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Sparse Bayesian Learning Based DOA Estimation and Array
Gain-Phase Error Self-Calibration

Zili Li and Zhao Huang*

Abstract—This paper proposes a joint estimation algorithm based on sparse-Bayesian learning (SBL)
for the gain-phase problem between array antenna channels. The algorithm uses the idea of the iterative
method to jointly estimate the direction-of-arrival (DOA) and gain-phase error calibration coefficients
in the iterative process, combining self-calibration and calibration with a calibration source. At each
iteration, the rough value of DOA is first estimated using SBL, and then the DOA estimate is used to
calculate the gain-phase error calibration coefficient. The value obtained in each iteration is brought
into the error cost function, which is constructed based on the principle of signal and noise subspace
orthogonality. Iterations are continued until convergence to find the minimum value of the cost function.
The algorithm does not require a priori knowledge of array perturbations and has good performance in
DOA and array gain and phase error estimation. Simulations and experimental measurements show that
the method has better calibration performance than other methods based on optimization algorithms,
and the algorithm effectively improves the antenna gain.

1. INTRODUCTION

In recent years, most scholars have devoted themselves to estimating far-field signal direction using
array signal processing techniques [1–3]. In practical engineering applications, when array radar is used
to calculate the DOA, deviations between antenna units inevitably lead to inaccurate radar detection
targets in complex backgrounds [4]. Therefore, the error correction of an array antenna is an essential
part of radar array signal processing.

Array error correction can be usually divided into array element mutual coupling effect
correction [5], array gain and phase error correction [6, 7], array element position correction, and array
directional map correction. The commonly used error correction methods are divided into two main
categories based on the presence or absence of a calibration source. Calibration with a calibration
source is done by setting up a spatially accurate known additional source for the offline estimation
of the error parameters. This type of method requires a particular auxiliary source, and setting up
another source also increases the cost of the measurement system. The self-calibration does not require
an additional calibration source but mainly uses a specific optimization function to jointly estimate the
error parameters of the spatial source orientation and the array. The algorithm in [8, 9] uses a sensor
feature structure-based orientation method and an error calibration algorithm. The algorithm in [10]
uses genetic algorithm (GA) calibration of array deviation and orientation measurement. The algorithm
in [11] uses a particle swarm optimization (PSO) algorithm to calibrate some arrays’ gain and phase
errors. Calibration source correction methods have the advantages of low cost and simple operation
compared to self-calibration techniques. Still, they are not easy to obtain the optimal solution when
solving error parameters iteratively. They are prone to fall into local optimality and have high request
initial values for the iterations. To address the above limitations in calibration without calibration
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sources, SBL algorithms, initially proposed in compressive sensing theory [12, 13], are subsequently
introduced into the field of array signal processing and used to solve DOA estimation and errors
correction in array signal processing [14–16]. The sparse reconstruction algorithm is used to recover the
signal to reduce the number of samples, data transmission, storage, and processing cost of the signal
and improve the parameter estimability. While using the SBL algorithm for DOA estimation overcomes
the shortcomings of traditional DOA estimation algorithm, because SBL algorithm utilizes statistical
optimization, it makes the algorithm fast in computation, robust and accurate in estimation.

While using the SBL algorithm for DOA estimation overcomes the shortcomings of traditional DOA
estimation algorithm, because SBL algorithm utilizes statistical optimization, it makes the algorithm
fast in computation, robust and accurate in estimation

In this paper, an SBL algorithm-based self-calibration algorithm for array gain-phase error is
proposed for the problem of inconsistent gain-phase response among array elements. Based on the
principle of signal and noise subspace orthogonality, it constructs the error cost function and iteratively
solves for the function’s extreme value. Use the sparsity of DOA in the null domain and the SBL
method to estimate the DOA in each iteration. Then the DOA estimation results are used to solve
for the deviation parameters. The experimental results show that the proposed algorithm effectively
improves the efficiency and accuracy of passive calibration compared with other classical array error
calibration algorithms.

