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Redefining of the Radar Cross Section and the Antenna Gain
to Make Them Suitable for Surface Wave Propagation
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Abstract—This paper deals with a new definition of the Radar Cross Section (RCS) suitable for
surface wave propagation in the HF band. Indeed, it can be shown that the classical definition of
the RCS is dependent on distance for this kind of propagation. Also, in simulation, with the classical
definition, the power estimated on the receivers using the radar equation is inaccurate. This is an
issue for the performance assessment of High Frequency Surface Wave Radars. Thanks to the analysis
of different wave propagation models, the differences between the space wave propagation and surface
wave propagation have been highlighted. The required modifications of the RCS can then be performed.
The proposed new definition is explained and justified in the paper and has been successfully applied
to the computation of the RCS of naval targets. In addition, the implementation of this normalization
term into the radar equation, and conversely the gain, is discussed. It can be observed that the received
power, determined with the definitions adjusted to the surface wave propagation, is accurate. The
different obtained results are illustrated and commented.

1. INTRODUCTION

For more than two decades, ONERA (The French Aerospace Lab) has been deploying High Frequency
Radars. These radars, operating in HF band (i.e., from 3MHz to 30MHz), have established themselves
as a low cost solution to detect target beyond the line-of-sight. High Frequency Surface Wave
Radar (HFSWR) is of particular interest for monitoring the Exclusive Economic Zone (EEZ). These
radars are based on the ability of electromagnetic waves to propagate at the surface of the sea, allowing
detections up to 216 nautical miles (400 km). HFSWR have been previously integrated in the European
Union research framework on Integrated Maritime Surveillance Systems (IMSS) [1].

Considerable research works dedicated to HFSWR are still ongoing. The majority of them are
focused on clutter mitigation, oceanography, and antenna radiation pattern optimization. For example,
radiation efficiency can be improved by using metamaterial structures, allowing a considerable increase
in the surface wave power radiated by the transmitting antennas [2].

In order to forecast the performance of surface wave radars on their future deployment sites, there is
an interest in developing a dedicated simulation software. It is then necessary to solve the radar equation
or to know the exact scattered fields impressing the receiving antennas. Therefore, such software will
require a database of RCS from different representative targets. The usual definition (1) of the RCS is
given in [3], and it appears not suitable for surface wave propagation:

σ = lim
R→∞

4πR2 |Es|2

|E0|2
(1)
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Indeed, due to surface wave propagation, the incident field E0 on the target is neither uniform,
nor plane. In addition, electromagnetic fields, and especially the Es field scattered by the target, do
not decay inversely with the distance R. A direct outcome is that the power computed with the radar
equation using the classical definitions is erroneous. In consequence, a new definition of the RCS is
required in order to normalize the global power budget in the simulation. Our approach is mainly based
on the analytical formulation of the field radiated by an elementary dipole as proposed by Bannister [4].
Thanks to the electromagnetic simulation software FEKO, it has been possible to validate that our
definition is well suited for surface wave propagation. In order to simulate realistic radar scenes, various
naval targets have been modelled using 3D modelling software, and their RCSs have been computed,
according to that new definition.

In Section 2, it is highlighted, thanks to numerical simulations, that the usual RCS definition is not
suitable for surface wave propagation. Also, from simulation, it is possible to show that a significant
error is made on the received power using the classical definitions. In Section 3, in order to adjust
the definition of the RCS for surface wave propagation, the analysis of different propagation models is
provided. In Section 4, the new definition of the RCS is introduced and is compared to the classical
one. In Section 5, the results of our RCS formulation, carried on for several naval targets, are discussed.
In Section 6, the integration of the new RCS and gain, modified to suit the surface wave propagation
within the radar equation, is carried out. Results, as obtained from simulations, demonstrate the benefit
of these modified definitions in calculating the received power. Finally, a conclusion is drawn.

2. IRRELEVANT RCS USUAL DEFINITION FOR SURFACE WAVE PROPAGATION

The RCS is a physical quantity that characterizes the target illuminated at a specific frequency but
should not depend on the distance between the radar and the target. In free space, the classical
definition of the RCS fulfills these requirements. This is achieved through the convergence of the limit
in Equation (1) which cancels the dependency of the RCS according to the distance. As anticipated in
the introduction, the magnitude of the HF scattered field over the sea does not decay inversely with
the distance. This issue is highlighted here using the electromagnetic simulation software FEKO. The
MoM (Method of Moment) solver allows the full-wave computation of such a problem. More precisely,
the calculation of Sommerfeld’s integral complements Green’s dyad and gives the contribution of the
surface wave in the total electromagnetic field.

