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Design and Fabrication of COVID-19 Microstrip Patch Antenna
for Wireless Applications
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Abstract—This paper presents a novel unique microstrip fractal patch antenna with a COVID-19 shape
designed for wireless applications. The COVID-19 antenna is a compact, miniature size, multiband,
low weight, and low-cost patch antenna; the demonstrated patch antenna, simulated using the HFSS
software program, consists of a circular printed patch with a radius of 0.4 cm surrounded by 5 pairs
of crowns. The antenna is implemented on a double-sided copper plate with an FR4-epoxy substrate
of 1 × 1 cm2 area and 1.6mm thickness. This small patch operates and resonates on two frequencies
7.5GHz and 17GHz within C and Ku bands, respectively. The simulated and measured gains were
respectively 0.8 dB and 0.2 dB at the lower frequency and 2.21 dB and 2 dB at the higher frequency.
A coaxial probe feeding method is used in the simulation, and printed prototypes showed excellent
consistency between measured and simulated resonance frequencies.

1. INTRODUCTION

Over the last three decades, microstrip patch antennas have become the most commonly used technology
in the applications of mobile communication systems because of their light weight, low cost, low
power consumption, and ease of fabrication and integration. However, in specific applications like
satellite communications, there has been a demand of reducing the size of the ordinary patch antennas.
For instance, mobile phones have rapidly faced a reduction in size resulting in a new evolution of
patch antennas that are utilized in mobile communication to replace the traditional ones. Various
techniques have been proposed by antenna designers to fulfill this reduction such as i) using metamaterial
superstrate [1–3], ii) using a substrate with a relatively high permittivity [4], iii) the use of reshaping
or adding slots to the patch [5, 6], iv) using fractal modification method on the ground plane [7, 8], v)
using the shorting pin [9], vi) using fractal technique [10–12]. The latest, the fractal technique, shows
interesting features resulting from different geometrical designs. The essential feature of the geometry
in the fractal antenna aims to maximize the perimeter of the patch design so that it can transmit or
receive more electromagnetic radiation within a specific area or volume. Moreover, ordinary antennas
can operate at a single frequency band which means that different antennas must be used for different
applications; this causes limited space problems especially for mobile applications. Fortunately, fractal
antennas can operate at multi-frequency bands to overcome the limited space problem [13]. According to
its geometrical configuration, fractal antennas can be divided into two main configurations: deterministic
and random. Determinist objects such as Sierpinski gaskets and von Koch snowflakes have been proposed
in [14, 15] to improve the efficiency and the gain. Random configuration is similar to natural phenomena,
such as lightning bolts [16]. Beyond these configurations, numerous microstrip patch antennas were built
according to the fractal theory to implement irregular shapes to minimize patch antennas. For instance,
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a frequency-reconfigurable cedar-shape fractal antenna was demonstrated in 2012, and this unique small
size antenna was built on a 60 × 65mm2 substrate and resonated at 2.4GHz as mentioned in [17]. It
is interesting to notice that since 2014, antenna designers have been focusing on building microstrip
patch flower antennas working on different frequency bands from 2.4GHz to 15GHz as illustrated
in [18, 19]. Further research in this area includes the fabrication of a wheel-shape antenna in 2017 [20].
This modified wheel-shaped fractal antenna of a width of 32mm and length of 36mm was printed and
measured to meet the demand of a small size fractal antenna.

Since February 2020, COVID-19 has spread out all around the globe; it has become a major public
health pandemic that is still changing lives and daily habits. Recently, due to increasing interest in
this virus, the pictures of COVID-19 have been published in most scientific and non-scientific journals.
The inspiration for this antenna patch shape was taken from the silhouette of a COVID-19 virus. In
February 2002, Federal Communications Commission in the United States authorized that the frequency
band from 3.1 to 10GHz can be used in the civil commercial services. This paper will adopt the design
of the COVID-19 patch antenna and use the advantages of fractal geometry features to design a very
small prototype suitable for dual-band wireless applications. It resonates at 7.5GHz (in C-band) and
17GHz (in Ku-band) which makes the proposed patch suitable for downlink of satellite communication
systems, breast cancer detection, and smart home concept (at 7.5GHz) [13, 21, 22], and it is also used
in the transmission of direct broadcast services (DBS) and Fixed Satellite Service (at 17GHz) [23].
The application of fractal geometry on the planar structure of the COVID-19 circular patch antenna
results in enhancing the bandwidth of the antenna. This design is analysed using the finite element
method-based software, ANSYS HFSS simulator.