2. SIGNAL MODEL

2.1. Array Error Model

Assume that there are K far-field uncorrelated narrowband signals incident to an L-element uniform
linear array (ULA) with an array spacing of half wavelength, i.e., d = λ/2, where λ denotes the
wavelength of the received signal, and the directions of arrival of the signals are θ = [θ1, . . . , θK ], where
θk ∈ [−π/2, π/2]. When the gain-phase errors exist, the complex-valued baseband signal received by
the ULA at a time t can be expressed as

x(t) = ΓA(θ)s(t) +E(t) (1)

where the matrix is an array manifold matrix; a(θk) = [1, e−jπ sin θk , . . . , e−jπ(L−1) sin θk ]T ∈ CL×1 is
the steering vector of the kth source; s(t) = [s1(t), . . . , sK(t)]T ∈ CK×1 is the source signal complex
envelope; E(t) is the L× 1 dimensional Gaussian white noise; Γ = diag(α1e

−jϕ1 , . . . , αLe
−jϕL) ∈ CL×L

is the array gain-phase error vector. αl and ϕl denote the gain and phase error of the lth sensor,
respectively, where α1 = 1ϕ1 = 0. Express Equation (1) in matrix form as

X = ΓA(θ)S+E (2)

where X ∈ CL×N denotes the array receive matrix at N snapshot moments; S ∈ CK×N denotes the
source signal complex envelope; E ∈ CL×N denotes the observation noise matrix.

2.2. Array Error Sparse Signal Model

Consider the range of possible incoming directions of the signal in space [−90◦, 90◦] divided into M
grids at equal intervals, with each grid point representing a possible direction of incidence, then the
super-complete set of signal incidence angles is obtained, i.e., θ̃ = [θ̃1, . . . , θ̃M ]. Therefore, Equation (1)
can be written in a sparse representation as

x(t) = ΓA(θ̃)̃s(t) +E(t) (3)

where A(θ̃) = [a(θ̃1), . . . ,a(θ̃M )] ∈ CL×M is the over-complete array manifold matrix; s̃(t) =
[s̃1, . . . , s̃M ] ∈ CM×1 is the source signal complex envelope. The number of sources K generally incident
to the sensor array is much smaller than the set of possible incident azimuths M . Assuming a fixed angle
of incidence of the signal, then only when θk = θ̃m, the elements of the mth row of s̃(t) are non-zero.

From K ≪ M , we know that s̃(t) has row sparsity. By abbreviating ΓA(θ̃) to Ã, and Equation (3) can
be written in matrix form as

X = ÃS̃+E (4)
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where S̃ ∈ CM×N denotes the source signal complex envelope and with row sparsity.

2.3. Reduced-dimensional Signal Model

In order to reduce the data scale and computation, the singular-value-decomposition (SVD) [17] is
used to reduce the dimensionality of the array reception matrix X. In addition to reducing the data
scale, SVD also accumulates the signal energy and separates the noise, thus improving the algorithm’s
robustness under low signal-to-noise ratio (SNR) conditions. Assuming that X = UΣVT /

√
N , then

the sparse representation problem of Equation (4) can be simplified as

XSV = ÃS̃SV +ESV (5)

where XSV = XVD, S̃SV = S̃VD, ESV = EVD, and D = [IK ,0]T , IK denotes the K-dimensional
unit matrix.

3. DOA ESTIMATION PRINCIPLE USING SBL

From the above analysis, we know that S̃SV has row sparsity, so the DOA can be estimated by calculating
the position of the non-zero row in S̃SV . Assume that each column of the array observation noise
matrix NSV obeys a Gaussian distribution with mean zero and variance equal to σ2

n. The columns
are uncorrelated with each other. Then the array received signal XSV obeys a posteriori Gaussian
distribution with mean equal to ÃS̃SV and variance equal to σ2

e = σ2
n/N , i.e.,

p
(
XSV

∣∣∣S̃SV ;σ2
e

)
=

(
2πσ2

e

)−LK
2 exp

(
− 1

2σ2
e

∥∥∥XSV − ÃS̃SV

∥∥∥2
F

)
(6)

According to the automatic relevance determination (ARD) principle [18], set a prior distribution
modulated by a hyperparameter vector τ = [τ1, . . . , τM ]T , which controls the previous variance of each

row of S̃SV . Then each row of S̃SV follows a Gaussian prior distribution:

p
(
S̃SV (m, :); τ

)
= (2πτm)−

K
2 exp

−

∥∥∥S̃SV (m, :)
∥∥∥2
2

2τm

 (7)

where S̃SV (m, :) denotes the element of the mth row of S̃SV . When all the elements of that row are
zero, the τm value is zero, and when the elements of the row are not all zero, the τm value is not zero,
which shows that τ has sparsity. According to the fact that the rows of S̃SV are not correlated with
each other, we can get