The simulation scene is depicted in Fig. 1: the target is a metallic rectangular plate 40m high and
50m wide. It has a zero thickness in the x direction. The upper medium is air, characterized by ϵ0, the
vacuum permittivity, and µ0, the vacuum permeability. The lower medium is the sea, with the usual
electrical parameters: ϵrr = 81 and σ = 5S ·m−1 and whose relative complex permittivity is ϵr with the

harmonic time dependence ejωt:

ϵr = ϵrr − j
σ

ωϵ0
(2)

Figure 1. Simulation scene of the scattering of a metallic plate above the sea.
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The incident field on the plate is produced by a unitary moment elementary vertical dipole, working
at the frequency of 10MHz, located in the vicinity of the interface (z = 1m), at 50 km from the target,
along the x direction.

A first comparison between the electric field computed by FEKO and the field derived by Bannister’s
formulas [4] has been made in a configuration without the target. Fig. 2 shows the magnitude of the
vertical component of the electric field, at altitude z = 1m, as a function of the radial distance from
the source. The incident fields thus obtained are identical. Moreover, it can be observed, as it is well
known, that the field does not decay inversely with the distance.

Figure 2. Vertical electric field radiated over the sea at z = 1m by a FEKO dipole (located at zero
distance) compared to a Bannister one (at 10MHz and free space propagation).

Then, the field scattered by the plate is computed, at a height of 1m, for all azimuthal angles
and at distances R of 30, 50, and 70 km. The classical formula (1) is applied to these data in order
to compute the bistatic RCS of the target as shown in Fig. 3(a). These results are compared to those
obtained in the more usual calculation condition of free-space (Fig. 3(b)).

(a) Target over the sea (b) Target in free space

Figure 3. Bistatic RCS σ of the vertical plate, located over the sea, (a) compared to a free space
configuration, (b) (at 10MHz).

It can be seen that the resulting RCS depends on the distance in the case of surface wave propagation
and not in the case of free space propagation, as expected. Such a result was predictable because the
propagation properties of free-space waves and surface waves differ significantly.

In the previous section, the losses effect on the RCS has been highlighted. The RCS is useful for
switching from electromagnetic theory to radar system via the use of the radar equation, and therefore
allows the radar to be designed according to the targets to be detected, the observation range and the
power involved. In the case of propagation with losses, which is representative of the use of a surface
wave radar, the radar equation, in its simplest form is:

Wr =
WtGt

4πR2
A

1

LA

σ

4πR2
B

1

LB

λ2Gr

4π
(3)

We recall the definition of the following quantities: Wt is the power radiated by the transmitting
antenna; Wr is the received power; Gt is the gain of the transmitting antenna; Gr is the gain of the
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receiving antenna; σ is the target RCS; RA and RB are the transmitter to target and target to receiver
distances, respectively; λ is the wavelength used; and LA and LB are the propagation losses along the
forward and backward paths, respectively. These are due to the interaction between the wave and the
sea surface, and are computed [4] relatively to the free space case as follows:

LA,B = 20 log

(
Efs(RA,B)

E(RA,B)

)
(4)

where Efs(RA,B) is the magnitude of the field radiated at distance RA,B by the source in free space,
and E(RA,B) is the magnitude of the field radiated at the same distance by the source above the sea
surface.

Gain of the antennas G is closely related to the directivity D and also takes into account the
radiation efficiency of the antenna. It is defined, with η being the radiation efficiency of the antenna,
as:

G(θ, φ) = ηD(θ, φ) (5)

the directivity D is:

D =
R2Srad

Wrad

4π

(6)

with Srad being the radiated power density and Wrad the total power radiated by the transmitter. The
interest is now focused on the impact of these terms in the radar equation, especially for the evaluation
of the power received by the receiving antenna.

