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2D Hybrid Magnetic Model Calculation in Axisymmetric Device

Abdi Ammar*

Abstract—This paper proposes a 2D semi-analytical electromagnetic model to compute the magnetic
field and eddy current generated by a variable current density along a conducting billet of induction
heater. The developed model is based on the combination of the discretization method and the Biot-
Savart theory. Firstly, the analytical solutions of the vector potential and magnetic field are calculated
in all elements discretized cylindrical geometry using the law of Biot-Savart. Then, the total field is
determined by the contribution of the superposition of each element of the discretized geometry. The
eddy currents are computed using the Ampere law, and it also allows us to determine the exact resulting
heating power density, which is the heat source of the thermal problem. The results obtained are in
agreement with those obtained using finite element method. Therefore, the developed magnetic model
presents a fast and accurate tool for the design of induction heating devices.

1. INTRODUCTION

Induction heating is widely used in many industrial applications, surface heat, treatment and core
heating [1, 2]. The well-known principle is based on the fact that any stationary conductor placed in a
variable magnetic field is flowed by eddy currents creating Joule losses [3–5]. Another induction heating
process is to move the conductive plate in a static magnetic field [2, 5].

The study of induction heating devices in general requires multi-physics modeling, which
involves coupled magneto-thermal phenomena [6]. Knowledge of the electromagnetic field in all the
electromagnetic devices allows accessing the calculation of the operating performance of these devices
[7–9]. For this purpose, three types of methods have already been applied in the literature, numerical,
analytical, or hybrid methods [10–20]. The choice of method depends on the nature and geometry of
the problem. In an axisymmetric system, two-dimensional induction field can be perfectly described by
means of the tangential component of the vector potential; this is not the case for non-axisymmetric
systems.

This work proposes a new semi-analytical field calculation model based on the synergy between
numerical method and the method of elliptic integrals, and this technique is applicable to all systems
with axis of symmetry therefore two-dimensional.

First, the geometry is discretized into meshes; the magnetic potential is calculated from the Biot-
Savart equation thanks to the elliptic integrals method in all elements. The total field is determined by
superposing the contribution of each element of a discretized geometry. The total field is then used to
calculate the induced currents in the workpiece as well as the heat power density, which represents the
heat source.

Finally, the obtained results are validated and compared in those obtained using finite element
method.
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2. MAGNETIC SEMI-ANALYTICAL MODEL

2.1. Geometry Description and Assumptions

We consider a coil of radius rc powered by a current density J whose general shape is shown in Fig. 1,
knowing that the system has a symmetry of rotation. The problem is two-dimensional, so we take the
resolution in a half-plane device.

Figure 1. Geometry description of the induction heater.

The main geometrical parameters and structure in the (r, z) plane, physical proprieties, and
geometrical dimensions of the studied induction heater are shown respectively in Fig. 2 and Table 1.
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Figure 2. 2D geometric simplified model.

2.2. 2D Magnetic Analytical Model

In this study, the electromagnetic problem is formulated in 2D with magnetic vector potential A⃗. Based

on the integral of Biot-Savart formula, the magnetic vector potential A⃗ at any point P in coordinates
(r, z) is given by the following equation [2]:

A (p) =
µo

4π

∫
J(Po)

|P − Po|
dV o (1)

Due to the symmetry to oz (Fig. 2), A⃗ is only a function of r and z, from which the following expression:

A (r, z) =
µo

2π
J (rc, zc)

√
rc
r
G(k) (2)
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With:

G (k) =

(
2− k2

)
E1 (k)− E2 (k)

k
(3)

E1 (k) =

∫ π
2

0

dφ√
1− k2sin2(φ)

(4)

E2 (k) =

∫ π
2

0

√
1− k2 sin2 (φ)dφ (5)

k =

√
4rcr

(rc + r)2 + (z − zc)
2 (6)

E1(k), E2(k) are incomplete elliptic integrals of Legendre of the first and second kinds, respectively.
Using the expansion of the Taylor series, the expressions of Legendre’s elliptical integrals become:

E1 (k) =
π

2

[
1 + 2

(
k2

8

)
+ 9

(
k2

8

)2

+ . . .

]
(7)

E2 (k) =
π

2

[
1 + 2

(
k2

8

)
− 9

(
k2

8

)2

+ . . .

]
(8)

These integrals are given in polynomial form, by the following expressions

E1 (k) = 1.3862944 + 0.1119723M1 + 0.0725296M2 + (0.5 + 0.1213478M1 + 0.0288729M2)C (9)

E2 (k) 1 + 0.4630151M1 + 0.1077812M2 + (0.245272M1 + 0.0412496M2)C (10)

With:

M1 = 1− k2

M2 = M2
1

C = − log (M1)

2.3. Expressions of Electrical and Magnetic Quantities

The magnetic vector potential at each point in the study area depends on all the currents existing in
each region. In this case, taking into account the induced currents, the calculation of the current density
is given by:

J (r, z)= −jwσ (r, z)A (r, z) (11)

The value of the magnetic vector potential is given after summing all the effects of the current loops
and will therefore:

A (r, z) =
µo

2π

∑n

i=1

∑m

j=1

√
rc
r
J (i, j)SG(ki) (12)

To calculate the total potential, we used an iterative method which resulted in the flowchart of
Fig. 3. Knowing the value of the vector potential in all the points of field of study, we can thus calculate
the electromagnetic quantities given as follows:

Br (r, z) =
µo

8π

z−zc
r

I(rczc)
k

√
rrc

[
2− k2

1− k2
E2 (k)− 2E1 (k)

]
(13)

Bz (r, z) =
µo

8π
I (rc,zc)

k
√
rrc

[
2−

(
1 + rc

r

)
1− k2

E2 (k)− 2E1 (k)

]
(14)

The expressions of electric field and the density of induced current are given respectively by:

E⃗ = −∂A⃗

∂t
, J⃗ind = σE⃗ (15)
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Figure 3. Flowchart field computing.