p
(
S̃SV ; τ

)
=

M∏
m=1

p
(
S̃SV (m, :); τm

)
=

[
(2π)M |Λ|

]−K
2 exp

(
−1

2
S̃H
SV Λ

−1S̃SV

)
(8)

where (·)H denote the Hermitian operations of a matrix or a vector, Λ = diag(τ).
According to the full probability formula, the probability density function of the received signal of

the array is

p
(
XSV ; τ, σ

2
e

)
=

∫
p
(
XSV

∣∣∣S̃SV ;σ2
e

)
p
(
S̃SV ; τ

)
dS̃SV

= C ∗ exp
{
− 1

2σ2
e

XH
SV

[
IL − Ã

(
ÃHÃ+ σ2

eΛ
−1

)−1
ÃH

]
XSV

}
(9)

where C denotes the constant, and IL denotes the L-dimensional unit matrix. It can be seen that the
received signal XSV obeys a Gaussian distribution with mean equal to zero, and the covariance matrix
ΣXSV

satisfies

Σ−1
XSV

=
1

σ2
e

[
IL − Ã

(
ÃHÃ+ σ2

eΛ
−1

)−1
ÃH

]
(10)
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According to the matrix inverse formula (A + BCD)−1 = A−1 − A−1BC(I +DA−1BC)−1DA−1,
we can get

ΣXSV
= σ2

eI+ ÃΛÃ
H

(11)

The posterior probability of the source signal S̃SV about the received signal of the array can be
expressed according to the Bayesian formula as

p
(
S̃SV |XSV ; τ

)
=

p
(
XSV

∣∣∣S̃SV ;σ2
e

)
p
(
S̃SV ; τ

)
p (XSV ; τ, σ2

e)

= C ∗ exp
(
− 1

2σ2
e

∥∥∥XSV − ÃS̃SV

∥∥∥2
F
− 1

2
S̃H
SV Λ

−1S̃SV +
1

2
XH

SV Σ
−1
XSV

XSV

)
(12)

According to Equation (12), the mean of the source signal S̃SV is the zero of the first-order derivative

of the exponential part of Equation concerning S̃SV . The inverse of the covariance matrix is the second-
order derivative of the exponential function concerning S̃SV [19]. Denoting the exponential part of
Equation (12) as F , it can be made that

F =
1

2σ2
e

∥∥∥XSV − ÃS̃SV

∥∥∥2
F
− 1

2
S̃H
SV Λ

−1S̃SV +
1

2
XH

SV Σ
−1
XSV

XSV

=
1

2σ2
e

[̃
SH
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(
ÃHÃ+σ2

eΛ
−1

)
S̃SV −XH

SV ÃS̃SV −S̃H
SV Ã

HXSV +XH
SV XSV

]
+
1

2
XH

SV Σ
−1
XSV

XSV (13)

Finding the first-order derivative of S̃SV with respect to F yields

dF

dS̃SV

=
1

2σ2
e

[
2
(
ÃHÃ+ σ2

eΛ
−1

)
S̃SV − 2ÃHXSV

]
(14)

Finding the second order derivative of S̃SV with respect to F , we get

d2F

dS̃2
SV

=
1

σ2
e

(
ÃHÃ+ σ2

eΛ
−1

)
(15)

Let dF/dS̃SV = 0 to obtain

µS̃SV
=

(
ÃHÃ+ σ2

eΛ
−1

)−1
ÃHXSV

= ΛÃ
H
Σ−1

XSV
XSV (16)

From the above analysis, we can obtain

Σ−1

S̃SV
=

1

σ2
e

ÃHÃ+Λ−1 (17)

where µS̃SV
denotes the mean of the posterior Gaussian distribution obeyed by S̃SV . Σ

−1

S̃SV
denotes the

inverse of the covariance matrix, and applying the matrix inverse formula can transform Equation (17)
into

ΣS̃SV
= Λ−ΛÃ

H
Σ−1

XSV
ÃΛ (18)

From the above analysis, it can be seen that S̃SV can be regarded as a redundant parameter, and
it is only necessary to determine the position of the non-zero element in τ to determine the azimuth
angle of the incident signal. Based on the ARD principle to construct the cost function L

L(τ, σ2
e)

