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An Efficient ADBF Algorithm Based on Keystone Transform
for Wideband Array System
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Abstract—In this paper, an efficient wideband array adaptive beamforming (ADBF) approach based
on keystone transform is presented. In order to eliminate the aperture effect of the wideband signal,
the modified keystone transform is applied to remove the time delay between different array elements.
Thus, the wideband array is equivalent to a narrowband array, and the orthogonal projection matrix
of the target steering vector can be used to filter the desired signal in the training samples, which
avoids the signal cancellation caused in the estimation of ADBF covariance matrix. Compared with
the established algorithm of sliding window, this approach can significantly reduce the computational
burden. The feasibility and effectiveness of the proposed method are validated through numerical
simulations.

1. INTRODUCTION

With the development of radar technology, the capability of high-resolution measurement in target
recognition and identification is a requirement for modern radar, requiring a relatively wide frequency
bandwidth to achieve richer information of the target. Thus, the signal processing technology
combining wideband phased array has become a research focus in modern radar technology. Meanwhile,
beamforming technique, which can suppress unwanted clutter received from external sources, plays an
important role in the research of wideband phased array radar. However, the envelope and phase of
wideband signals received by each antenna are not aligned because of aperture fill time, which will
bring a serious influence on pulse compression results [1–3]. Therefore, some effective methods have
been proposed to solve this problem.

One approach is the tapped delay line which is performed by inserting a transversal filter in each
channel to derive the adaptive weights under different standards and enhance the capability of jamming
suppression [4]. Investigations indicate that as the bandwidth increases, a large number of filter orders,
which increase the computational burden, are required to maintain an acceptable SINR performance
for ADBF. The other approach is wideband beamforming based on subband decomposition which is
processed in the frequency domain. This method weights each subband of the wideband signals by
a narrowband processor structure and aligns their beam directions [5]. Since the performance of the
algorithm is limited by the number of subbands and its jamming cancellation capability should be
weighed with more calculations brought by the increase in bandwidth. Meanwhile, desired signals with
high amplitude are prone to the problem of signal cancellation [6, 7] and cause beam distortion.

In this paper, considering the performance loss caused by the aperture effect in wideband arrays,
keystone transform [8–12] is applied for the aperture effect of the received wideband array signal model
for its capability to achieve envelope alignment. Besides, the performance of ADBF is severely degraded,
in the case that the target signal is present in the training samples since the target signal is considered as
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interference to be suppressed. Therefore, the orthogonal projection known as a fast subspace projection
algorithm has been applied to filter out the target signal [13, 14].

The content of this paper is organized as follows. The received wideband array signal model is
established, and the modified keystone transform is introduced in Section 2. The principle of the
orthogonal projection matrix is indicated in Section 3. Some simulation experiments are presented in
Section 4. The conclusion of this paper is given in Section 5.

2. CORRECTION OF APERTURE EFFECT USING MODIFIED KEYSTONE
TRANSFORM

2.1. The Principle of Keystone Transform

Consider that a far-field wideband plane waveform d0(t) and P independent wideband jamming signals
whose angles are θ0, θ1, . . . , θP impinging on a uniform linear array (ULA) constituted by M elements.
The signal wavelength is λ, and the distance between adjacent array elements is d = λ/2. There is
no correlation between the received signal sources D(t) = [d0(t), d1(t), . . . , di(t)] and the channel noise
n(t), and A = [a(θ0), a(θ1), . . . , a(θi)] is the array manifold matrix of the received signal. Then, the
echo signal received by the array antenna at the range time t can be expressed as

x (t) = AD (t) + n (t) = a (θ0) d0 (t) +
P∑
i=1

a (θi)di (t) + n (t) (1)

Suppose that there is only one target signal in the received signal, and the range-compressed signal
can be formulated by a time-element function as

y (t, n) = x
(
t− rn

c
, n
)
exp

(
−j

2πf0
c

rn

)
(2)

where c is the speed of light, and f0 is the radar center frequency. Referring to the first element,
rn/c = (n− 1)d sin θ0/c(n ∈ [1,M ]) represents the time delay of each element.

From Eq. (2), instantaneous data of rn cause a relative delay in the envelope of the received signal
of each array element. As shown in Fig. 1(a), a range-compressed signal with a bandwidth of 200MHz
is formed in the spatial domain as a diagonal line and spans multiple distance cells, which is the
phenomenon of aperture fill time.