The simulation scene has a transmitter array of three monopoles (separated by a distance of λ/2
two by two). The target is the container ship, and the receiver is composed of an array of eight
monopoles (also separated by a distance of λ/2 two by two). The simulation is performed for a usual
sea (εrr = 81, σ = 5S ·m−1) and a frequency of 10MHz. The simulation scene is shown in Fig. 4.
The radar configuration is bistatic with the transmitter located at RA = 40 km from the target and the
receiver placed at RB = 70 km. The target is illuminated with φi = 0◦ and is observed from an angle
φs = 15◦.

Figure 4. Simulation scene for the application of the radar equation.

The transmitted power Wt is normalized to 1W. Using FEKO, the incident power density on the
target Si is determined. The power density Ss scattered by the target is evaluated at 70 km from the
target at the sea interface. Finally, the received power WRFEKO

is obtained by summing the powers on
each receiving element. Furthermore, the propagation losses LA and LB, with respect to free space, are
also obtained by simulation. The values of the different terms are given in Table 1.
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Table 1. Terms of the radar equation computed with FEKO.

Si −93.95 dBW ·m−2

LA −4.26 dB

Ss −167.33 dBW ·m−2

LB −2.97 dB

WrFEKO −110.74 dBm

In a first approach, the result given by the classical radar Equation (3) to determine the power
on the receiving antennas Wrcls is compared to the reference received power WrFEKO , computed with
FEKO. For this purpose, the transmitter and receiver antenna gains and the RCS are determined using
the classical formulations (5) and (1). The transmitter gain Gt is determined (using Equation (6) and
assuming a unitary efficiency) at the distance RA from the source. The RCS σ and receiver gain Gr are
estimated (using the same conditions as for Gt) at the distance RB. The values of the different terms
are provided in Table 2.

Table 2. Terms of the radar equation determined using classical equations.

Gt(φi = 0◦) 9.06 dB

σ(φd = 15◦) 34.63 dB ·m2

Gr(φd = 15◦) 11.16 dB

Wrcls −100.59 dBm

As expected, the received power calculated using the classical definitions of gain and RCS does
not correspond to the power determined in simulation. The classical method overestimates the received
power by about 10 dB. Hence, it is clearly necessary to develop a specific approach. A possible solution
is to modify, as much as needed, the definitions of the RCS and gain for surface wave propagation.
Therefore, it is first required to study the characteristics of such a propagation mode.

3. VARIOUS SURFACE WAVE PROPAGATION MODELS

3.1. Introduction

At the beginning of the 20th century, Guglielmo Marconi, already considered as a pioneer in radio
communication, successfully completed the first transatlantic radio-telegraphy link [5]. At that time,
it was not known that the ionosphere could, by means of reflection, allow transmissions far beyond
the line-of-sight. It was then assumed that this major scientific achievement was due to a surface wave
propagation over the sea. This was the outset for many researches dealing with surface wave propagation
at the interface of a conductive medium.

Zenneck demonstrated mathematically, in 1907 [6], that a surface wave can propagate at the
interface between two media. However, he did not explain what was the source of these waves.
Sommerfeld was the first to demonstrate the possible excitation of a surface wave radiated by a physical
source on a conductive half-space [7]. He was able to calculate the expressions of electric and magnetic
fields radiated by electric and magnetic dipoles placed arbitrarily over a conductive interface.

In addition, Norton in 1937 significantly simplified Sommerfeld’s work in order to make it usable
by engineers of his time [8]. Norton’s theoretical model is still relevant today as it has been validated
by experiments on surface wave propagation.

Despite a large number of propagation models available in the scientific literature, the issue of
the unsuitability of the classical RCS in the case of surface wave propagation does not seem to have
been addressed yet. To that end, the analysis of different propagation models is necessary in order to
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synthesize the main characteristics of surface wave propagation. The interest here is mainly focused on
three propagation models. The first one is Bannister’s model, based on Norton’s work: it analytically
separates the field in three components, a direct wave, a ground-reflected wave, and a surface wave,
radiated by a dipole placed at an arbitrary height above a plane half-space. The second one is
Rotheram’s model [9]: this analytical model takes the roundness of the Earth into account as well as
an exponential variation of the refractive index of the atmosphere. This model is the one recommended
by the International Telecommunication Union (ITU). Finally, the last propagation model available is
based on the parabolic wave equation [10]. It allows in particular to consider strong variations of the
atmospheric refraction index.

