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Compact MIMO Antenna Designs Based on Hybrid Fractal
Geometry for 5G Smartphone Applications
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Abstract—Compact low-profile four and eight elements Multi-Input Multi-Output (MIMO) antenna
arrays are presented for 5G smartphone devices. The proposed antenna systems can operate at two
wide bands with triple resonance frequencies that cover the extended Personal Communication Purposes
(PCS) n25 band and other related applications, the mobile china’s band, and the LTE Band-46. The
proposed antenna element is designed based on modified Minkowski and Peano curves fractal geometries.
Desirable antenna miniaturization with multi-band capability is obtained by utilizing the space-filling
and self-similarity properties of the proposed hybrid fractal geometries where the overall antenna size
is (11.47mm × 7.19mm). All antennas are printed on the surface layer of the main mobile board.
Based on the self-isolated property, good isolation is attained without employing additional decoupling
structures and/or isolation techniques, increasing system complexity and reducing antenna efficiency.
For evaluating the performance of the proposed antenna systems, the scattering parameters, antenna
efficiencies, antenna gains, antenna radiation characteristics, envelope correlation coefficients (ECCs),
and mean effective gains (MEGs) are investigated. The performances are evaluated to confirm the
suitability of the proposed MIMO antenna systems for 5G mobile terminals. The proposed eight
elements MIMO system has been fabricated and tested. The measured and simulated results are in
good agreement.

1. INTRODUCTION

With the increasing growth of wireless communication technologies, high data rates and intelligent
services are continuously demanded. Because of the advantages of large channel capacity, massive
connection density, and high spectral efficiency, the 5G wireless communication systems have attracted
increasing attention in academic and industrial fields [1]. One of the essential enabling technologies for
the 5G communication systems is the Multiple Input Multiple Output (MIMO) technology. By utilizing
the multipath property of the wireless communication environment, a MIMO system can improve
the spectral efficiency and channel capacity without needing more bandwidth and/or transmitting
power [2]. Increasing the MIMO system’s antenna elements allows for larger channel capacity and
more link reliability [3–5]. However, because of mobile devices’ limited space, the mutual coupling
problem is becoming more pronounced with more penetration of antennas. The mutual coupling impact
severely affects the MIMO system’s performance [6]. So, various techniques have been employed and
provided reasonable solutions to solve this problem. One of these techniques is the spatial diversity
method [7–9]. Good isolation can be obtained by this method but at the expense of decreasing the
number of antennas, where the space variation between antennas is used as a key approach to achieving
low mutual coupling. Isolation enhancement can be done with more compactness than the spatial
diversity method by employing the polarization diversity method [10, 11] and the pattern diversity
method [12, 13]. However, the compact size and simple structure design of 5G mobile devices, which

Received 28 January 2022, Accepted 23 February 2022, Scheduled 3 March 2022
* Corresponding author: Muhannad Y. Muhsin (muhannad.y.muhsin@uotechnology.edu.iq).
The authors are with the Microwave Research Group, Department of Electrical Engineering, University of Technology, Iraq.



248 Muhsin, Salim, and Ali

have high diversity performance capability with low ECCs, remains a highly requested aim for antenna
engineers in designing MIMO antenna systems. Moreover, many other isolation techniques using
external decoupling structures have been reported in the literature. These techniques include parasitic
structure [14, 15], hybrid elements (neutralization line and parasitic element) [16], neutralization
line [17, 18], decoupling network [19, 20], etching slots between antennas [21], hybrid decoupling like
ground slit etching and meandered-line parasitic element [22] or slot etching and neutralization line [23],
and multimode decoupling technique [24]. Although these isolation techniques, based on additional
decoupling structures, provide good isolation enhancement, the antenna efficiency might be reduced
significantly. In other words, the isolation improvement is made at the expense of antenna efficiency.
For example, the antenna efficiency in [18] and [24] is affected notably, decreasing to 30% and 34%,
respectively. Good isolation and antenna performance have been reported by utilizing the self-isolated
technique [2, 25]; however, the antenna elements are large and consider a single band MIMO antenna
system. In a self-isolated property, an antenna element operates as a radiating element as well as an
isolation one at the same time. So, there will be no need for additional decoupling elements or/and
isolation techniques. Due to the limited space of mobile terminals, antenna miniaturization is highly
requested, and the multi-band is necessary for multiple smartphone applications. Hence, achieving a
compact-size multi-band MIMO antenna system with good isolation and radiation efficiency has become
a critical challenge.

