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Novel Subarray Partition Algorithm for Solving the Problem of Too
Low Beam Collection Efficiency Caused by Dividing a Few Subarrays

Jianxiong Li1, 2, Ziyu Han1, 2, and Cuijuan Guo1, 2, *

Abstract—Beam Collection Efficiency (BCE ), sidelobe level outside the receiving area (CSL), and
cost are need to be considered in optimizing the transmitting array of a Microwave Wireless Power
Transmission (MWPT) system. To solve the problem of too low BCE caused by dividing a small number
of subarrays, this paper proposes a novel one-step subarray partition algorithm named Multi-Particle
Multi-Parameter Dynamic Weight Particle Swarm Optimization Subarray Partition (MPMP-DWPSO-
SP). The algorithm optimizes the position and structure of each element at the same time, and the
number of the subarrays is no more than 4. It is verified by simulation that the BCE obtained by
using this algorithm to optimize the Sparse Quadrant Symmetrical Rectangular Array (SQSRA) with
an aperture of 4.5λ×4.5λ and the array element number of 8×8 can reach more than 90%. In addition,
a new intelligent optimization model is designed for dividing the 8× 8 array into 2 subarrays, and BCE
and CSL can reach 91.69% and −17.61 dB.

1. INTRODUCTION

Microwave Wireless Power Transmission (MWPT) is a technology using microwaves to achieve long-
distance energy transmission [1]. It is widely used to power distributed electronic devices [2], power
sensors and actuators [3], space solar satellites [4], and other fields. The goal of improving power
transmission efficiency has been widely researched in recent years. Among them, Beam Collection
Efficiency (BCE ) is one of the most essential parameters of the MWPT system. It is defined as the
ratio of the energy captured by the receiving antenna to the energy radiated by the transmitting
antenna [5]. Additionally, sidelobe level outside the receiving area (CSL) is another key index, which is
defined as the highest side-lobe level outside the receiving area. Studies have shown that the Gaussian
distribution of continuous aperture antenna is close to the optimal distribution and the maximum BCE
can be obtained [3]. However in practice, the Gaussian distributed array needs to be equipped with
amplifiers and phase shifters for each element separately, which leads to high cost. It will also make the
array structure and feeding network extremely complicated, so it is very necessary to design an effective
array optimization algorithm to optimize the feeding network and improve BCE simultaneously.

Subarray partition technology is an array design technology that lowers the hardware cost and
algorithm complexity by reducing the dimensionality of the signal processing algorithm at the elementary
level to the subarray level [6]. The nonuniform non-overlapping partition method is more effective in
improving BCE and reducing cost. For the transmitting array, designing a reasonable subarray structure
is of great research value. The difference in the subarray structure will directly affect the performance of
the subarray-level signal processing [7]. Previous studies have divided subarrays by using excitation [8].
The optimization of the subarray partition is divided into two steps: the first step is optimizing the
position of the element and the second step is dividing subarrays [9], or the first step is optimizing the

Received 17 January 2022, Accepted 26 February 2022, Scheduled 13 March 2022
* Corresponding author: Cuijuan Guo (guocuijuan@tiangong.edu.cn).
1 School of Electronic and Information Engineering, Tiangong University, Tianjin, China. 2 Tianjin Key Laboratory of Optoelectronic
Detection Technology and Systems, Tianjin, China.



224 Li, Han, and Guo

structure of the subarray, and the second step is optimizing the element position [10–11]. The obtained
BCE by using this method can achieve satisfactory results when it is divided into multiple subarrays
(more than 8), but when the number of subarrays is small (less than 4), the BCE is exceptionally low.