3.2. Bannister’s Model

Since our formulation of a new RCS suitable for the surface wave propagation will be primarily based
on Bannister’s work [4], it has been chosen to describe it precisely. The geometry under consideration
is depicted in Fig. 5.

Figure 5. Geometry under consideration.

We are only interested here in the fields radiated by an elementary vertical electric dipole located
over the interface, at an altitude h. The impedance of free space is η0 = 377Ω; the free-space wave
number is k0; p is the electric-current moment; and the surface impedance normalized to air impedance
is ∆:

∆ =
1√

ϵrr − j
σ

ωϵ0

(7)

The Fresnel reflection coefficient for vertical polarization Γ|| is defined as:

Γ|| =
sinΨ1 −∆1

sinΨ1 +∆1
(8)

where ∆1 is:

∆1 = ∆
√

1−∆2 cos2Ψ1 (9)

In order to improve the readability of the fields equations, they have been simplified with the
assumption that the observation point is located at a large distance from the dipole (|k0R2| ≫ 1).

The various non-zero fields components, in cylindrical coordinates, are:

Eρ =
jk0η0p

4π

(
sinΨ1 cosΨ1

e−jk0R1

R1
+ Γ|| sinΨ2 cosΨ2

e−jk0R2

R2
− (1− Γ||)∆F (w) cosΨ2

e−jk0R2

R2

)
(10)
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Ez = − jk0η0p

4π

(
cos2Ψ1

e−jk0R1

R1
+ Γ|| cos

2Ψ2
e−jk0R2

R2
+ (1− Γ||)F (w) cos2Ψ2

e−jk0R2

R2

)
(11)

Hφ =
jk0p

4π

(
cosΨ1

e−jk0R1

R1
+ Γ|| cosΨ2

e−jk0R2

R2
+ (1− Γ||)F (w) cosΨ2

e−jk0R2

R2

)
(12)

As can be seen, the fields components are the sum of a direct wave, a ground-reflected wave,
characterized by the Fresnel reflection coefficient Γ||, and a surface wave involving the function F (w).
F (w) is the Norton attenuation function and is expressed as:

F (w) = 1−
√
πwe−werfc

(
j
√
w
)

(13)

where w is the Sommerfeld numerical distance and is defined as:

w =
1

2
jk0R1∆

2
(
1−∆2

)
(14)

and where the complementary error function erfc is:

erfc
(
j
√
w
)
=

2√
π

∫ ∞

j
√
w
e−z2 dz (15)

It is remarkable that, when the transmitting antenna is located at the interface (h = 0m), which is a
common scenario for HF radar, the longitudinal to vertical electric field magnitude ratio for Ψ1 = Ψ2 = 0

is |Eρ

Ez
| = |∆|.
As an example, for a usual sea and at 10MHz, |∆| ≈ 0.0105. A low ratio can be observed for the

whole HF band, explaining why we generally consider only the vertical field to be of interest in HFSWR.
The study with this propagation model is limited by the validity of the flat Earth model. It has

been shown that the corresponding distance limit is [11]:

dc = Re

(
π

λ0
Re

)− 1
3

(16)

with Re = 6371.103m the radius of the Earth. The analysis carried out here at 10MHz is therefore
restricted to a maximum distance of dc = 70 km. The curves below show the variations, normalized
at sea level, of the amplitude and the phase of the electric field as a function of the altitude. This
comparison is performed for several distances between 30 and 70 km.

Useful information can be deduced from Fig. 6. Firstly, even if the amplitude of the field is not
uniform, the amplitude variations as a function of altitude, at a fixed distance, are small, in the order of
10% at 100m. Secondly, these variations as a function of altitude are almost linear and change not much
with distance. Similar conclusions can be drawn for the phase. In order to reinforce these conclusions,
particularly at large distances for which flat Earth hypothesis is no longer valid, a similar analysis has
been performed with Rotheram’s model via the GRWAVE software.