This paper presents compact, low-profile self-isolated (four and eight elements) antenna arrays
operating on triple-bands for 5G MIMO mobile terminals. Based on hybrid fractal geometry, the
proposed antenna systems have gained very good antenna miniaturization where the antenna element’s
overall size is just 11.47mm× 7.19mm. In addition, the multi-band and simple structure are presented
in the proposed antenna systems where the systems can work in triple resonance frequencies of the
n25 band for the extended Personal Communication Systems (PCS) and other related applications,
the 5G china mobile band, and the LTE Band-46 band. Due to the antenna element’s self-isolated
property, good isolation is achieved without inserting any decoupling structures. Furthermore, a
high diversity performance with very low envelope correlation coefficients (ECCs) is attained, where
excellent independent antenna’s far-field radiation characteristics can be shown. Besides, good antenna
and MIMO performances are achieved. The proposed antenna systems were simulated and analyzed
using the CST Microwave Studio software (version 2019). A prototype model of the proposed eight
elements massive MIMO antenna system was fabricated, and its performance was measured. Reasonable
agreement between the measured and simulated results has been obtained.

2. THE PROPOSED MIMO ANTENNA SYSTEMS

In this section, the evolution process of the proposed antenna element design will be discussed first.
Second, the proposed four-element MIMO antenna system will be presented, including its performance
evaluation. Then, the proposed eight-element MIMO antenna system appropriate for the massive 5G
mobile phone devices will be introduced and examined. Finally, we will compare the measured and
simulated antenna performances of the proposed 8-element MIMO system.

2.1. Evolution of Antenna Element Design

Figure 1(a) depicts the structure and the detailed dimensions of the proposed monopole antenna element.
As shown, the antenna element is designed based on a hybrid of modified Minkowski and Peano
curves fractal geometries. Very good antenna miniaturization with multi-band capability is obtained by
utilizing the space-filling and self-similarity properties of the proposed hybrid fractal geometries where
the overall antenna size is (11.47mm × 7.19mm). The process of generating the proposed modified
Minkowski-Peano antenna element (MMPA) can be shown in Fig. 1(b). The modified Peano curve is
superimposed on the modified Minkowski curve achieving a more electrical length with less complexity
coming from the higher iterations. Fig. 1(c) demonstrates the generation process of the modified
Minkowski curve and modified Peano curve in i and ii, respectively. Since a Minkowski curve and
its inverter are joined together to produce the modified Minkowski curve while the modified Peano
curve [26] or the generator curve can be created by replacing a straight line (the initiator) with the nine



Progress In Electromagnetics Research C, Vol. 118, 2022 249

(a) (b)

(c)

Figure 1. A single antenna. (a) Antenna structure. (b) Generating process of the (MMPA) element.
(c) Generating process of the modified Minkowski curve and the modified Peano curve.

segments structure. The proposed antenna generator curve has more segments, which helps fulfil a long
electrical antenna length with a small number of iterations. As is depicted, a small length of a 50Ω
transmission line combines with the Minkowski-Peano hybrid curve element for tuning purposes. Each
transmission line (TL) is directly fed by a 50Ω SMA connector via a hole from the proposed system
ground’s backside.

The effects of FL and FW parameters on the input reflection coefficient have been demonstrated
in Figs. 2(a) and (b), respectively. One can see from Fig. 2(a) that four values have been chosen for
FL: 11.25mm, 12.5mm, 13.75mm, and 15mm (the proposed one). As can be observed form Fig. 2(b)
that four values have been introduced for the FW parameter which are 0.38mm (the proposed one),
0.48mm, 0.58mm, and 0.78mm. So the optimized FL parameter value, which is an effective parameter,
plays a vital role for obtaining a very good impedance matching. In the next sections, we will discuss
the advantages of the proposed antenna structure with its performance in the proposed four and eight
MIMO antenna systems.
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Figure 2. Simulated reflection coefficient. (a) As a function of FL. (b) As a function of FW.