2. ANTENNA CONFIGURATION AND DESIGN

The configuration of the proposed COVID-19 antenna model and the actual virus image are represented
in Figure 1.

(a) (b)

Figure 1. (a) The simulated COVID-19 antenna, (b) the image of the actual virus.

The 2D and 3D simulated COVID-19 models with dimensions are shown in Figure 2. In this
structure, an FR4-epoxy substrate with relative permittivity of 4.4 is used to build the microstrip patch
antenna. This material has been chosen because of its availability and low cost. The overall dimensions
of the substrate (L,W, h) are (1 × 1 × 0.16) cm3. The main patch antenna is circular with a radius of
4mm. The patch antenna is fed using the coaxial probe feed method, and the pin of the coaxial feed is
placed at point (0mm, −1.18mm) with the center of the patch considered as the origin. The coaxial
feed consists of three parts: the inner conductor connected to the patch with 0.735mm radius, insulator
of Teflon with a radius of 1.2mm, and outer conductor connected to the ground with a 2.5mm radius.
This method of feeding is the best because it gives the overall patch the same shape as the COVID-19
virus shape. The main circular patch antenna is firstly built without fractals; however, the resonance
frequency is extremely high because the electrical length of the antenna is low. Different fractal shapes
have been demonstrated to lower the resonance frequency. The best results were optimized when nine
circles were inserted. One of them is at the center of the patch of radius R2, and four small circles of
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Figure 2. (a) shows a two-dimensional prototype of the simulated COVID-19 patch antenna, (b) shows
the three-dimensional COVID-19 patch antenna.

radius R3 were distributed equally around the center with 90◦ rotation, while the other four big circles
of radius R1 were distributed equally around the center with 45◦ rotation. Further optimizations are
done using try and error to estimate the radius of the fractal circles which give the best resonance
frequency and reflection coefficient, and the final dimensions of these circles are shown in Table 1.

Table 1. Parameter descriptions of the simulated COVID-19 patch antenna.

Decryptions Symbols Values in (mm)

Length of the substrate L 10

Width of the substrate W 10

Radius of the main patch R 4

Radius of the big fractal circle R1 1.4

Radius of middle fractal circle R2 0.8

Radius of the small fractal circle R3 0.65

Height of the substrate h 1.6

The next step is drawing the crowns around the main circular patch to give it the unique shape
of COVID-19 virus. Ten crowns surround the main patch with a 36◦ angle between adjacent crowns.
The first crown on top of the main patch was initially created, and four ellipses with a major radius of
0.33mm and a minor radius of 0.24mm were used to make the original spike, see Figure 3(a) (Figure 3(b)
is the magnified picture of Figure 3(a)). Then, two copies of this spike were rotated and duplicated
around itself with angle 26◦ firstly (light blue color) in Figure 3(c), and −26◦ secondly (green color) to
have 5 spikes in total, which were eventually united to make the first crown, as shown in Figure 3(d).
Similarly, more spikes were added on the other pair of crowns to give each pair its unique shape similar
to the original virus. This crown was rotated and duplicated with 180◦ to have the second crown
diametrically opposite as shown in Figure 3(e). Next, by leaving a distance of 36◦ from the top crown,
another crown with more spikes is implemented. This crown was also rotated and mirrored to have the
fourth crown as shown in Figure 3(f). The same procedure is followed in Figure 3(g) and Figure 3(h),
to have six and eight crowns, respectively. The final shape of the COVID-19 patch form with five pairs
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Figure 3. Steps of drawing the crowns around the main circular.

of crowns is shown in Figure 3(i).
The simulated COVID-19 patch antenna is designed with only five pairs of crowns; it is optimal to

have this number of crowns depending on the results of resonance frequency and the reflection coefficient
curves (S11). Firstly, when the number of crowns was only 8 the antenna patch resonated at four
different bands (as shown in Figure 4); unfortunately, all the four bands have narrow bandwidth, and
the COVID-19 patch overall shape was unacceptable. The next step was building 12 crowns surrounding
the central patch; however, the resonance frequency was completely lost. Therefore, 10 crowns were
chosen to have double band frequencies with wide bandwidth, and the reflection coefficient curves at
7.5GHz and 17GHz are shown in Figure 4.

Figure 4. Simulated S11 curves: black line when there are 8 crowns on the antenna. Red line when
there are 10 crowns on the antenna.