∆
= K log |ΣXSV

|+
K∑
k=1

XT
SV (:, k)Σ

−1
XSV

XSV (:, k) (19)
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Therefore, by minimizing the cost function equation, the sparse vector τ and noise variance σ2
e

can be obtained. The minimum value of the cost function is solved iteratively using the expectation-
maximization (EM) algorithm [20], whose iteration formula for step i is

τ i+1
m =

(1/K)
∥∥∥µS̃SV

(m, :)
∥∥∥2
2

1− (τ
(i)
m )−1

(
ΣS̃SV

)(i)

mm

, ∀m = 1, . . . ,M

(σ2
e)

(i+1) =
(1/K)

∥∥∥XSV − ÃS̃SV

∥∥∥2
F

L−M +

M∑
m=1

(
τ (i)m

)−1 (
ΣS̃SV

)(i)

mm

where µS̃SV
(m, :) denotes the element in the mth row of µS̃SV

, and (ΣS̃SV
)mm denotes the element on

the diagonal of the mth row of ΣS̃SV
. The initial value of σ2

e can be obtained by averaging the smaller
singular values of X.

4. DAIN-PHASE ERROR CORRECTION PARAMETER ESTIMATION
ALGORITHM

After the rough estimation of DOA is obtained by the above SBL algorithm, the results of the angle
estimation are used to calibrate the array gain-phase deviation. Assume that the DOA estimation results

are
⌢

θ = [
⌢

θ1, . . . ,
⌢

θK ]. The covariance matrix of the array signal is found on the basis of Equation (2) as

RX = E
[
XXH

]
(20)

The feature decomposition is performed onRX; the feature values are arranged in descending order;
the space tended by the smaller L −K feature values corresponding to the feature vectors constitutes
the noise subspace, denoted as UN = [uk+1,uk+2, . . . ,uL], using the principle that the signal subspace

and noise subspace are orthogonal to each other, constructing the cost function J̃

J̃ =
K∑
k=1

∥∥∥UH
NΓa

(
⌢

θk

)∥∥∥2
=

K∑
k=1

a
(

⌢

θk

)H
ΓHUNUH

NΓa
(

⌢

θk

)
(21)

then the value of Γ can be obtained by minimizing J̃ .

According to the Lemma in the literature [9], for any L ∗ 1 complex vector a(
⌢

θk) and any L*L
complex diagonal matrix Γ, we can obtain

Γa
(

⌢

θk

)
= ã

(
⌢

θk

)
γ (22)

where ã(
⌢

θk) = diag(a(
⌢

θk)) and γ is a vector consisting of the elements on the main diagonal of the
complex diagonal matrix Γ, i.e., γi = Γii. Thus, by the Lemma, Equation (21) can be rewritten as

J̃ = γH

{
K∑
k=1

ã

(
⌢

θ
(i)

k

)H

UNUH
N ã

(
⌢

θ
(i)

k

)}
γ (23)

Since the first array element is used as a reference, Equation (23) is minimized under the constraint,
γHw = 1, w = [1, 0, 0, . . . , 0]T . Its iterative formula is

γ(i+1) =

(
D(i)

)−1
w

wT
(
D(i)

)−1
w

(24)
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where D(i) =
K∑
k=1

ã(
⌢

θ
(i)

k )HUNUH
N ã(

⌢

θ
(i)

k )

The main steps of the proposed algorithm are summarized in Algorithm 1.

Algorithm 1. proposed algorithm flow

Pre-processing Sparse representation of the received signal X of the array;

Initialization i=0, Γ(i)=Γ0Γ0 can be based on regular gain and phase values or arbitrary random

complex numbers;

Step 1 The dimensionality reduction ofX, denoted asXSV . Estimate the DOAusing SBLalgorithm

to obtain the guidance vector of the array manifold matrix A(
⌢

θ
(i)
) = [a(

⌢

θ
(i)

1 ), . . . ,a(
⌢

θ
(i)

K )];

Step 2 Update the value of the error parameter γ(i+1) according to Equation (24);

Step 3 Calculate the value of the cost function J̃ (i) according to Equation (23);

Step 4 If J̃ (i−1) − J̃ (i) > ε (a preset threshold) then X = X ∗ Γ, i = i+ 1, go to step 1. If J̃ (i−1)−
J̃ (i) ≤ ε, done.

