial Integral Equations

Let us limit ourselves by the linear law of the radius change along the vibrator (Fig. 1), which, in its
turn, is rather good approximation and for another dependence r(s), for example, exponential one,
at small angles ψ. Let the impedance vibrator of 2L length and r(s) variable radius, located in free
space, be excited by the plane electromagnetic wave with E0 amplitude. The monochromatic fields and
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Figure 1. The vibrator fragment of the variable radius and the symbols used.

currents depend on time t as eiωt (ω = 2πf is the circular frequency, and f is the frequency, measured
in Hz). At this the vibrator stays electrically thin, and the following inequalities are performed:

kr(s) ≪ 1, r(s) ≪ 2L. (1)

Then the tangential component of the scattered field on the vibrator surface in the cylindrical coordinate
system {ρ, φ, s} has the form:

Escτ (ρ, s) = Es(ρ, s) cosψ + Eρ(ρ, s) sinψ. (2)

Here

Es(ρ, s) =
∂

∂s

[
1

ρ

∂(ρΠρ)

∂ρ
+
∂Πs
∂s

]
+ k2Πs,

Eρ(ρ, s) =
∂

∂ρ

[
1

ρ

∂(ρΠρ)

∂ρ
+
∂Πs
∂s

]
+ k2Πρ,

Πs and Πρ are the components of the Herts’s electrical vector, corresponding to the vibrator electrical

current J⃗(s) = e⃗sJs(s) + e⃗ρJρ(s), where e⃗s, e⃗ρ are unit vectors of the cylindrical coordinate system.
Assuming according to Eq. (1) |Jρ| ≪ |Js|, Js ≈ J , transiting to the total derivative along the

longitudinal coordinate s, and also taking into account that dr(s)
ds = tgψ, we, finally, obtain the integral-

differential equation relatively to the J(s) current for the impedance boundary condition on the vibrator
surface: (

d2

ds2
+ k2

) L∫
−L

J(s′)
e−ikR̃(s,s′)

R̃(s, s′)
ds′

= − iω

cosψ
E0τ (s)− tgψ

d

ds

r(s)
L∫

−L

J(s′)
e−ikR̃(s,s′)

R̃3(s, s′)
ds′

+
iω

cosψ
ziJ(s), (3)

where E0τ (s) is the tangential component of the electrical field of the impressed sources; R̃(s, s′) =√
(s− s′)2 + r2(s); zi is the internal linear impedance of the vibrator. So, for example, for metal

cylinders (σ is the metal conductivity, and ∆o is the skin layer thickness) under the condition r ≫ ∆o,
zi is determined by the relation zi =

1+i
2πrσ∆o (see Table 1).

Note that at r(s) = const = r0, Equation (3) transforms into an equation for the current in

an impedance vibrator of constant radius [12] with a quasi-one-dimensional core R̃(s, s′) = R(s, s′) =
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(s− s′)2 + r20. One can show by direct differentiation with consecutive application of the condition (1)

that the ratio takes place as in the r(s) = r0 case:

d2

ds2
e−ikR̃(s,s′)

R̃(s, s′)
∼=

d2

ds′2
e−ikR̃(s,s′)

R̃(s, s′)
, (4)

and the second addendum in the right part of Equation (3) equals zero at coincidence of the integration
and observation points (s′ = s), i.e., it does not have peculiarity:

tgψ
d

ds

r(s)
L∫

−L

J(s′)
e−ikR̃(s,s′)

R̃3(s, s′)
ds′

 ∼= tgψr(s)

L∫
−L

J(s′)(s− s′)3
e−ikR̃(s,s′)

R̃5(s, s′)
ds′

∣∣∣∣∣∣
s=s′

= 0.

Let us extract the main part of the kernel of Equation (3), making the following identical
transformations:

L∫
−L

J(s′)
e−ikR̃(s,s′)

R̃(s, s′)
ds′ = J(s)Ω(s) +

L∫
−L

[
J(s′)e−ikR̃(s,s′) − J(s)

]
R̃(s, s′)

ds′. (5)

Here

Ω(s) =

L∫
−L

ds′

R̃(s, s′)
= Ω + γ̃ (s, r(s)) ,

γ̃ (s, r(s)) = ln


(
r0
rL

)2

[
(L+ s) +

√
(L+ s)2 + r2(s)

] [
(L− s) +

√
(L− s)2 + r2(s)

]
4L2

 ,

Ω = 2 ln 2L
rL

≫ 1, r0 and rL are the radii of the vibrator in its centre and on its end, correspondingly.