In response to such problems, this paper proposes a one-step method named Multi-Particle
Multi-Parameter Dynamic Weight Particle Swarm Optimization Subarray Partition algorithm (MPMP-
DWPSO-SP) based on PSO. The BCE, as the fitness of the MPMP-DWPSO-SP, is computed by the
generalized eigenvalue calculation method [12]. The novelty of this paper is that the proposed method is
a one-step optimization algorithm, which can simultaneously optimize the position and subarray layout
in each iteration, and partitions the subarrays according to the distance of the elements’ positions near
the center. The planar array model of the Sparse Quadrant Symmetrical Rectangular Array (SQSRA)
that we designed presents symmetrical and regular features, which can greatly simplify the feeding
network in actual production. Simulations show that the results obtained by using such a one-step
optimization method are better than those obtained by the two-step optimization method. When the
number of divided subarrays is less than or equal to 4, the BCE can still reach about 90%. Moreover, a
new model is used to optimize the two subarrays whose BCE obtained can reach 91.69%, and the CSL
is −17.61 dB. The method proposed in this paper can greatly reduce the cost and simplify the feeding
network, which has important theoretical value for practical applications in the case of requiring a small
number of subarrays.

2. MATHEMATICAL MODEL OF THE MAXIMUM BCE AND SUBARRAY
PARTITION

The model of the SQSRA MWPT system is depicted in Fig. 1. The maximum BCE and the method
of subarray partition are derived in this section.
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Figure 1. The model of the SQSRA MWPT system.

Within this model, we assume that the transmitting array has an aperture of Lx × Ly and
N = Nx ×Ny array elements separately distributed on the XOY plane (Fig. 1 only shows the elements
of the first quadrant). The receiving array is in the far-field zone. The rectangular array factor can be
expressed as [12]:

F (u, v) =
N∑

n=1

Ine
ik(uxn+vyn) (1)

where u = sin θ cosφ and v = sin θ sinφ are angular coordinates; In denotes the element excitation
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amplitude; k = 2π/λ represents the wavenumber. BCE can be defined as:

BCE
∆
=

PΨ

PΩ
=

∫
Ψ
|F (u, v)|2dudv∫

Ω
|F (u, v)|2dudv

(2)

where PΨ/Ω =
∫
Ψ/Ω |F (u, v)|2dudv denotes the power flowing through the area Ψ/Ω. Ψ

∆
= {(u, v) :

−u0 ≤ u ≤ u0,−v0 ≤ v ≤ v0} and Ω
∆
= {(u, v) : u2 + v2 ≤ 1}. According to [12], BCE can be obtained

by the method of calculating generalized eigenvalues, which can be expressed as:

BCEmax =

{
(Wmax)H A (Wmax)

(Wmax)H B (Wmax)

}
= ηmax

{
(Wmax)H B (Wmax)

(Wmax)H B (Wmax)

}
= ηmax (3)

where ηmax is the maximum generalized eigenvalue of AWmax = ηmaxBWmax, and Wmax is the
corresponding eigenvector. A and B are defined as:

A
∆
=

∫
Ψ
v (u, v) v (u, v)H dudv

B
∆
=

∫
Ω
v (u, v) v (u, v)H dudv

(4)

where

v(u, v) =
[
e−jk(ux1+vy1), . . . , e−jk(ux

N
+vy

N
)
]H

(5)

For more derivation details, readers can refer to [12]. According to [12], CSL (dB) can be written as:

CSL(dB) = 10 lg
maxθ,φ/∈Ψ |F (θ, φ)|2

maxθ,φ∈Ω |F (θ, φ)|2
(6)

We derive the following equations for partitioning the subarrays according to the distance of the
elements’ positions near the center. Assume that the vector Ddistant records the distance from each
element to the center, which can be expressed as

Ddistant =
[ √

x21 + y21
√

x22 + y22 . . .
√

x2N + y2N

]T
(7)

The partition method is shown in Fig. 2.
The radius vector RR can be expressed as:

RR = [r1, r2, . . . , rM+1]
T (8)

The optimized model for the radius can be expressed as:

find RR = [r1, r2, . . . , rM+1]
T

maximize BCEmax (RR)
subject (a) r1 = 0

(b) rM+1 =
√
2 · Lx

2
(c) ri − ri−1 ≥

√
2 · dmin, i = {1, 2, . . . ,M + 1}

(d) r1 < r2 < . . . < rM+1

(9)

Suppose that the sub-matrix partition layout matrix SR is a N ×M matrix, which can be expressed as:

SR =


R11 R12 . . . R1M

R21 R22 . . . R2M
...

...
. . .

...
RN1 RN2 . . . RNM

 Rnm =

{
1 The nth element ∈ the mth subarray
0 The nth element /∈ the mth subarray

n = 1, 2, . . . , N ; m = 1, 2, . . . ,M.