Figure 6. Bannister’s model: Variations of Ez (amplitude and phase) at different distances (f =
10MHz, sea: ϵrr = 81 and σ = 5S ·m−1).
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3.3. Rotheram’s Model

Rotheram’s method is a very comprehensive and analytical model implemented in the GRWAVE [9]
software. It allows the calculation of the electric field amplitude at an observation point arbitrarily
placed above a round Earth assumed to be homogeneous. This approach can be considered as an
extension of Bremmer’s work [12]. The latter uses a residue calculation to determine the field radiated
by an electric dipole. It should be noted that Bremmer’s method, and consequently Rotheram’s, as well
as the method developed by Norton, have been checked against experimental results [13, 14]. Under the
measurement conditions (a terrain with little relief and a low sea state), the comparisons showed that
these models, in their respective range of validity, allow an accurate calculation of propagation losses.
The behaviour of the surface wave is therefore well modelled.

Since Rotheram’s method does not allow the phase of the electric field to be determined, the focus
is only on amplitude variations. The analysis is analogous to the one carried out for Norton’s model.
However, as the range of validity is larger in distance, the analysis is extended up to 200 km.

Significant observations in Fig. 7 are equivalent to those stated with Bannister’s model. The
variation in field strength with altitude is small, about 10%. Above all, it is interesting to observe that
the variation curves converge to a single one from a distance greater than 70 km. The incident wavefront
on the target is then substantially the same, whatever the distance is. To take the study further, a
similar analysis is carried out with a commonly used numerical propagation model.

Figure 7. Rotheram’s model: Variations of |Ez| at different distances (f = 10MHz, sea: ϵrr = 81 and
σ = 5S ·m−1).

3.4. Parabolic Wave Equation Model

The parabolic equation was introduced in the 1940s by Leontovitch and Fock [15]. Their research
dealt with the problem of wave propagation around the Earth. The parabolic equation is so named
because a paraxiality hypothesis is applied to derive it. This approach, in view of the initial complexity
of the calculation, did not particularly interest the scientific community, and it was not until Tappert
introduced the Split-Step Fourier resolution method that it began to be used [16]. It was first applied to
the question of underwater sound wave propagation. It proves to be of good efficiency for propagation
media with large variations in vertical and horizontal refractive indices. With n the refraction index,
the standard 2D parabolic wave equation is:

∂2u

∂z2
− 2jk0

∂u

∂r
+ k20

(
n2 − 1

)
u = 0 (17)

The literature offers many techniques for solving this equation. The approach used here is a finite
element method described by Apaydin [10]. The two-dimensional space is meshed along the abscissa
and the ordinate. The discretization steps are respectively δr and δz. The implementation of a Crank-
Nicolson method allows a matrix resolution of the system of partial differential equations. A defect
of the method used here is that the source is supposed to be Gaussian, which does not correspond to
the radiation pattern of a dipole. The necessary modifications are complex and not of great relevance
because, at large distances, only the surface wave remains. Consequently, they have not been carried
out here.
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That propagation model is used for the same frequency and soil parameters as defined in the
previous sections. The atmosphere is considered as standard, the horizontal and vertical steps are
respectively δr = 100m and δz = 10m.

The analyses previously carried out about the evolution of the amplitude and phase of the electric
field as a function of altitude for different distances remain valid with that numerical model, as it can
be seen in Fig. 8.

Figure 8. Parabolic Equation: Variations of Ez (amplitude and phase) for different distances
(f = 10MHz, sea: ϵrr = 81 and σ = 5S ·m−1).

These various results form the basis for the reasoning behind the redefinition of the concept of Radar
Cross Section applied to surface wave radar. The assumption is that the variations, as a function of
distance, of the vertical distribution of electric and magnetic incident fields on the target are negligible.
In such a case, the scattering of the target should be independent of the distance. This hypothesis,
valid in the band of interest [5–15MHz], has been extended by looking at the impact of the sea on
propagation. The sea state has been taken into account using the method developed by Barrick [17],
and the conclusions are the same as for a glassy sea.