We note that the obtained problem natural large parameter Ω coincides with the wave resistance of
the biconical antenna of infinite length, considered in the frames of the model of the homogeneous line,
along which the TEM-wave propagates without reflections, at the ψ ≤ 10◦ small angles with accuracy
to the constant multiplier [1].

Using the equality in Eq. (4) and neglecting the current on the vibrator ends (J(±L) = 0) [3], we
obtain the integral-differential equation, whose right part is proportional to the α small parameter:

d2J(s)

ds2
+ k2J(s) = α

{
iω

cosψ
E0τ (s) + F [s, J(s)]− iω

cosψ

ZS
2πr(s)

J(s)

}
. (6)

Here α = 1
2 ln[rL/(2L)]

, (|α| ≪ 1), ZS = zi2πr(s) is the surface vibrator impedance,

F [s, J(s)] = −dJ(s′)

ds′
e−ikR̃(s,s′)

R̃(s, s′)

∣∣∣∣∣
L

−L

+ [J ′′(s) + k2J(s)] γ̃ (s, r(s))

+

L∫
−L

{
[J ′′(s′) + k2J(s′)] e−ikR̃(s,s′) − [J ′′(s) + k2J(s)]

}
R̃(s, s′)

ds′

+tgψr(s)

 L∫
−L

e−ikR̃(s,s′)

R̃3(s, s′)
ds′

  dJ(s′)

ds′

∣∣∣∣L
−L

−
L∫

−L

[J ′′(s) + k2J(s)] ds

 . (7)

The J ′′(s) and J ′′(s′) expressions designate the second derivative due to the s and s′ coordinates in the
operator F [s, J(s)], defining the vibrator own field.
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2.2. Solution of the Current Integral Equation by the Averaging Method

Let us use the asymptotic averaging method, whose efficiency is described in [12] applicable to the
boundary problems of such a kind, to obtain the approximate solution of Equation (6). We change the
variables in order to reduce Equation (6) to the equations system of a standard kind with the small
parameter [13, 14]:

J(s) = A(s) cos ks+B(s) sin ks,

dJ(s)

ds
= −A(s)k sin ks+B(s)k cos ks,

(
dA(s)

ds
cos ks+

dB(s)

ds
sin ks = 0

)
,

d2J(s)

ds2
+ k2J(s) = −dA(s)

ds
sin ks+

dB(s)

ds
cos ks,

(8)

where A(s) and B(s) are the new unknown functions.
Then Equation (6) transits into the system of the integral-differential equations, unsolved relatively

to the derivative:

dA(s)

ds
= −α

k


iω

cosψ
E0τ (s) + F

[
s,A(s),

dA(s)

ds
,B(s),

dB(s)

ds

]
− iωZs
2π cosψr(s)

[A(s) cos ks+B(s) sin ks]

 sin ks,

dB(s)

ds
= +

α

k


iω

cosψ
E0τ (s) + F

[
s,A(s),

dA(s)

ds
,B(s),

dB(s)

ds

]
− iωZs
2π cosψr(s)

[A(s) cos ks+B(s) sin ks]

 cos ks.

(9)

Making partial averaging along the s variable with the consistent use of the condition (1) in the
equations system (9) further, we obtain the equations of the first approximation relative to the A(s)
and B(s) averaged functions:

dA(s)

ds
= −α

{
iω

k cosψ
E0τ (s) + F

[
s,A(s), B(s)

]}
sin ks+ χvB(s),

dB(s)

ds
= +α

{
iω

k cosψ
E0τ (s) + F

[
s,A(s), B(s)

]}
cos ks− χvA(s).