(10)
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Figure 2. The model of subarray partition radius.

To ensure that each element can only belong to one subarray, the following needs to be met:
M∑

m=1

Rnm = 1, (n = 1, 2, . . . , N) (11)

Partition method: if ri ≤ Ddistant(n) < ri+1; n ∈ (1, N), i = {1, 2, . . . ,M}, it means: The nth element
in the ith subarray. Define the initial excitation vector as weight initial:

weight initial = [w1, w2, . . . , wN ]T (12)

Define the subarray excitation vector as weight sub:

weight sub = [w sub1, w sub2, . . . , w subM ]T (13)

The subarray excitation vector can be obtained by multiplying weight initial and SR and calculating
the arithmetic mean, which can be calculated according to Equation (14):

w subm =

N∑
n=1

SRnm · winitial
n

N∑
n=1

SRnm

, (m = 1, 2, . . . ,M) (14)

The excitation vector weight sub all after subarray partition can be obtained as follows:

weight sub all = SR · weight sub (15)

Then BCE can be calculated by Eq. (16):

BCE =
weight sub allH ·A · weight sub all

weight sub allH ·B · weight sub all
(16)

3. MPMP-DWPSO-SP AND ITS APPLICATION FOR THE SYNTHESIS OF THE
SQSRA

3.1. Description of MPMP-DWPSO-SP

The following is a process description for the optimization method MPMP-DWPSO-SP. We assume
that N , M , Lx × Ly, Ψ, and (xn, yn), respectively, denote the number of array elements, the number
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of subarrays, array aperture, receiving area, and the position of the array element. vx and vr represent
the updated velocity of the position and radius. The values of BCE1 and BCE2, respectively,
represent the initialized BCE and the BCE obtained after subarray partition. pbest represents the
local optimal extremum, and gbest represents the global optimal extremum. pbest x and gbest x,
respectively, represent the positions corresponding to pbest and gbest. rpbest and rgbest represent the
radii corresponding to pbest and gbest.

Step 1: Initialize N , M , Lx × Ly, Ψ, (xn, yn), vx, vr, etc.

Step 2: Calculate BCE1 in Eq. (3), weight sub in Eq. (14), and BCE2 in Eq. (16).

Step 3: Calculate pbest and gbest.

Step 4: Update (xn, yn), vx and vr of each particle according to Eqs. (17)–(21).

The dynamic weight expression is as follows:

w = wmax − (wmax − wmin) · (1− i/T )2 (17)

where i represents the current number of iterations, and T represents the maximum number of
iterations. The inertia weight indicates how much the original velocity is retained. Larger weights
are conducive to global search, and smaller weights are conducive to local search. The use of
dynamic weights can converge more quickly and is conducive to searching for the optimal value.
This simulation has been simulated by the Monte Carlo method many times. When w attenuates
from 0.9 to 0.4, the algorithm has the strongest searchability. The weight curve can be expressed
in Fig. 3. vx, vr, and position update expressions are as follows:

vxi+1 = w × vxi + c1 × rand× (pbest xi − xi) + c2 × rand× (gbest xi − xi) (18)

x = x+ vxi+1 (19)

vri+1 = w × vri + c1 × rand× (rpbesti − ri) + c2 × rand× (rgbesti − ri) (20)

ri+1 = ri + vri+1 (21)

where c1 and c2 are the learning factors of the particle for its optimal solution and the group’s
optimal solution. The velocity update equation is principally composed of three parts. The first part
is the current velocity; the second part is the learning of the optimal solution currently searched by
the particle; and the third part is the learning of the optimal solution of the group search. Through
the learning of the last two parts, particles can quickly converge to the optimal solution in the
global scope. At the beginning of the PSO, due to the need to quickly search for the global content,
its velocity component accounts for a large proportion, and in the later stage of the algorithm, due
to the search within the optimal area, the proportion of its velocity component should be decreased.
Therefore, the use of dynamic weights is more conducive to finding the optimal value.
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Figure 3. Dynamic non-linear decreasing weight curve.
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Step 5: Calculate BCE2 again, and select the best individual (pbest and gbest).