5. EXPERIMENTS AND ANALYSIS

Based on the algorithm proposed in this paper, simulation experiments were conducted on the computer.
In each simulation experiment, the array is assumed to be a ULA with elements L and the element
spacing half a wavelength. The estimated signal source is a far-field narrowband signal; the noise is
additive Gaussian white noise; and the number of snapshots is N . The gain-phase deviation coefficients
Γ of the array in each simulation are randomly generated by αi ∈ (0.5, 1.5) and ϕi ∈ (−π/6, π/6),
respectively. The SNR is defined as 10 lg(σ2

s/σ
2
n), where σ2

s and σ2
n indicate the signal power and noise

power, respectively. In the experiments, the grid interval of the airspace division for DOA estimation
using SBL is 2◦ in all cases.

5.1. Effectiveness of the Proposed Algorithm

A ULA with half-wavelength array spacing is considered, which is composed of 16 sensors, and the three
incoherent sources with unknown incident direction are 1◦, 7◦ and 22◦, respectively. The SNR is 5 dB,
and the number of snapshots is 512. The MUSIC power spectra of the signal before and after correction
are shown in Figure 1.

Figure 1. The comparison between before calibration and after calibration.
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From Figure 1, we can see that the MUSIC spatial spectrum is relatively flat, and the information of
the spectral peaks is weak due to the gain-phase errors before correction. After correction, the spectral
peaks rise significantly. All DOAs can be obtained accurately, indicating that the channel correction
effectively improves the SNR, and the performance of DOA estimation is improved dramatically.

5.2. Performance Comparison

A ULA with 16 sensors is considered, and the spacing of array elements is half wavelength, and the
number of snapshots is 512. Any three equal-power uncorrelated narrowband signals in space are
incident on the planar array during each experiment. The root mean square error (RMSE) is defined as

RMSE =
1

K

K∑
k=1

√√√√ 1

T

T∑
t=1

(
⌢

θkt − θk

)2
(25)

where T is the number of independent Monte Carlo experiments; K is the number of sources; θk is the

actual value of DOA of the kth source, and
⌢

θkt is the estimated value of the pair obtained from the tth
Monte Carlo experiment.

Based on 100Monte Carlo experiments, the proposed method is compared with gain-phase error
calibration based on, GA [10], PSO [11], respectively, and traditional feature structure-based orientation
correction method [9]. The results of DOA estimation with different SNRs are shown in Figure 2. The
average operation time of the algorithm is shown in Figure 3.

Figure 2. Estimated RMSE of DOA with different SNRs.

From Figure 2, it can be seen that the DOA estimation errors after calibration of the four methods
at different SNRs do not exceed 2.2◦, among which the algorithm of this paper has the most superior
performance, indicating that the algorithm can effectively suppress the influence of noise in the array.
The DOA can be accurately obtained from the corrected data when the gain-phase deviation exists in
the array. From Figure 3, we can see that the algorithm of this paper has the shortest running time
among the four compared algorithms, which verifies the effectiveness and reliability of the algorithm of
this paper.

5.3. Beam Width Comparison Analysis

When measuring the DOA estimation error in degrees, the effect of array aperture makes the error
estimation inaccurate, so this experiment uses a multiple of the beam width to measure the error. A
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Figure 3. Average computing time of the algorithm with different SNR.

ULA with 16 sensors is considered, and the spacing of array elements is half wavelength. The SNR is
5 dB, and the number of snapshots is 512, with the selection of desired direction θk = 15◦. Figure 4
represents the array orientation diagram before and after correction using different methods. The angle
between the two directions where the radiated power on both sides of the main flap decreases by 3 dB
is defined as the beam width. The multiplier of the beam width is defined as the ratio of the corrected
beam width to the pre-corrected beam width, as shown in Table 1.

Figure 4. Array orientation diagram before and after correction by different method.

Table 1. Beam width multiplier after correction by different methods.

Proposed GA PSO traditional method

0.19 0.47 0.45 0.21

The beam width is related to the antenna gain. The antenna gain describes the degree to which the
antenna concentrates the power radiation, so the narrower the beam width is, the higher the gain is. As
shown from Table 1, the beam width after correction by the method in this paper is the thinnest, which
is 0.19 times of that before correction, indicating that the correction algorithm effectively suppresses
the effect of noise and improves the antenna gain and angular resolution.
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5.4. Experimental Analysis of Actual Measurement Data

The data in this paper were taken from the actual radar field measurements in the South China Sea
on January 10, 2008. The antenna array is a 4 ∗ 4 planar array with half times the wavelength spacing
of the array elements. The array receives a group of detection signals every 4–5 minutes, and the scale
of each group of received signals is 16 ∗ 40 ∗ 512 (16 indicates the number of antennas; 40 indicates
the number of distance elements; the distance resolution of the antenna array is 2.5 km; the maximum
detection distance is 100 km; 512 indicates the number of snapshots). The SNR gain is defined as the
difference between the signal power at the Bragg peak and the signal power in the first-order spectral
region.