2.2. Proposed Four Elements MIMO Antenna System

The geometry and detailed dimensions of the proposed compact low-profile 4-element MIMO antenna
system for the 5G handset applications are shown in Fig. 3. As observed in Fig. 3(a), all four antennas
are printed on the surface layer of a system substrate. They are located at the mobile board’s corners
and symbolized as Ant1, Ant2, Ant3, and Ant4. The optimal location and orientation of the antenna
elements at the top four corners of the mobile device have been chosen to utilize the mobile’s space
as much as possible and obtain a better performance. The proposed antenna system is designed by
employing a double-sided FR4 substrate of 0.8mm height, which has a relative permittivity of 4.3 and
a loss tangent of 0.02. The main system board size is (150 × 75)mm2. It is a typical size of 5.5-inch
handset. Fig. 3(b) illustrates the system ground bottom layer, which is defected to improve the antenna
bandwidth and matching. All the proposed MIMO antenna elements have the same structure and
dimensions.

Figure 4 depicts the simulated S-parameters results of the proposed compact low-profile four
antenna elements MIMO system. From Fig. 4(a), the accepted impedance matching of less than
−6 dB (3 : 1 VSWR) is obtained over the desired operation bands. This proposed system works at
two dual-wideband of (1.66–2.30)GHz and (4.55–5.93)GHz with triple resonance frequencies that cover
(1.661–2.305)GHz for the extended Personal Communication Purposes (PCS) n25 and other related
applications, the china band (4.8–5)GHz, and the LTE Band-46 (5.150–5.925)GHz. As shown in
Fig. 4(b), good isolation is achieved (better than 12.4 dB in the lower band and 14.8 dB in the higher
operating bands) without employing any decoupling elements and/or isolation techniques.

As depicted in Fig. 5, desirable total and radiation antenna efficiencies for all four antennas
of the proposed MIMO system are obtained. The total antenna efficiencies of the triple (1.661–
2.305)GHz, (4.8–5)GHz, and (5.150–5.925)GHz working bands are (57–60)%, (78–83)%, and (60–
82)%GHz, respectively, while the radiation antenna efficiencies are (88–89)%, (86–87)%, and (88–83)%,
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Figure 3. The proposed four-element MIMO antenna system. (a) Top-side view. (b) Backside view.

(a)

(b)

Figure 4. S-parameters. (a) Reflection coefficients. (b) Transmitting coefficients.
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Figure 5. Antenna efficiency.

Figure 6. Antenna gain.

respectively. The four antennas’ gain along the bands of interest are exhibited in Fig. 6. As it is seen,
the gains are almost stable within the operating bands, and high gains of all antennas are attained
where the maximum gains are about 5.3 dB, 4.4 dB, and 4.3 dB for the (1.661–2.305)GHz, (4.8–5)GHz,
and (5.150–5.925)GHz interested bands, respectively.

2.3. Proposed Eight Elements MIMO Antenna System

The structure with the detailed dimensions of the proposed compact self-isolated eight-element MIMO
antenna system for the 5G smartphone devices is depicted in Fig. 7. The proposed antenna main system
board (including the dimensions and substrate specifications) is the same as that employed in Fig. 3
for the four-element MIMO antenna system, except that eight antenna elements (instead of four) are
placed on the surface layer of the system substrate. As shown in Fig. 7(a), the four antennas located
at the mobile phone’s corners are symbolized as Ant1, Ant2, Ant3, and Ant4, while the four antennas
located at the middle of the mobile phone are denoted by Ant5, Ant6, Ant7, and Ant8. As observed in
Fig. 7(b), the system ground bottom layer is defected in the same manner as the proposed four elements
MIMO system for improving antenna bandwidth and matching purposes. All the eight antenna elements
have the same structure and dimensions, appropriate for 5G massive MIMO antenna systems with slim
smartphone requirements.

The simulated results of the S-parameters for the proposed eight elements MIMO antenna system
are plotted in Fig. 8. As depicted in Fig. 8(a), all the eight reflection coefficients of the antennas
satisfy values less than −6 dB (3 : 1 VSWR) over all the bands of interest, which ensures an accepted
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Figure 7. The proposed eight-element MIMO antenna system. (a) Top-side view. (b) Backside view.