Step 6: Judge whether to update pbest and gbest, if the fitness value of the current particle is greater
than pbest and gbest, then update, otherwise keep.

Step 7: Judge whether T is satisfied, return to step 4 if not satisfied, else output gbest.

After the above steps, the maximum BCE after the subarray partition can be achieved. The pseudo-code
can be expressed in Fig. 4. NP represents the maximum number of particles in the group.

Through the pseudo code, we can conclude that our proposed method is a one-step method, which
optimizes the position and subarray layout structure at the same time in each iteration.

3.2. The Synthesis of the SQSRA by Using MPMP-DWPSO-SP

The optimization model of using the MPMP-DWPSO-SP algorithm to optimize SQSRA can be
expressed as:

find [X,Y,RR] = [x1, x2, . . . , xN , y1, y2, . . . , yN , r1, r2, . . . , rM+1]
H

maximize BCEmax ([X,Y,RR])

subject (a) (xn, yn) =
(
−xn−N/4, yn−N/4

)
, n =

{
N

4
+ 1, . . . ,

N

2

}
;

(b) (xn, yn) = (−xn−N/2,−yn−N/2), n =

{
N

2
+ 1, . . . ,

3N

4

}
;

(c) (xn, yn) = (xn−3N/4,−yn−3N/4), n =

{
3N

4
+ 1, . . . , N

}
;

(d) dmin/2 < xn < Lx/2, n =

{
1, 2, . . . ,

N

4

}
;

(e) dmin/2 < yn < Ly/2, n =

{
1, 2, . . . ,

N

4

}
;

(f)
√

(xi − xj)
2 + (yi − yj)

2 ≥ dmin, i, j ∈ {1, 2, . . . , N} , i ̸= j;

(g)
(
xN/4, yN/4

)
= (Lx/2, Ly/2)

(h) 0 < ri ≤
√
2 · Lx/2, i = {1, 2, . . . ,M + 1}

(i) ri+1 − ri ≥
√
2 · dmin, i = {1, 2, . . . ,M}

(j) r1 = 0, rM+1 =
√
2 · Lx/2

(22)

The optimization goal of this model is to improve the BCE as much as possible. The optimization
variables are the position of the element and the radius vector of the subarray. Consequently, the
proposed MPMP-DWPSO-SP is one-step optimization algorithm, which can simultaneously optimize
the position and subarray layout, so that global optimal solution is obtained. Only the first quadrant
is optimized. The position coordinates of the other quadrants can be obtained by symmetry.

4. SIMULATIONS AND RESULTS

In this section, the effectiveness and efficiency of the MPMP-DWPSO-SP method in dealing with
different planar models will be evaluated from four aspects. Firstly, we used the proposed method to
optimize three planar array models. The first planar array model is SQSRA. Such a regular array can
simplify the feeding network and reduce the manufacturing cost in practical applications. The second
planar array model is a Nonuniform Distributed Rectangular Planar Array (NDRPA), such an overall
model has higher optimization freedom and may get better results. If readers want to know the physical
model of NDRPA, you can refer to the model of SNANDPA in [9]. The third array model optimizes
only the globally optimal individuals (only-gbest) in SQSRA. This optimization can directly test the
effectiveness of the method proposed in this paper. Secondly, we compared these three models by using
the one-step method with other different planar array models by using the previous two-step method in
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The pseudo-code of the MPMP-DWPSO-SP method

Initialization parameters
 For _NP count  = 1:NP

Calculate 
1BCE  and _weight initial  according to (3).

Calculate the SR  according to distance partition method. 

Calculate _W sub according to (14). 

Calculate 2BCE  according to (16). 

    End 

    Select the individual with the maximum 
2

BCE  as pbest .  

    Record global optimal value gbest .  

For i = 1:  

For _NP count  = 1:  NP 

    Update the velocity and position of particles according to (17)−(21) 

    Calculate 
1BCE and _weight initial  according to (3). 

Calculate the SR  according to distance partition method. 

Calculate _W sub according to (14). 

Calculate 
2

BCE after subarray partition according to (16). 

If 
2

BCE > pbest  

pbest = 
2

BCE  

End 

End 

Select the maximum 
2

BCE  among all particles as gbest .  