(a) (b)

(c) (d)

Figure 5. Spectrum map after calibration by different methods. (a) After calibration by proposed
method. (b) After calibration by traditional method. (c) After calibration by GA. (d) After calibration
by PSO.
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The data received at 16 : 21 are selected, and the spectrum map after calibration using different
methods is shown in Figure 5. It can be seen that the spectrum has been improved after the correction
by different algorithms. Take a left first-order peak as an example; the spectrum value is 22.67 dB before
calibration and is 27.67 dB after calibration by the algorithm of this paper. Calibration by the traditional
method is 24.5 dB; calibration by GA is 26.92 dB; calibration by PSO is 24.69 dB. After calibration by
the proposed algorithm, the left first-order peaks have been improved about 5 dB, which shows that the
calibration method has effectively reduced the impact of noise and the gain-phase inconsistency between
arrays. The SNR gain plots after the gain-phase correction compensation of 20 fields of detection data
selected on January 10 using different algorithms are shown in Figure 6. The figure shows that the
algorithm of this paper has higher SNR gain after correction compared with other methods, which
indicates a better correction effect.

Figure 6. SNR gain before and after calibration by different methods.

The algorithm’s reliability in this paper is verified by applying the method to the DOA estimation
of specific spectral points, and the obtained MUSIC space spectrum is shown in Figure 7. Figures 7(a)
and (b) compare the MUSIC spatial spectrum after correction at the 313th frequency point of the 15th

(a) (b)

Figure 7. MUSIC spatial spectra at specific spectral points after calibration.
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distance element and the 163rd frequency point of the 11th distance element of the received data at
12:05 a.m. and 2:22 p.m., respectively. From the comparison graphs, it can be seen that the MUSIC
spatial spectrum before correction is relatively flat, and the information of the spectral peaks is weak,
so the angular information cannot be accurately obtained when the deviation of the antenna unit is
significant. After correction, the spectral peaks increase significantly, as shown in Figure 7(a), by about
5 dB, indicating that the array error correction effectively improves the SNR. The performance of DOA
estimation is significantly enhanced. The DOA estimation before and after correction was performed
for the above two data fields respectively, and the estimation results are shown in Figure 8.

(a)

(b)

Figure 8. DOA estimation before and after calibration by different methods. (a) 12:05 a.m. 15th
distance metadata. (b) 2:22 p.m. 11th distance metadata.

Due to the experimental conditions, we have not obtained the ocean buoy data values for the
experimental sea area. Therefore, the algorithm’s reliability was verified by comparing whether the
DOA estimates before and after data correction using different algorithms are consistent.
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The function of DOA estimation is to determine the orientation of the signal, measure the direction
of the selected target signal from the received data, and mark it as the source to be counted regardless
of whether the desired signal is a valuable signal or an interfering signal. However, due to the low
energy of the interfering signal, the result of the orientation estimation of the interfering signal has a
significant error. As shown in Figure 8, the DOA obtained by the MUSIC, DBF, and Proposed method
before calibration differed significantly due to the significant phase deviation. The DOA could not be
accurately determined. After the calibration, the orientation estimates of the valuable signals obtained
by the three methods are consistent, indicating that the corrected data can accurately estimate the
incoming wave direction.

6. CONCLUSIONS

Most self-calibration algorithms are computationally intensive in solving the array error calibration
coefficients, and not easy to obtain the optimal solution and easy to fall into local optimality. To
address the above issues, this paper proposes a joint estimation method based on SBL for the DOA
estimation and array gain-phase deviation to address the above problems. Using SBL estimation DOA
produces a sparser solution with relatively low computational complexity. The estimated DOA is used
as the iterative process, and the optimal solution is more easily obtained when the EM algorithm is
applied to solve the deviation parameters. It is shown that the proposed algorithm can accurately find
the DOA of the desired signal when the gain-phase deviation of the array exists. The accuracy is the
highest among the four algorithms compared and analyzed. The antenna gain is effectively improved
after correction, which further verifies the efficiency and accuracy of the passive modification of the
algorithm.
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