(a)

(b)

Figure 8. S-parameters. (a) Reflection coefficients. (b) Transmitting coefficients.
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impedance matching of the proposed system. The proposed eight elements MIMO antenna system can
work on triple bands of (1.83–2.21)GHz for the extended Personal Communication Purposes (PCS) n25
and other related applications, the china band (4.8–5)GHz, and the LTE Band-46 (5.150–5.925)GHz.
From Fig. 8(b), good isolation is attained without utilizing any additional isolation structures and/or
decoupling methods. The transmission coefficients S21, S51, S63, S65, S75 are better than 10 dB, while
S31, S61, S53 are almost better than 15 dB within the lower band (1.83–2.21)GHz. In the higher bands
of (4.8–5)GHz and (5.150–5.925)GHz, the transmission coefficients S21, S51, S63, S75 are better than
13.5 dB, whereas S31, S61, S53, S65 are better than 26.5 dB. The desirable impedance matching and
isolation are achieved without using matching circuits, re-optimizing the antenna structure, additional
isolation elements, and/or other decoupling methods that increase system complexity and reduce
antenna efficiency. So, this indicates the ability of the proposed self-isolated antenna structure to
work well at different array elements. This is one of the advantages of the proposed antenna system.

The maximum gain within the (1.83-2.21) GHz band of the four antennas located at the top four
corners of the mobile mainboard (Ant1, Ant2, Ant3, and Ant4) is 2.7 dB. For the other four antennas,
placed in the middle of the mobile board (Ant5, Ant6, Ant7, and Ant8), the maximum gain is 2 dB.”

The total and radiation antenna efficiencies of the proposed MIMO systems’ eight antennas are
sketched in Fig. 9. Desirable antenna efficiencies are attained where the total antenna efficiencies of the
triple operating bands (1.83–2.21)GHz, (4.8–5)GHz, and (5.150–5.925)GHz are (46–56)%, (81–82)%,
and (57–80)%GHz, respectively, whereas the radiation antenna efficiencies are (77–89)%, (86–87)%, and
(80–87)%, respectively. Fig. 10 shows the eight antennas’ gain of the proposed antenna system along
the working bands. As illustrated, good antennas’ gains are obtained, appropriate for mobile terminals’
5G antenna requirement. The maximum gain within the (1.83–2.21)GHz band of the four antennas

Figure 9. Antenna efficiency.

Figure 10. Antenna gain.



Progress In Electromagnetics Research C, Vol. 118, 2022 255

(a)

(b)

(c)

Figure 11. The two dimensional-antenna radiation patterns (a) at 2GHz, (b) at 4.9GHz, (c) at
5.5GHz.

located at the top four corners of the mobile mainboard (Ant1, Ant2, Ant3, and Ant4) is 2.7 dB. For
the other four antennas, placed in the middle of the mobile board (Ant5, Ant6, Ant7, and Ant8), the
maximum gain is 2 dB. Concerning the (4.8–5)GHz band, the maximum gain of the top four corners
and middle antennas are 3.2 dB and 4 dB, respectively, whereas the (5.150–5.925)GHz bands are 4.3 dB
and 4.4 dB, respectively. Because of the similarity and brevity, the two-dimensional radiation patterns
at the triple operating bands of one-sided antennas (Ant1, Ant3, Ant5, and Ant6) are exhibited in
Fig. 11. In contrast, the three-dimensional radiation patterns are displayed in Fig. 12. As observed,
each antenna element has a maximum gain direction different from other antennas’ maximum gain
directions, indicating a magnificent pattern diversity feature of the proposed 8-element MIMO antenna
system. Moreover, all sides of the mobile device board are entirely covered by these eight antennas’
radiation patterns. So, an eligible radiation coverage performance is obtained by the proposed MIMO
antenna system.