The average power dissipated by Joule effect is given by:

Q =
1

2σ
JJ∗, J⃗ind = σE⃗ (16)

This allows us to write the average power density as a module:

Q =
1

2
σw2A2 (17)

The total losses in the conductive part are the sum of the individual losses of mesh N .

PT (t) =
∑N

i=1
Pi (t) (18)

3. RESULTS AND VALIDATION

3.1. Semi-Analytical Electromagnetic Model Application

We compare in the following section some results of the electromagnetic problem, obtained by the
semi-analytical model developed with those obtained by the 2D finite elements model. The results are
obtained using f = 50Hz. The study concerns the induction heating device shown in Fig. 1. For the
topology, all the dimensions and properties of the materials are found in Table 1.
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Table 1. Physical and geometrical parameters of the studied induction heater.

Symbol Quantity Value

R Workpiece thickness 80mm

H Workpiece height 200mm

e Air gap thickness between the load and the turns 20mm

a Width coil 15mm

b Distance between two slots 10mm

h Height of the first coil 100mm

N Number of turns 3

J Current density 3A/mm2

f Frequency 50

σ Electrical conductivity 37.106 (Ωm−1)

The spatial distribution of the vector potential and magnitude of magnetic flux density along a
radial and axial path are shown respectively in Figs. 4(a), 4(b) and Figs. 5(a), 5(b). We observe a
growth of these quantities as a function of the radius and the height of the load up to maximum values
at the points close to the coils.
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Figure 4. Magnetic Vector Potential: (a) versus the radial distance r (at z = 0.01075m) for f = 50Hz,
versus the axial distance z (at r = 0.0375m) for f = 50Hz.

Using the semi-analytical model developed in 2D, the curves in Figs. 6(a) and 6(b) show the
distribution of the radial component of the magnetic induction Br versus the radial distance r (at
z = 0.01075m) and versus the axial distance z (at r = 0.0375m), respectively.

The eddy-current density and power density versus the radial distance r at z = 0.1075m are given
in Fig. 7(a) and Fig. 7(b), respectively. Note that the values of the density of the induced currents in
the room and consequently the power density are high in the areas closest to the inductor, and these
densities decrease their minimum values near the axis of the cylinder and completely cancel the axis.
All of these presented results obtained by semi-analytical model are also compared with those obtained
by the 2D numerical model. We observe a very good agreement between these results.
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Figure 5. Magnetic flux density: (a) versus the radial distance r (at z = 0.01075m) for f = 50Hz, (b)
versus the axial distance z (at r = 0.0375m), f = 50Hz.

(a) (b)

0 0.02 0.04 0.06 0.08
-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

r (m)       z = 0.1075 (m) 

In
d
u
ct

io
n
 m

ag
n
ét

iq
u
e 

B
r 

(T
) 

 

 

2D Semi-analytical model 

2D FEM

0 0.05 0.1 0.15 0.2
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

z (m)       r = 0.0375 (m) 

In
d
u
ct

io
n
 m

ag
n
ét

iq
u
e 

B
r 

(T
) 

 

 

2D Semi-analytical model

2D FEM

Figure 6. Magnetic flux density Br Component: (a) versus the radial distance r (at z = 0.01075m)
for f = 50Hz, (b) versus the axial distance z (at r = 0.0375m), f = 50Hz.

3.2. Transient Thermal Study

The spatio-temporal distribution of the temperature inside the conductive part, subjected to a heat
source, is governed by the following equation:

ρcp

(
∂T

∂t

)
= λ∆T + p (19)

In this section, the transient thermal problem is limited to the billet to be heated and processed
in 2D (plane r-z), using finite element calculation software; considering adiabatic boundary conditions
on surfaces of the billet (Neumann condition, convective heat flux null), and knowing that the initial
temperature is T0 = 25◦C, e = 8mm, J = 6A/mm2, f = 50hz.

Noting that the heat source is the induced power calculated previously, and the physical
characteristics of the cylindrical aluminium part are the same as those mentioned in [2, 14]. Noting
that all the physical parameters of the piece λ(T ), ρ(T ), and cp(T ) are dependent on temperature, and
the expressions and values of these parameters corresponding to the initial temperature are shown in
[14].
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Figure 7. (a) Eddy-current density versus the radial distance r (at z = 0.01075m) for f = 50Hz. (b)
Power density versus the radial distance r (at z = 0.01075m) for f = 50Hz.
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Figure 8. Temperature evolution at the surface of de workpiec (z = 0.01075m, r = 0.08m).

Figure 8 shows the evolution of the temperature over time at the surface of the part (z = 0.01075m,
r = 0.08m). It can be seen that the temperature at the surface of the part is 140◦C after 140 seconds
of heating.

4. CONCLUSION

In this work, a quasi-2D analytical model is briefly presented. First, the analysis of the magnetic
problem is performed based on the resolution of the electromagnetic equation by the elliptical integrals.
Knowledge of the magnetic vector potential makes it easy to calculate other electromagnetic quantities
such as magnetic induction, current density, and power dissipated by Joule.

Then to validate the semi-analytical model, we compared our results with those of the finite element
method using the COMSOL Multiphysics software. We observed a good agreement between the two
results. The proposed electromagnetic analytical model can be used as a quick and accurate design tool
for heater devices.
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