(10)

Here χv =
iα

rL cosψ

(
3
2 − r0

2rL

)
Z̄S and at rL = r0, χv transits into χ = iαZ̄S

r0
(the parameter, taking into

account the vibrator surface impedance of the constant radius r0),

F [s,A(s), B(s)] =
[
A(s′) sin ks′ −B(s′) cos ks′

] e−ikR̃(s,s′)

R̃(s, s′)

∣∣∣∣∣
L

−L

(11)

is the vibrator own field, averaged along its length.
Integrating the equations system (10) with taking into consideration Eq. (11), we obtain the most

general asymptotic expression for the current in the impedance vibrator of the variable radius:

J(s) = A(−L) cos(k̃s+ χvL) +B(−L) sin(k̃s+ χvL)

+α

s∫
−L

{
iω

k cosψ
E0τ (s

′) + F [s′, A,B]

}
sin k̃(s− s′) ds′, (12)

where k̃ = k + χv. It is necessary to use the boundary conditions for the J(±L) = 0 current and the
conditions of symmetry, coupled both with the method of the vibrator excitation and its configuration,
to define four constants A(±L) and B(±L) in Eq. (12).
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Let us limit ourselves by consideration of the symmetrical case: E0τ (s) = E0τ (−s), r(s) = r(−s).
The expression for the current has the form with substitution of the obtained values of the constants
in Eq. (12):

J(s) = α
iω

k cosψ


s∫

−L

E0τ (s
′) sin k̃(s− s′) ds′

− sin k̃(L+ s) + αP s[kr(s), k̃(L+ s)]

sin 2k̃L+ αP s[kr{s}, 2k̃L]

L∫
−L

E0τ (s
′) sin k̃(L− s′) ds′

 , (13)

P s[kr(s), k̃(L+ s)] =

s∫
−L


e−ikR̃[s′,−L;r(s′)]

R̃[s′,−L; r(s′)]

+
e−ikR̃[s′,L;r(s′)]

R̃[s′, L; r(s′)]

 sin k̃(s− s′)ds′

∣∣∣∣∣∣∣∣∣∣
s=L

= P s[kr{s}, 2k̃L].

Let the vibrator be excited by normal incident plain electromagnetic wave with the amplitude E0:
E0τ (s) = E0 cosψ, and its radius is changed according to the following law: r(s) = r0 + |s|tgψ. Then,
finally:

J(s) = −α iω
kk̃
E0

(cos k̃s− cos k̃L) + α

{
sin k̃LP s[kr(s), k̃(L+ s)]

−[1− cos k̃(L+ s)]P s[kr{s}, k̃L]

}
cos k̃L+ αP s[kr{s}, k̃L]

, (14)

P s[kr{s}, k̃L] =
L∫

−L

e−ik
√

(L−s)2+r2(s)√
(L− s)2 + r2(s)

cos k̃sds.

It is suitable to characterize the scattering properties of passive vibrators in free space by the
normalized back-scattering cross section (BSCS) σ/λ2 [11], whose expression has the form in the
considered case:

σ

λ2
=

4α2

π

∣∣∣∣kk̃
∣∣∣∣4
∣∣∣∣∣ sin k̃L

cos k̃L+ αP s[kr{s}, k̃L]
− k̃L

∣∣∣∣∣
2

. (15)

Let us note that the current in the vibrator has both the symmetrical Js(s) = Js(−s) and
antisymmetrical Ja(s) = −Ja(−s) components and J(s) = Js(s) + Ja(s) in a general case, at the
incidence of the plain wave under the angle to the vibrator axis or when r(s) ̸= r(−s).

2.3. Numerical and Experimental Results

Figure 2 represents the plots of the BSCS dependencies of perfectly conducting (Z̄S = 0) biconical
vibrator from its electrical length 2L/λ (2L = const = 15 cm, r0 = 0.1 cm) for different angles ψ. It
is seen that the passive scattering vibrator becomes more broadband (due to the level of 0.5(σ/λ2),
referred to the maximal value of BSCS) at the ψ angle increase. At this the (2L/λ)res resonant values
change insufficiently, and the σ/λ2 maximal values increase sufficiently in the second pick of the resonant
curve. The analogous picture is observed in the case, when λ = const , as shown in Fig. 3: λ = 10 cm,
r0 = 0.0127 cm. Here the dotted curve and circles are the results obtained by the Hallen-King’s iterations
method, and the experimental data for the silvered conductor from [15] (the normalization of all curves
is made to the maximal experimental value of BSCS in the first resonance), correspondingly. Thus
one can make a conclusion (as noted in [1–3]) that both the passive scattering and receiving biconical
vibrators can operate effectively in wider range of the waves electrical lengths than the vibrators of the
constant radius at the practically unchanged (2L/λ)res value.