The Envelope Correlation Coefficients (ECCs) and Mean effective gains (MEGs) are calculated
and analyzed to assess the MIMO performance of the proposed eight elements antenna array. The
correlation coefficient (ρ) indicates how much the multipath communication channels are correlated or
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Figure 12. The three-dimensional antenna radiation patterns (a) at 2GHz, (b) at 4.9GHz, (c) at
5.5GHz.

isolated (i.e., a measure of the independency) [27]. This metric refers to the correlation between the
antenna radiation patterns. The square of the correlation coefficient (ρ2) is defined as the Envelope
Correlation Coefficient (ρe). The ECC can be calculated based on the far-field radiation patterns using
Equation (1) [28]:

ρe =

∣∣∣∣∫∫
4π

[
F⃗1 (θ, φ) ∗ F⃗2 (θ, φ)

]
dΩ

∣∣∣∣2∫∫
4π

∣∣∣F⃗1 (θ, φ)
∣∣∣2 dΩ ∫∫

4π

∣∣∣F⃗2 (θ, φ)
∣∣∣2 dΩ (1)

where Ω defines the solid angle; (F⃗i(θ, φ)) indicates the three-dimensional far-field radiation pattern;
and the asterisk sign (∗) refers to the Hermitian product. In addition to that, the ECC can be obtained
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simply in terms of the S-parameters from Equation (2) as indicated in [29]:

|ρe (i, j,N)| =

∣∣∣∣∣
N∑

n=1

S∗
i,nSn,j

∣∣∣∣∣√√√√∣∣∣∣∣∏k(=i,j)

[
1−

N∑
n=1

S∗
i,nSn,k

]∣∣∣∣∣
(2)

In this formula, N is the number of antennas, and the antenna elements are expressed as i and j,
respectively. For acceptable MIMO performance, the values of ECCs between the MIMO antennas
should be less than 0.5. The smaller the ECCs are, the better the MIMO system diversity performance
is [30]. The ECCs between the antennas in the proposed eight elements MIMO system are plotted
in Fig. 13, calculated based on the E-filed radiation patterns of Equation (1) under the hypothesis
of uniform propagation channel with balanced polarization. As observed, the ECCs are less than
0.195, 0.005, and 0.022 for the (1.83–2.21)GHz, (4.8–5)GHz, and (5.150–5.925)GHz bands of interest,
respectively. They are far less from the accepted criteria of ECC < 0.5. So the proposed MIMO antenna
system has a capability of a high diversity performance.

Figure 13. ECCs of the proposed system.

The MEG metric can be recognized as the ratio of the antenna’s mean received power to the total
mean incident power when the antenna is moved over a random mobile environment route. A MEG
can be obtained from Equation (3) [31]:

MEG =

∫ 2π

0

∫ π

0

(
XPR

1 +XPR
Gθ (θ, φ)Pθ (θ, φ) +

1

1 +XPR
Gφ (θ, φ)Pφ (θ, φ)

)
(sin θ)dθdφ (3)

where the cross-polarization power ratio is denoted as XPR, and Pφ and Pθ indicate the phi and theta
components of the normalized angular power density functions of the incoming plane waves, while Gθ

and Gφ are the antenna gain components. It is worth noting that for good MIMO antenna system
diversity performance and system power balance, the MEGs of the MIMO antennas should satisfy the
required criteria of (MEGi

∼= MEGj) [13], where MEGi and MEGj are the mean effective gains of the
i and j antennas, respectively. Fig. 14 depicts the MEGs for all eight antennas of the proposed MIMO
system, which are taken under the assumption of uniform distribution for the azimuth direction and
Gaussian distribution for the elevation direction of the angular power density function. It can be seen
that the MEGs for all antennas are stable along the triple operating bands. Furthermore, the MEGs
nearly satisfy the equality condition of the antenna elements in the designed MIMO system.

The proposed 8-element MIMO smartphone antenna was fabricated and experimentally tested.
The fabricated prototype model is demonstrated in Fig. 15. Through the measurement process, each
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Figure 14. MEGs of the proposed eight antennas.