4. A RCS DEFINITION SUITABLE FOR SURFACE WAVE PROPAGATION

There are few references in the literature on surface wave Radar Cross Section, that is potentially due
to the confidential nature of that topic. Some works dealing with RCS for HFSWR consider a perfect
electrically conductive ground [18], which intrinsically does not allow the excitation of a surface wave.
Others deal with the question by introducing the notion of apparent RCS [19]. In this case, they
associate propagation and RCS in a single quantity σa with F which accounts for the propagation losses
with respect to free space (where the RCS σfs is defined in free space):

σa = F4σfs (18)

This definition is applied to determine the RCS for a given propagation medium. It requires a
propagation calculation to be performed for the different simulation scenes. The concept of apparent
RCS loses its meaning as it no longer characterises the target only. However, apparent RCS is very useful
for propagation media that are complex to process, for example in the case of scattering from a target
behind an island. Our work takes place in the classical framework of target detection with a HFSWR,
with a target detected without any obstacle between the radar and the target. The definition of RCS
suitable for surface wave propagation called σSW follows the steps of the definition of the classical RCS.
The source of the incident wave is assumed to be close to the ground. The incident power density Si,
related to the vertical field, in cylindrical coordinates, is:

Si =
1

2
EziH

∗
φi

=
1

2

|Ezi |2

η0
(19)

The subscript i stands for incident. As seen in the previous section, the distribution of the field
varies according to the altitude. The assumption here is that the field follows the same variation along
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the altitude regardless of the distance. It is then possible to express the incident field power density as
the arithmetic mean of this density on the target, with htarget denoting the height of the target.

Si =
1

2η0

1

htarget

∫ htarget

0
|Ezi(z)|2dz (20)

Denoting σSW the RCS suitable for the surface wave propagation, the power P scattered by the
target is:

P = σSWSi =
1

2η0
σSW

1

htarget

∫ htarget

0
|Ezi(z)|2dz (21)

The usual definition of the RCS assumes an omnidirectional diffusion of the field which decays
inversely with the distance R. That is not compatible with a propagation over the sea. The scattered
field must contain the direct field, the reflected field and the correction term, namely the surface wave.
The solution is based on Bannister’s radiation formulas. It is then necessary to introduce a function
C, which is a compensation function for the field variation with distance. Again, for readability, some
higher order terms are neglected because they have a very small influence at large distances from the
target. This function is dependent on the frequency, the position of the observation point and the
ground parameters and is defined using the functions Γ|| and F (w), introduced in Section 3.2, as:

C(Γ||, F (w)) = |1 + Γ|| + (1− Γ||)(F (w))|2 (22)

In this case, with the subscript s which stands for scattered, the power density Ss, radiated by the
target, is:

Ss =
1

2

|Ezs |2

η0
=

P

4πR2
C(Γ||, F (w)) =

σSWSi

4πR2
C(Γ||, F (w)) (23)

σSW =
4πR2

C(Γ||, F (w))

Ss

Si
= 4πR2 1

C(Γ||, F (w))

|Ezs |2

1

htarget

∫ htarget

0
|Ezi(z)|2dz

(24)

Considering the long-distance scattered field, conventionally noted as a limit, the RCS suitable for
surface wave propagation is then:

σSW = lim
R→∞

4πR2 1

C(Γ||, F (w))

|Ezs |2

1

htarget

∫ htarget

0
|Ezi(z)|2dz

(25)

The convergence of this new definition can be verified by applying it to the configuration considered
in Section 2. As it can be seen in Fig. 9(a), the three curves, when plotting the new RCS σSW for the
three previous distances, are superimposed. It shows the suitability of that new definition to surface
wave propagation. For comparison, Fig. 9(b) shows the RCS computed using the classical definition.
The new formulation makes it possible to define a quantity independent of distance and representative
of the reflectivity of canonical targets. In order to simulate radar scenarios typical of the use of HFSWR,
a similar analysis must be performed for quasi-realistic targets.

(a) Application of equation (25) (b) Application of equation (1)

Figure 9. Bistatic RCS σSW of a vertical plate in the case of surface wave propagation, (a) compared
to the classical RCS σ, (b) (at 10MHz).
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5. APPLICATION TO VARIOUS NAVAL TARGETS

HF Surface Wave Radars can be employed to cover a variety of threats. This may involve boats of
very different sizes, ranging from small boats (< 15m) for trafficking activities to very large vessels
(> 200m), diverging from their shipping routes. The resulting RCS σSW are illustrated here for two
different characteristic targets: a fishing boat dimensioned according to the plans of a fishing vessel
common in the Mediterranean and a classic container ship. In the case of the fishing vessel, the interest
is focused not only on the convergence of σSW as a function of distance, but also on the comparison of
results for different illuminating sources: dipoles at different distances and a plane wave.