After optimizing the size of the substrate, the radius of the circular patch, and the number of crowns
surrounding the patch, it is essential to demonstrate the fractal geometry on the main circular patch
to determine the reflection coefficient and resonance frequency of the COVID-19 patch. According to
Figure 5, six different images have been investigated to represent the current distribution density on the
COVID-19 patch surface. Different colors are shown in Figure 5, and they represent different current
distribution density values. The blue color has the least current density, and as the colors change from
blue to red, the current density increases gradually until it reaches its highest value at the red color.
Therefore, it is important to notice the changes in increasing the red surface area of the patch since
with better current distribution (the red surface area) lower resonant frequency is obtained.

In Figure 5(a), the COVID-19 patch was designed firstly without any fractal shapes on its surface;
however, the resulting current distribution density was only concentrated around the feed point. When
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Figure 5. The current distribution density of various fractal geometries.

the first circle was iterated from the center of the patch (as shown in Figure 5(b)), the current density
was distributed on a wider area far away from the feed position. In Figure 5(c), when four more
circle-shaped slots were added, the current distribution density improved drastically and reached the
crowns. Despite this, the resonance frequency was far from the accepted value, and when four more
circles were iterated, no significant difference in the resonance frequency was detected. It was estimated
to adopt a new fractal geometry as shown in Figure 5(d). The current distribution density expanded
and reached the crowns, and yet the resonance frequency did not improve. Interestingly, when both
of the fractal geometries of Figure 5(c) and Figure 5(d) were applied to the patch surface, the results
improved dramatically. Two fractal geometries were designed, firstly the fractal geometry of Figure 5(e)
and secondly the geometry of Figure 5(f). Finally, according to the current distribution density and
resonance frequency results, it was decided to adopt the COVID-19 patch of Figure 5(f) as the final
simulation of the COVID-19 patch shape.

3. SEMI ANALYSIS APPROACH

Before designing the patch antenna, the following equations are used to find roughly the dimensions of
the circular patch antenna [24].

F = (8.791× 109)/(fr
√
εr) (1)

where F is the fringing factor, fr the resonance frequency, c the free space velocity of light, and εr the
dielectric constant. The main radius of the patch (R) is calculated as follows:

R = F × {1 + (2h/πεrF )[(ln(πF/2h) + 1.7726]}−1/2 (2)

The resonance frequency corresponds to any TMmn0 mode is given as

frmn0 = (c/2
√
εr)[Xmn/R] (3)

Here, n and m are modes with respect to R, and Xmn is the derivative of the Bessel function.
When fr = 7.5GHz, h = 1.6mm, and εr = 4.4, the radius of the main patch obtained was 5.21mm

according to Equations (1) and (2). Upon doing extensive literature review, different fractal geometries
were applied in order to miniaturize the antenna and increase its electrical length. It was observed that
after using nine circular slots it was optimal to reduce the main radius of the patch to 4mm, and dual
frequency bands are achieved. Finally, 5 pairs of crowns are inserted to give the patch its last form of
COVID-19 virus.

Adding fractal circles and crowns around the main circular patch improves both the reflection
coefficient and resonance frequency. Figure 6 shows a comparison among three curves. Firstly when a
simple circular patch with radius 4mm and operating frequency 7.5GHz was designed without crowns
and fractals, it resonated at 9.9GHz with reflection coefficient −11 dB. Secondly, when fractals were
added to the main circular patch, the results further developed to become (8.8GHz, −11.4 dB) for the
lower band and (18.8GHz, −21 dB) for the higher band. Finally, when the crowns were drawn around
the fractal circular patch the resonance frequency and reflection coefficient improved dramatically to
be (7.5GHz, −37 dB) for the lower band and (17GHz, −11.5 dB) for the higher band. From this
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Figure 6. Blue dot line: circular patch without fractal without crowns. Black dash line: circular patch
with fractals without crowns. Red solid line: circular patch with fractals with crowns.

comparison, it becomes apparent that adding the crowns around the main circular patch not only
gives the patch its unique shape of the COVID-19 virus but also improves the reflection coefficient and
resonance frequency of the miniature antenna.

4. RESULTS AND DISCUSSION

The three-dimensional radiation pattern was plotted, and the maximum gain was measured to be 0.8 dB
at 7.5GHz and 2.21 dB at 17GHz as illustrated in Figure 7. Moreover, the gain and radiation efficiency
are drawn concerning the frequency as shown in Figure 8.

(a) (b)

Figure 7. 3D radiation pattern of the simulated COVID-19 antenna: (a) is at 7.5GHz and (b) is at
17GHz.