(a) (b)

Figure 15. Fabricated prototype model of the proposed eight elements MIMO antenna system. (a)
Top-side view. (b) Backside view.

antenna under test (AUT) is connected to the vector network analyzer (VNA), and other antenna
elements are connected to 50Ω matched terminal loads (MTLs). Due to the similarity and brevity,
only the necessary simulated and measured S-parameters have been plotted in Figs. 16(a) and (b),
respectively. As observed, desirable impedance matching and isolation performance (better than 11 dB
in the lower band and 17 dB in the higher operating bands) are obtained by the proposed MIMO antenna
system. The measured and simulated results are in good agreement. However, some deviations between
them may be due to fabrication tolerances, soldering effects, and/or measurement errors.

Table 1 presents a summary for the performance comparison of the proposed four and eight elements
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Table 1. A comparison with other recent works.

Ref.
Bandwidth

(GHz)

Total

efficiency

(%)

Isolation

(dB)

Mainboard

mobile size

(mm2)

Antenna

element Size

(mm× mm)

MIMO

order

Isolation

technique

[32]
(3.4–3.6)

(4.8–5.0)
> 50 > 17.5 (75× 150) (22× 7) 4× 4 Self-isolated

[33] (3.3–4.2) > 40 > 10 (70× 150) (42× 42) 4× 4 Self-isolated

[34] (3.3–4.2) > 61 > 17.9 (75× 150) (26× 6.2) 4× 4 Self-isolated

[35] (3.3–5) > 46 > 14.5 (75× 150) (22× 6) 8× 8 Self-isolated

[36] (2.55–2.65) (48–58) > 13 (68× 136) (18.6× 18.6) 8× 8
Polarization

diversity

[37] (3.3–3.6) (42–75) > 13 (75× 155) (28.8× 1) 8× 8

Balanced

mode

excitation

[38] 2.55–2.65 (48–63) > 12.5 (68× 136) (31.2× 5) 8× 8

Polarization

diversity

and Pattern

diversity

[17]
(3.4–3.6)

(4.8–5.1)

(41–72)

(40–85)
> 11.5 (75× 150) (15× 7) 8× 8

Neutralization

line

[39]
(3.4–3.6)

(5.15–5.925)

(51–59)

(62–80)
> 11.2 (70× 140) 16.3× 10 8× 8 Self-isolated

[31]
(1.88–1.92)

(2.3–2.62)

(40–55)

(50–70)
> 10 (68.8× 136) 14× 15 8× 8

Pattern

diversity

This

work

(1.66–2.30)

(4.8–5)

(5.150–5.925)

(57–60)

(78–83)

(60–82)

> 12.4

> 14.8

> 14.8

(75× 150) 11.47× 7.19 4× 4 Self-isolated

(1.83–2.21)

(4.8–5)

(5.150–5.925)

(46–56)

(81–82)

(57–80)

> 11

> 17

> 17

(75× 150) 11.47× 7.19 8× 8 Self-isolated

(a)
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(b)

Figure 16. Measured and simulated S-parameters. (a) Reflection coefficients. (b) Transmission
coefficients.

MIMO antenna systems with some other recent MIMO antenna systems reported for the 5G mobile
phone devices. Compared with other MIMO antenna systems, we suggested a triple-band and smaller
size design of low-profile four and eight elements MIMO antenna systems. Good system isolation and
antenna total efficiencies are obtained by adopting the self-isolation property where there is no additional
antenna efficiency loss by other decoupling elements and/or isolation techniques. So it can be seen from
Table 1 that the proposed antenna systems are able to provide MIMO systems with very comparable
antenna and MIMO performances.

3. CONCLUSIONS

In this study, compact four and eight elements MIMO antenna systems are introduced and examined for
5G mobile phone devices. Very good antenna miniaturization is achieved by utilizing the Minkowski-
Peano hybrid curve fractal geometry’s space-filling property. Due to the self-isolated property, good
isolation is achieved without adopting any matching circuits, isolation elements, decoupling methods,
and/or re-optimizing the antenna structure, increasing system complexity and reducing antenna
efficiency. This indicates the proposed self-isolated antenna structure’s ability to work well at different
array elements. The Minkowski-Peano hybrid curve fractal geometry shows a good ability to achieve the
antenna elements with the self-isolated property and multi-band resonance frequency. The performance
of the proposed MIMO antenna systems indicates that these systems will be a convincing candidate for
the 5G smartphone terminals.
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