End 

Output gbest , optimal SR, optimal _W sub , etc. 

T

Figure 4. The pseudo-code of the MPMP-DWPSO-SP.

synthesis performance. Thirdly, we compared our proposed method with another three PSO methods
in array performance under the same conditions. At last, we designed an intelligent optimization model
for partitioning two subarrays. The CPU used in all simulations is Intel(R) Core (TM) i7-10750H at
2.60GHz, with 16GB RAM, and the simulation software is MATLAB R2019a in this paper.

We use BCE and CSL as two performance indicators to test the effectiveness of the proposed
method. The maximum number of iterations (T ) in all simulations is set to 200, and the number of
particles (NP) is set to 50. The receiving area is set to u0 = v0 = 0.2. In the MPMP-PSO-SP algorithm,
the learning factors c1 and c2 are set to 2, the wavelength λ set to 1, and the minimum array element
spacing dmin set to 0.5.

4.1. Results of Three Models by Using MPMP-DWPSO-SP

The first set of simulations involves the synthesis of the SQSRA model with an aperture of 4.5λ× 4.5λ
and N = 8 × 8 elements. The results of the SQSRA by using MPMP-DWPSO-SP are recorded in
Table 1. The excitation position layout and normalized power pattern of different subarrays are shown
in Fig. 5 and Fig. 6.

From Table 1, Fig. 5, and Fig. 6, we can know that the BCE can reach more than 90%
(BCE|M=4

SQSRA = 92.96%) when SQSRA of more than 3 subarrays is optimized by using the MPMP-
DWPSO-SP algorithm. Different colors in Fig. 5 represent different subarrays, and the excitation of
each subarray is the same. So, the number of amplifiers required is determined by the number of
subarrays, which can greatly reduce the cost. Most of the energy in the power pattern in Fig. 6 is
concentrated in the central receiving area, thus showing good array performance.
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Table 1. Synthesis results of SQSRA by using MPMP-DWPSO-SP method.

Nx = Ny N M u0 = v0 W sub BCE/% CSL/dB

8× 8 64 2 0.2 0.7804, 0.4106 89.72 −15.19
8× 8 64 3 0.2 0.9146, 0.5778, 0.3824 91.37 −17.64
8× 8 64 4 0.2 0.9343, 0.6490, 0.2859, 0.0945 92.96 −13.18
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Figure 5. Subarray configurations obtained for SQSRA model by using MPMP-DWPSO-SP when (a)
M = 2, (b) M = 3, (c) M = 4 (Lx = Ly = 4.5, u0 = v0 = 0.2, N = 8× 8).

(a) (b) (c)

Figure 6. Normalized power pattern obtained for SQSRA model by using MPMP-DWPSO-SP when
(a) M = 2, (b) M = 3, (c) M = 4 (Lx = Ly = 4.5, u0 = v0 = 0.2, N = 8× 8).

The second set of simulations involves the synthesis of the NDRPA model with an aperture of
4.5λ× 4.5λ and N = 8× 8 elements. The results of the NDRPA by using the MPMP-DWPSO-SP are
recorded in Table 2. The excitation position layout and normalized power pattern of four subarrays are
shown in Fig. 7.

Table 2. Synthesis results of NDRPA by using MPMP-DWPSO-SP method.

Nx = Ny N M u0 = v0 W sub BCE/% CSL/dB

8× 8 64 2 0.2 0.7202, 0.2682 86.52 −14.17
8× 8 64 3 0.2 0.6940, 0.3162, 0.1473 88.53 −14.13
8× 8 64 4 0.2 0.8708, 0.6009, 0.2722, 0.0940 93.04 −12.84
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Figure 7. Simulation results of the NDRPA model (BCE = 93.04%, CSL = −12.84 dB) (a) layout
and excitation, (b) normalized power pattern. (Lx = Ly = 4.5, u0 = v0 = 0.2, N = 8× 8, M = 4).

From Table 2 and Fig. 7, we can know that BCE can reach more than 90% (BCE|M=4
NDRPA = 93.04%)

when NDRPA of four subarrays is optimized by using the MPMP-DWPSO-SP algorithm. Through the
comparison of Table 1 and Table 2, we know that NDRPA has a higher degree of freedom in optimization
and obtains a better BCE when dividing 4 subarrays.