When the COVID-19 patch antenna simulations were completed, the prototype was fabricated using
FR4-epoxy substrate material and a double-sided copper plate with 1.6mm thickness and a coaxial feed
method. We have maintained a full ground in the antenna while the patch was engraved on the upper
copper side. The chemical etching method was used to fabricate the patch antenna, where small details
in the small spikes of the crowns surrounding the main patch were duplicated to a very accurate extent.
The multi-band frequency, low weight, small size, low-cost patch antenna prototype is fabricated as
shown in Figure 9. Measurements of the reflection coefficient were conducted, and results are compared
to the simulated ones. The reflection coefficient versus frequency curves is plotted in Figure 10.

The radiation characteristics of the designed antenna are simulated and measured for both
frequencies as shown in Figure 11. This figure presents the E and H planes for both co-polar and cross-
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Figure 8. Simulated gain (upper red line) and radiation efficiency (lower black line) at (a) 7.5GHz
and (b) 17GHz.

Figure 9. On left is the front view of the COVID-19 patch antenna prototype; and on right is the back
view.

Figure 10. Comparison of the reflection coefficient of both the simulated (red solid line) and the
measured (black dash line) results.

polar radiations. In the first and second images of Figure 11, the radiation patterns of the simulated
and measured curves at 7.5GHz are depicted, while in the third and fourth images, the simulated and
measured radiation patterns at 17GHz are shown. The solid line is the simulated results, and the dashed
line is the measured results. The red and black lines represent the co-polar and cross-polar radiations,
respectively. The co-polar and cross-polar radiations give us the polarization characteristics of the
studied antenna. It is clear that the difference between the co- and cross-polar radiations is better than
30 dB for the lower band and 20 dB for the higher band in the direction of maximum radiations, and
then the antenna is linearly polarized. It was found that the maximum measured gain of the designed
antenna was 0.2 dB and 2 dB at frequencies of 7.5GHz and 17GHz, respectively.

The antenna produced is compared with other antennas with different designs, as shown in Table 3.
After examining the results, we have seen that our antenna is easy to fabricate according to the layers
used, and this miniature size antenna works in dual band resonance frequency.
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Figure 11. Radiation patterns of co-polar (red line) and cross-polar (black line) for simulated
(continuous) and measured (dashed) curves at 7.5GHz (the first and second images) and 17GHz (the
third and fourth images) respectively. Table 2 shows a comparison between the proposed work and
other irregularly shaped patch antennas according to their sizes and operating band frequency.

Table 2. Comparison between COVID-19 patch antenna and other irregular shape antennas.

Reference

number

Antenna

volume (cm)3
Resonance

frequency (GHz)
Gain (dB)

[8] 69 1.28 4

[10] 17 0.193, 0.22 1.91, 2.07

[14] 24.3 1.5, 2.6 5.3, not given

[16] 6.4 2.4 2.5

[18] 5.76 3.14, 4.28, 5.1, 6.9 1.9, 10.9, 1.8, 9.3, 4

[19] 1.44 2.9, 9.5 2.8, 4.11

[20] 0.252 6 10

Proposed work 0.16 7.75, 17 0.8, 2.2

Table 3. Comparison between the proposed work and other miniaturised patch antennas.

Reference Layers used Patch area (mm2) Resonance frequency (GHz)

[21] 2 10× 10 7.7

[23] 2 20× 20 12.25, 14.16

[25] 3 9.5× 8 15.33, 17.6

[26] 1 22× 21 12.07, 14.44

[27] 1 20× 20 12.38, 14.4

Proposed work 1 10× 10 7.5, 17

5. CONCLUSION

The main goal of the current paper is to use the fractal geometry and the COVID-19 shape in order to
create a miniature antenna for the implementation of dual-band wireless, satellite, and radar applications
within C and Ku bands (when it is a part of an array) and civil commercial services. The proposed
low-weight antenna operates at two different frequency bands 7.5GHz and 17GHz with a maximum
gain of 0.8 dB and 2.21 dB respectively for the simulated and 0.5 dB and 2 dB for the measured results.
This innovative patch is suitably designed so that the current distribution density reaches the far edge
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of the crowns. The main purpose of these crown shapes is not only to give the patch its unique
shape of COVID-19 virus but also improves the resonance frequency and reflection coefficient of the
fractal circular patch. When the simulated results are finalized, the prototype is printed on a 1 cm ×
1 cm substrate using chemical etching. There is an acceptable agreement between the simulated and
measured results for both the input and output antenna characteristics. The discrepancy in the results
is explained by errors in exact duplication of the design due to its miniature dimensions and mismatches
or reflection in SMA and coaxial feed connection.
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