(a) (b)

Figure 1. Simulation data image after range compression. (a) Before keystone transform. (b) After
keystone transform.



Progress In Electromagnetics Research Letters, Vol. 102, 2022 169

Performing FFT transform on Eq. (2), its Fourier spectrum is

y (f, n) = x(f, n) exp

(
−j

2πf0
c

rn

)
exp

(
−j

2πf

c
rn

)
(3)

where the range frequency variable f ∈ [−B/2, B/2] and array element variable n ∈ [1,M ] couple

with each other in the exponential term exp(−j 2πfc rn) which makes the array signal steering vector
continuously change with the instantaneous frequency. Therefore, keystone transform is applied to
correct the aperture effect to ensure that the wideband steering vector is not connected with the
instantaneous frequency. From Eq. (4), the scale transformation is performed on the coordinate axis of
the array element

n̂ =
f0 + f

f0
n (4)

Rewrite Eq. (3) as follows

y (f, n̂) = x(f, n̂) exp

(
−j

2πf0
c

rn̂

)
= x(f, n̂) exp

(
−j

2πf0
c

d (n̂− 1) sin (θ0)

)
(5)

From Eq. (5), it is clear that the wideband steering vector after keystone transform is only related
to the center frequency f0. As shown in Fig. 1(b), the target signal is transformed into the time-
element dimension by using IFFT, and the range-compressed target signal has been modified into a
horizontal straight line. Therefore, the keystone transform can effectively decouple the range frequency
and element time to correct the aperture effect of the wideband array.

2.2. The Modified Keystone Transform

A commonly used method for keystone transform is the convolution of these signals with sinc-
interpolation function [15, 16], and the signal in Eq. (5) can be formulated as

y (f, n̂) = y

(
f,

fc
fc + f

n̂

)
=

N/2∑
n=−N/2

y (f, n)sinc

(
fc

fc + f
n̂− n

)
(6)

where n̂ is the sampling point after interpolation.
The method of increasing the interpolation order N is usually applied to improve the accuracy

of the interpolated data and N/2 array elements before and after each interpolation point is used for
the calculation of this point, thus aggravating the problem of the insufficient data at both ends of the
range-compressed signal. From Eq. (6), considering that the number of array elements is Na, and the
central array element is the reference array element so that the range of interpolation calculation points
is [−(Na−N)/2, (Na−N)/2]. Therefore, there are at least N/2 interpolation points lacking enough
data for interpolation calculation at both ends of the array. As shown in Fig. 1(b) in Section 2.1, fewer
array elements will result in a large amount of insufficient data and a reduction in the amplitude of the
desired signal after ADBF.

In order to improve this situation and ensure the accurate reconstruction of echo data, the
interpolation order of the array elements with insufficient data can be changed, and the requirement for
calculation points in the interpolation process is relatively reduced. The specific process is as follows

(1) From the number of array elements Na and interpolation order N , the number of missing
elements m can be obtained. Then the range is m ∈ [−Na/2,−(Na+N)/2] ∪ [(Na−N)/2, Na/2].

(2) The principle of decreasing interpolation order is applied in this algorithm. If the interpolation
point advances one element towards the edge, the two-point interpolation order will be reduced
correspondingly. Suppose that ñ is the sampling point after the modified interpolation. Locating
each element of insufficient data and improving the interpolation, Eq. (6) can be rewritten as

y (f, ñ) = y

(
f,

f0
f0 + f

ñ

)
=

Na/2−|ñ|∑
n=|ñ|−Na/2

y (f, n)sinc

(
f0

f0 + f
ñ− n

)
= x(f, ñ) exp

(
−j

2πf0
c

rñ

)
(7)
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From Eq. (7), the data of elements at both ends of the array can be basically filled. According to
the derivation in this section, the phase change between different elements is no longer shifted and only
related to the center frequency after keystone transform, so the aperture fill phenomenon is effectively
eliminated. Meanwhile, the steering vector of the wideband signal has been transformed to the form
of narrowband so that the narrowband adaptive beamforming can be directly applied in the wideband
system.