In the third simulation, we only divide the global optimum (only-gbest) searched by the MPMP-
DWPSO-SP and calculate the BCE. The results are recorded in Table 3. The excitation position layout
and normalized power pattern of four subarrays are shown in Fig. 8.

Table 3. Synthesis results of only-gbest by using MPMP-DWPSO-SP method.

Nx = Ny N M u0 = v0 W sub BCE/% CSL/dB

8× 8 64 2 0.2 0.8708, 0.3606 87.64 −14.37
8× 8 64 3 0.2 0.9607, 0.7140, 0.3006 90.76 −13.55
8× 8 64 4 0.2 0.9478, 0.6760, 0.3002, 0.1080 92.70 −13.39
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Figure 8. Simulation results of the only-gbest model (BCE = 92.70%, CSL = −13.39 dB) (a) layout
and excitation, (b) normalized power pattern. (Lx = Ly = 4.5, u0 = v0 = 0.2, N = 8× 8, M = 4).

Through the above three simulations, it can be known that whether it is to optimize SQSRA,
NDRPA, or only-gbest, the results of the BCE obtained by the subarray partition algorithm are all
about 90% (BCE|M=4

only-gbest = 92.70%), indicating that the method is effective for the problem of too low
BCE caused by a small number of subarrays.



232 Li, Han, and Guo

4.2. Comparison with Other Planar Arrays in BCE

To further illustrate the effectiveness of the MPMP-DWPSO-SP algorithm, we compared the results
of optimizing the three models by using the one-step method with SNANDPA by using the previous
two-step method in [9]. The comprehensive comparison result is shown in Fig. 9.
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Figure 9. Comparison results of three models and SNANDPA.

From Fig. 9 we can prove that the algorithm can greatly improve the BCE for optimizing a small
number of subarrays. Compared with SNANDPA, BCE increased by nearly 20% (BCE|M=2

SQSRA = 89%

vs. BCE|M=2
SNANDPA = 65%), which verifies the significant advantages of the MPMP-DWPSO-SP

algorithm in the process of optimizing a small number of subarrays.
To further verify the effectiveness of this method, we compare six array models by using several

comprehensive performance indicators such as BCE and CSL. γa and γe compare three different array
models. γa and γe, respectively, represent amplifier sparsity and element sparsity of the transmitting
array defined as:

γa =
M

N
(23)

γe
∆
=

N

Nfull
(24)

where Nfull represents the number of fully populated array elements. The comprehensive comparison
results are shown in Table 4.

Table 4. Comparison results of three models and other array models.

Ref. [12] Ref. [9] Ref. [13] SQSRA NDRPA only-gbest
N 100 64 100 64 64 64
M 1 6 1 4 4 4

γe(%) 100 64 100 64 64 64
γa(%) 1 9.4 1 6.25 6.25 6.25

BCE (%) 86.48 91.09% 91.06 92.96% 93.04 92.70
CSL (dB) −7.78 −14.68 −16.01 13.18 −12.84 13.39

According to Table 4, it can be concluded that the BCE achieved by the proposed method is 1.95%
higher than the result in [9] (BCE|NDRPA = 93.04% vs. BCE|[9] = 91.09%). Although the array in [13]
is a fully populated and uniformly excited array (γa =1), the BCE only reaches 91%. The proposed
method can achieve the BCE of 93.04% by dividing only 4 subarrays, which can greatly reduce the cost
and obtain higher BCE.
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4.3. MPMP-DWPSO-SP Method Performance Compared to Different PSO Algorithm

To verify that the effect of the algorithm is better, we have compared different types of PSO [14–16],
as shown in Fig. 10.
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Figure 10. Simulation results of the different PSO algorithm.