For example, for impedance vibrators, when taking into account the finite conductivity of the metal
they are made of, their electrodynamic characteristics will change, correspondingly, in comparison with



280 Nesterenko et al.

Figure 2. The σ/λ2 dependences from the
vibrator electrical length at 2L = 15 cm, r0 =
0.1 cm for different angles ψ: 1 — ψ = 0◦ (rL =
0.1 cm); 2 — ψ = 1.1◦ (rL = 0.25 cm); 3 —
ψ = 3.1◦ (rL = 0.5 cm).

Figure 3. The σ/λ2 dependences from kL at
λ = 10 cm, r0 = 0.0127 cm for different ratios
rL/r0: 1 — rL = r0; 2 — rL = 5r0; 3 —
rL = 10r0; 4 and 5 — the experimental data and
the calculated values at rL = r0 [15].

the case of perfect conductivity. Table 1 represents the calculated (due to Equation (15) and made by
the variation method [15]) and also experimental data [15] of the maximal value of BSCS in the first
resonance for copper and platinum thin wires with different radiuses of cross section. Obviously, the
radius change along the vibrators length will lead to the same qualitative changes of the BSCS curves,
which are given in Figs. 2, 3 for perfectly conducting biconical vibrators in these cases.

Table 1. The calculated values and the experimental data of the σ/λ2 maximal value for thin metallic
conductors.

σ/λ2

r, cm kr Material zi [Ohm/cm] Experiment [15] Calculation [15] Calculation, formula (15)

0.003× 1.27 0.0024 Copper 0.625 + i0.597 0.768 0.805 0.804

0.002× 1.27 0.0016 Platinum 2.27 + i2.21 0.690 0.725 0.744

0.003× 1.27 0.0024 Platinum 1.15 + i1.47 0.727 0.760 0.774

0.005× 1.27 0.0040 Platinum 0.93 + i0.886 0.763 0.788 0.792

It should be mentioned that the problem in question and its solution can be generalized for the
case of the vibrator location in infinite material medium without principal difficulties.

3. IMPEDANCE BICONICAL VIBRATORS IN A RECTANGULAR WAVEGUIDE

3.1. Problem Formulation and the Initial Integral Equation

The structure in question and the symbols, accepted in the problem, are represented in Fig. 4(a). The
thin vibrator of the variable radius r(s) and length 2L, which does not have the points of touching
the waveguide walls (the symmetrical vibrator), is located in the rectangular waveguide of the section
{a × b}. The {0s} local coordinate system is coupled with the vibrator, and the performance of the
impedance boundary condition Eτ (s) = zi(s)J(s) is required on its surface, where Eτ (s) is the full
electrical field tangential component on the vibrator surface.

Let us limit ourselves, as it was earlier, by the linear law of the vibrator radius change along its
length: r(s) = r0+ |s|tgψ, where tgψ = (rL−r0)/L. The following integral-differential equation relative
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(a) (b) (c)

Figure 4. The problem formulation and the symbols used.

to the J(s) electrical current in the vibrator (see Eq. (3)) is original for analysis in this case:(
d2

ds2
+ k2

) L∫
−L

J(s′)Gs[s, s
′; r(s′)]ds′ = − iω

cosψ
E0τ (s)

+tgψ
d

ds

∂

∂r

L∫
−L

J(s′)Gs[s, s
′; r(s′)]ds′ +

iω

cosψ
zi(s)J(s). (16)

Here E0τ (s) is the impressed sources electrical field tangential component; s′ is the local coordinate
on the vibrator surface; Gs[s, s

′; r(s′)] is the s-component of the Green’s electrical function of the
rectangular waveguide.