3. EFFICIENT ADBF ALGORITHM BASED ON ORTHOGONAL PROJECTION
MATRIX

Suppose that the received signal now contains the target signal, wideband jamming signals, and channel
noise as shown in Eq. (1). When calculating the interference sample covariance matrix, the sliding
window algorithm [17] processed in the time domain is usually applied for ADBF, which sets the
protection cells on both sides of the test cell, and the adaptive weight can be calculated for the test cell
independently. Thus, the range IFFT is performed on y(f, ñ), and the time-domain function can be
formulated as

y (t, ñ) = x (t, ñ) exp

(
−j

2πf0
c

d (ñ− 1) sin (θ0)

)
(8)

In the simulation experiment, to avoid the performance loss of signal cancellation in training
samples, the number of protection cells around the test cell u is set to 5, and the covariance matrix can
be estimated by the data of remaining cells as

R =
1

Nr − 11

[
u−6∑
t=1

y (t, ñ) yH (t, ñ) +
Nr∑

t=u+6

y (t, ñ) yH (t, ñ)

]
(9)

The adaptive weight Wsw for the test cell can be written as

Wsw =
R−1a (θ0)

aH (θ0)R−1a (θ0)
(10)

From Eq. (9), it is clear that the optimal weight vector has been obtained under the requirement
of at least Nr times of calculations. However, the sliding window algorithm has excellent performance,
especially in the areas with dense targets, but the computational burden will increase significantly.

After keystone transform, the wideband signal has been converted into the form of narrowband so
that the accurate beam pointing can be obtained because of the cancellation of aperture fill phenomenon.
Meanwhile, the beam pointing angle of the desired signal can be predicted as it is consistent with the
transmitted beam. Therefore, the projection matrix is designed according to the pointing angle of
the transmitting signal directly to suppress the target information. The steering vector C = a(θ0) is
orthogonally complemented to obtain the orthogonal projection matrix

B = I − C
(
CHC

)−1
CH (11)

where BHC = 0 and matrix B is applied to block the target signal. After y(t, ñ) is processed by the
projection matrix, the information of the desired signal is set to zero

y1 (t, ñ) = BHy (t, ñ) = BH

(
P∑
i=1

a (θi) di (t) + n (t)

)
(12)

Rewrite the covariance matrix as follows

R1 = E
[
y1 (t, ñ)y

H
1 (t, ñ)

]
= E

[
By (t, ñ)yH (t, ñ)BH

]
(13)

Substituting Eq. (13) into Eq. (10), the optimal adaptive weight vector is therefore expressed as

WPM =
R−1

1 a (θ0)

aH (θ0)R
−1
1 a (θ0)

=
E
(
By (t, ñ)yH (t, ñ)BH

)−1
a (θ0)

aH (θ0)E (By (t, ñ)yH (t, ñ)BH)
−1

a (θ0)
(14)
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Finally, the LCMV narrowband processing method is enabled to complete the ADBF process.
Compared with the sliding window method, the method of preprocessing by orthogonal projection

matrix has a much lower computational burden as it only adds some calculation amount in the process
of constructing matrix with no need to achieve the location of the desired signal through a large amount
of calculation. Therefore, the performance of the ADBF based on the projection matrix can properly
improve the efficiency and accuracy of beamforming.

The flowchart of the processing chain is shown in Fig. 2.

Figure 2. Flow chart of the proposed algorithm.

4. SIMULATION RESULTS

In this section, comparative simulation results are provided to verify the performance of the proposed
algorithm. The ULA model and LFM signal as target signal are simulated in the experiment. The
simulation parameters are listed as shown in Table 1.

The first experiment demonstrates the benefits of the modified Keystone transform. As illustrated
in Fig. 3(a), the target signal is corrected into a horizontal straight line in the range-element dimension
with at least 3 elements missing data at both ends of the array, but this situation is optimized in Fig. 3(b).
Meanwhile, the signal amplitudes of the 3rd, 16th, and 30th elements are observed in Fig. 4. After the
improved interpolation, the amplitude of the improved algorithm has been significantly increased. It is
clear that the modified keystone transform can not only solve the problem of the aperture effect but
also improve the phenomenon of insufficient data.

Based on the above simulation, the next experiment sets three wideband jamming signals as shown
in Table 1. After the received signal is preprocessed by keystone transform following the processing
chain descripted by Fig. 2, the covariance matrix is constructed in the time domain, and then the LCMV
algorithm [18] is used to accomplish the process of beamforming. In order to verify the performance of
the proposed method, LCMV algorithm and sliding window algorithm are also simulated to obtain the
comparison results.
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Table 1. Simulation parameter table.