Through Fig. 10, we can conclude that our proposed method MPMP-DWPSO-SP is better than
basic PSO [14], standard PSO [15], and compression factor PSO [16]. We found that the iteration trace
of the MPMP-DWPSO-SP was relatively smooth, and the algorithm could converge quickly. Compared
with MPMP-DWPSO-SP, the BCE of the standard PSO, the compression factor PSO, and the basic
PSO are lower, and the convergence speed is slower. The basic PSO algorithm does not consider the
relationship between global optimization and local optimization. The compression factor PSO ignores
the influence of inertia weights on optimization; therefore, the algorithm converges slowly and falls
into local optima. The standard PSO allows linear adjustment of inertia weights, global optimization
weights, and local optimization weights. Therefore, the standard PSO has a better fitness value. The
MPMP-DWPSO-SP algorithm uses nonlinear dynamic weights. The initial global search ability is
strong, and the later local search ability is strong, so the optimal value BCE is much higher.

4.4. The Other Intelligent Optimal Model in Optimizing Two Subarrays

For the problem that the BCE of partitioning two subarrays does not reach more than 90%, and the
other model by using MPMP-DWPSO-SP algorithm suitable for optimizing two subarrays is proposed,
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Figure 11. Simulation results of the intelligence optimal model (BCE = 91.69%, CSL = −17.61 dB)
(a) layout and excitation, (b) normalized power pattern. (Lx = Ly = 4.5, u0 = v0 = 0.2, N = 8 × 8,
M = 2).
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which can be expressed as formula (25):

find [X,Y,RR] = [x1, x2, . . . , xN , y1, y2, . . . , yN , r1, r2, . . . , rM+1]
H

maximize BCEmax ([X,Y,RR])

subject (a) (xn, yn) =
(
−xn−N/4, yn−N/4

)
, n =

{
N

4
+ 1, . . . ,

N

2

}
;

(b) (xn, yn) = (−xn−N/2,−yn−N/2), n =

{
N

2
+ 1, . . . ,

3N

4

}
;

(c) (xn, yn) = (xn−3N/4,−yn−3N/4), n =

{
3N

4
+ 1, . . . , N

}
;

(d) dmin/2 < xn < Lx/2, n =

{
1, 2, . . . ,

N

4

}
;

(e) dmin/2 < yn < Ly/2, n =

{
1, 2, . . . ,

N

4

}
;

(f)
√

(xi − xj)
2 + (yi − yj)

2 ≥ dmin, i, j ∈ {1, 2, . . . , N} , i ̸= j;

(g)
(
xN/4, yN/4

)
= (Lx/2, Ly/2)

(h) 0 < ri ≤ Lx/2, i = {2, 3, . . . ,M}
(i) ri+1 − ri ≥ dmin, i = {1, 2, . . . ,M − 1}
(j) r1 = 0, rM = Lx/2, rM+1 =

√
2 · Lx/2

(25)

The difference between models (22) and (25) is that the radius spacing is set to dmin, and the maximum
number of subarrays is set to 4. In this way, the intelligent optimization finds the subarrays and obtains
the results of two subarrays as shown in Table 5. The excitation position layout and normalized power
pattern of the two subarrays are shown in Fig. 11.

Table 5. Synthesis results of the intelligence model.

Nx = Ny N M u0 = v0 W sub BCE/% CSL/dB

8× 8 64 2 0.2 0.9344, 0.4075 91.69 −17.61

The results in Table 5 verify that the model is effective for optimizing two subarrays, and the BCE
is increased to more than 90%. This requires only two amplifiers, which greatly reduces the cost and
simplifies the feeding.

5. CONCLUSION

In this paper, aiming at the problem of too low BCE caused by partitioning a small number of subarrays,
an effective one-step method, named MPMP-DWPSO-SP, is proposed to solve this problem. The
MPMP-DWPSO-SP integrates DWPSO and subarray partition technology and improves the array
performance by simultaneously optimizing the subarray structure and position of the array elements.
The algorithm divides the subarray according to the distance from the position of the element to the
center, and updates multiple parameters at the same time, which is more conducive to searching for
the optimal individual in the group. In particular, a new intelligent optimization model is proposed,
when dividing two subarrays. By performing a series of simulations and comparing the results of the
MPMP-DWPSO-SP with those of other algorithms in [9, 12, 13], it is concluded that in the case of
dividing a small number of subarrays, the proposed algorithm is more effective and gains lower sparse
rate and higher BCE than other algorithms.
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