3.2. Solution of the Equation by the Generalized Method of Induced EMF

Let us apply the generalized method of induced EMF, approximating the current distribution due
to the first term (which does not depend on the Green’s function of the electrodynamic volume) of
Equation (14), in the case of the vibrator symmetrical excitation E0τ (s) = E0τ (−s) and under the
condition that zi(s) = zi(−s):

J(s) = J0f(s) = J0(cos k̃s− cos k̃L), f(±L) = 0, (17)

where k̃ = k − i2πzavi
Z0Ω

[
1

cosψ

(
3
2 − r0

2rL

)]
, Ω = 2 ln 2L

rL
, zavi = 1

2L

L∫
−L

zi(s)ds is the mean value of the

internal impedance along the vibrator length, and J0 is the current unknown amplitude. As a result,
the searched expression for the current at the vibrator excitation by the TE10-wave (with amplitude
E0) has the form:

J(s) = − iω
kk̃

E0 sin
πx0
a

(sin k̃L− k̃L cos k̃L)(cos k̃s− cos k̃L)

ZWψ (k̃L) + tgψZ̃Wψ (k̃L) + FWzψ (k̃L)
. (18)

The symbols are accepted in Equation (18):

ZWψ (k̃L) =
1

2k

L∫
−L

f(s)

(
d2

ds2
+ k2

) L∫
−L

f(s′)Gs[(s, s
′; r(s′)] ds′

 ds, (19)

Z̃Wψ (k̃L) =
1

2k

L∫
−L

f(s)
d

ds

∂

∂r

 L∫
−L

f(s′)Gs[(s, s
′; r(s′)] ds′

ds, (20)
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FWzψ (k̃L) = − i

r(s)

L∫
−L

f2(s)Z̄S(s) ds, (21)

Z̄S(s) = R̄S(s) + iX̄S(s) = 2πr(s)zi(s)/Z0, (Z0 = 120π [Ohm]) is the normalized complex surface
impedance of the vibrator, distributed along it due to the definite law Z̄S(s) = Z̄Sϕ(s), where ϕ(s) is
the set function. The electric Green’s function for the structure under consideration will have the form
(s-component):

Gs[s, s
′; r(s′)] =

4π

ab

∞∑
m=1

∞∑
n=0

εn
kz
e−kzr(s

′) sin2 kxx0 cos ky(y0 + s) cos(y0 + s′ cosψ), (22)

where εn =

{
1, n = 0
2, n ̸= 0

, kx = mπ
a , ky =

nπ
b , kz =

√
k2x + k2y − k2, m and n are the integers.

Then, finally, we obtain after the substitution of Eq. (22) into Eqs. (19) and (20):

ZWψ (k̃L) =
8π

ab

∞∑
m=1

∞∑
n=0

εn(k
2 − k2y)k̃

kkz(k̃2 − k2y)
e−kzr0 sin2 kxx0 cos

2 kyy0

×[sin k̃L cos kyL− (k̃/ky) cos k̃L sin kyL]Fψ(k̃L), (23)

Z̃Wψ (k̃L) =
4π

ab

∞∑
m=1

∞∑
n=1

k̃2

k(k̃2 − k2y)
e−kzr0 sin2 kxx0

×[cos k̃L(cos kyL− 1) + (ky/k̃) sin k̃L sin kyL+ (ky/k̃)
2(cos kyL− 1)]Fψ(k̃L), (24)

where

Fψ(k̃L) =
1/2

(k̃ + ky)2 + (kztgψ)2

{
e−kzLtgψ[(k̃ + ky) sin(k̃ + ky)L− kztgψ cos(k̃ + ky)L] + kztgψ

}
+

1/2

(k̃ − ky)2 + (kztgψ)2

{
e−kzLtgψ[(k̃ − ky) sin(k̃ − ky)L− kztgψ cos(k̃ − ky)L] + kztgψ

}
− cos k̃L

k2y + (kztgψ)2

{
e−kzLtgψ[ky sin kyL− kztgψ cos kyL] + kztgψ

}
.