Parameter Value
Carrier frequency 100MHz

Bandwidth 400MHz
Sampling frequency 500MHz

Number of array elements 32
Element spacing 0.125m

Direction of the target source −10◦

Direction of the interference sources −40◦ 20◦ 50◦

Input SNR of each frequency point 15 ∼ 30 dB
Input INR of each frequency point 30 dB

(a) (b)

Figure 3. Range-compressed target. (a) Conventional keystone transform. (b) Modified keystone
transform.

(a) (b)

Figure 4. Amplitudes of different array elements after keystone transform. (a) Conventional keystone.
(b) Modified keystone.
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(a) (b)

Figure 5. Estimated angles of the received signal. (a) Before being processed by projection matrix.
(b) After being processed by projection matrix.

As illustrated in Fig. 5, it is clear that, after keystone transform, the angles of different frequency
points can be correctly estimated. Meanwhile, since the DOA of the desired signal is not estimated
in Fig. 5(b), the information of the target is eliminated by projection matrix effectively. Moreover,
due to the random signals applied in the construction of jamming signals, the amplitudes of the DOA
estimation are unequal in the simulations.

In order to obtain comparative results and demonstrate the validity of the proposed approach,
the sample covariance matrices are estimated by using 300 range cells around the test cell in the time
domain. Fig. 6 shows the results obtained by different ADBF schemes after being preprocessed by
keystone transform, and Table 2 shows the output SINR of the three algorithms based on different
input SNRs. When the interference covariance matrix in the method of sliding window is calculated,
20 range cells around the test cell are removed to eliminate the phenomenon of signal cancellation. As
the input SNR increases shown in Fig. 6, it is clear that due to the problem of signal cancellation,
the output SINR of the conventional LCMV algorithm does not increase, but even has a decreasing
trend, hence the target signal with high amplitude will exacerbate the problem of signal cancellation.
The output SINR of the sliding window algorithm, which has the best performance, theoretically, is
linearly related with input SNR. As illustrated in Table 2, the method based on orthogonal projection
matrix always has a similar output SINR to the sliding window. Therefore, the proposed algorithm can
effectively remove the target information in training samples and achieve the best jamming suppression
performance.

Table 2. Output SINR with input INR fixed at 30 dB.

Input SNR/dB
Output SINR/dB

LCMV Sliding Window The Proposed algorithm

15 27.6540 28.4549 28.3621

20 29.2531 33.2078 33.2021

25 29.0062 38.1033 38.0912

30 27.7780 43.0591 43.3524

Furthermore, when we perform the sliding window algorithm, due to the unknown distance
of the target, it is necessary to perform sliding window processing on all range cells to obtain
the location of the detection cell for the optimal weight vector. Suppose that the number of the
array elements is Na and that the number of range cells is Nr, the conventional LCMV method



174 Jiang, Shen, and Han

(a) (b)

(c) (d)

Figure 6. Normalized amplitude of different algorithms. (a) Input SNR = 15 dB. (b) Input
SNR = 20 dB. (c) Input SNR = 25dB. (d) Input SNR = 30 dB.

has a requirement of O(Na3 +Na2 + 2Na) multiplication operations to obtain the adaptive weight.
Thus the sliding window requires O(Nr(Na3 +Na2 + 2Na)) multiplication operations. By contrast,
the proposed algorithm after being preprocessed by orthogonal projection matrix only requires
O(Na3 + 2Na2 + 4Na) multiplication operations. It is clear that the implementation of the approach
based on orthogonal projection matrix yields the capabilities of suppressing jamming comparable to
those of the sliding window algorithm, while the computational burden is effectively reduced.

5. CONCLUSION

This paper presents a new wideband array adaptive beamforming method based on modified keystone
transform and orthogonal projection matrix to improve the performance of ADBF. According to the
inherent characteristics of the two-dimensional data received by the wideband array, we first use the
modified keystone transform to make the wideband equivalent to the narrowband thus eliminating the
effect of aperture fill time. Furthermore, in order to solve the problem of signal cancellation, we construct
the orthogonal projection matrix to remove the desired signal in the training samples which can reduce
computational complexity significantly. The validity of the proposed algorithm is demonstrated by
simulation results.
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