For the impedance vibrator, drawn in Fig. 4(c), at [r(s)/ri(s)] = const we have:

FWzψ (k̃L) = − iZ̄S

2 cosψk̃r0

[
k̃L(2 + cos 2k̃L)− 3

2
sin 2k̃L

]
, (25)

where Z̄S is defined by the formula Z̄S = iX̄S = ikr ln(r/ri) without taking into consideration the finite
conductance of the metal.

Let us note that, as before, the expression for the current also has the form of Eq. (18) for the
asymmetrical vibrators, drawn in Figs. 4(b), (c), and it is necessary to make substitutions y0 = 0,
b→ 2b in Equatons (23), (24). We shall consider the asymmetrical vibrator, for which the S11 reflection
coefficient along the field in the waveguide equals, further:

S11 = − 4πi

abkγ

(
k

k̃
sin

πx0
a

)2 (sin k̃L− k̃L cos k̃L)2 e2iγz

ZWψ (k̃L) + tgψZ̃Wψ (k̃L) + FWzψ (k̃L)
, (26)

where γ =
√
k2 − (π/a)2 is the propagation constant of the TE10-wave.

Note that the summation in Eqs. (23), (24) was performed with an accuracy of 1% (compared
to the first discarded term of the series). Due to the presence of a multiplier e−kzr0 , the number of
considered members of the series is several tens.
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Figure 5. The module calculation and experimental dependences of the reflection coefficient from the
wavelength for the perfectly conducting vibrators at the constant and variable radiuses of their cross
section: 1, 2, 3 — calculation due to the formula (26), 4 — calculation due to the program “ANSYS
HFSS”, 5 — experimental data.

(a) (b)

Figure 6. The module dependences of the reflection coefficient from the wavelength for the perfectly
conducting and impedance vibrators at the variable radius (r0 = 1.0mm, rL = 2.0mm) of their cross
section: 1, 2, 3 — calculation due to the formula (26), 4 — calculation due to the program “ANSYS
HFSS”.

3.3. Numerical and Experimental Results

Figures 5, 6 represent the dependences of the |S11| value from the wavelength for the perfectly
conducting (Fig. 5) and impedance (Fig. 6) asymmetrical vibrators at the following general parameters
{a× b} = 58× 25mm2, L = 15.0mm, x0 = a/8.

As it is seen from the plots, the value of the λres resonant wavelength increases (the curves 3 in
Fig. 5) in comparison with the conductors of the constant radius (the curves 1, 2 in Fig. 5) for the conical
vibrator, and moreover, the radii of the latter is equal to a smaller (the curve 1) and a larger (the curves
2) radii of the conical vibrator, correspondingly. To our minds, this interesting fact is explained by that
the definite redistribution of energy of the near reactive fields between the E- and H-kinds of waveguide
modes, connected with the occurrence of some angle ψ between the axis {0y} of the waveguide and
{0s′} on the surface of the conductor, as this takes place at the slope of the regular vibrator axis in the
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Figure 7. The experimental layouts.

cross section plane of the rectangular waveguide, occurs for the conical vibrator. As it follows from the
plots in Fig. 6, the availability of impedance of the real kind R̄S in the conical vibrator decreases the
values of |S11| (Fig. 6(a)), and that of the impedance of the inductive kind (Fig. 4(c) — the corrugated
conductor) increases λres much larger (the curves 2, 3 in Fig. 6(b)). Let us note the comparison of
calculation results with the experimental data (photo of the experimental layouts is shown in Fig. 7),
and the calculation with the use of the program “ANSYS HFSS” (the circles and dotted lines in Figs. 5,
6) has been done in order to check the rightness of the proposed approach to the set problem solution.

4. CONCLUSION

The calculated and experimental results presented in the article on the study of electrodynamic
structures with impedance biconical vibrators can be useful in the development of antenna-waveguide
devices (including coaxial-waveguide transitions) with new electrodynamic characteristics. The
comparison of calculated and experimental data confirms the adequacy of the proposed mathematical
models to real physical processes. We note that the proposed approach to solving problems can be
extended to spherical surfaces with impedance biconical monopoles [16], as well as to combined slot-
vibrator structures [17], without any particular fundamental difficulties.
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