A blueprint and the created 3D model of the fishing vessel can be seen in Fig. 10. Modelling is
performed with a free 3D CAD software, which allows the use of NURBS surfaces.

Figure 10. Blueprint and 3D model of the fishing vessel (Blueprint from: http://hobimaketmodel.
blogspot.com/).

5.1. Fishing Vessel

The simulation scene can be seen in Fig. 11: the target is a 29.8m length, 8m beam, and 13m air
draft fishing boat. The upper medium is air, and the lower medium is the sea. The incident field on
the target is generated by an elementary dipole, located in the vicinity of the interface (z = 1m), and
radiating 50 km away from the target.

Figure 11. Simulation scene of the scattering of a fishing vessel above the sea.

The scattered field is computed for all azimuthal angles at distances R of 30, 50 and 70 km from the
target and at a height of 1m. The simulation frequency is 10MHz. Equation (25) is applied to these
data in order to compute the bistatic RCS σSW of the target as shown in Fig. 12(a). For comparison,
the RCSs computed using the classical definition in Eq. (1) are depicted in Fig. 12(b). It can be seen
that σSW does not depend on the distance and is anew well suited for surface wave propagation.
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(a) Application of equation (25) (b) Application of equation (1)

Figure 12. Bistatic RCS σSW of a fishing vessel in the case of surface wave propagation, (a) compared
to the classical RCS σ, (b) (at 10MHz).

The second simulation deals with the comparison of RCS σSW results for different sources. Indeed,
as discussed in Section 3, the vertical distribution of the incident field on the target is critical for the
RCS σSW . The scattered field is calculated here at 50 km for three different incident field sources
switched on and off sequentially. These sources are three dipoles placed at 30, 50 and 70 km from the
target located alongside the plane y = 0. Fig. 12 shows the convergence of the RCS σSW for one source
and several diffraction distances. Fig. 13 shows the convergence of the term for several sources and a
single diffraction distance. The resulting curves are exactly alike, which underlines the uniqueness of
this new RCS for a given ship at a given frequency.

Figure 13. Bistatic RCS σSW of a fishing vessel illuminated by surface waves emanating from three
different location of sources (at 10MHz).

5.2. Container Ship

With the objective of verifying the expected convergence according to the distance of the RCS σSW
term for large targets, the modelling of a container ship has been carried out. The target is 170m long,
35m wide with a vertical clearance of 34m. The simulation involves an incident field radiated by an
elementary dipole. The simulation scene is depicted in Fig. 14. The scattered field is computed for
all azimuthal angles at a distance R of 30, 50 and 70 km from the target and at a height of 1m. The
simulation frequency is 10MHz.

The formula (25) is applied to these data in order to compute the bistatic RCS σSW of the target.
It can be seen in Fig. 15 that the RCS σSW does not depend on the distance. It is also noteworthy
that the variations in RCS depending on the viewing angle are greater than those for the fishing vessel.
This can be explained by the quasi-optical behaviour of the incident wave on the target. In fact the
wavelength here is electrically small compared to the length of the ship. This latter result confirms that
the new definition is well suited to this particular mode of surface wave propagation, even in the case
of large targets.
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Figure 14. Simulation scene of the scattering of a container ship above the sea.

(a) Application of equation (25) (b) Application of equation (1)

Figure 15. Bistatic RCS σSW of a carrier ship in the case of surface wave propagation, (a) compared
to the classical RCS σ, (b) (at 10MHz).

6. RADAR EQUATION

With the help of different propagation models, significant modifications have been performed to obtain
a definition of the RCS suitable for this specific propagation. At the beginning of the paper, it has been
announced that it was not possible to determine the power received in simulation with the usual radar
equation. It is now necessary to check this assertion in the case of the adjusted RCS definition.

6.1. Gain Definition Suitable for Surface Wave Propagation

In the radar equation, the RCS is not the only term to be defined using assumptions about field
propagation. Indeed, Equation (3) involves directivity D, through the gain G of the antennas. In the
same way as the RCS, one can question the application of the classical definition of gain for surface
wave propagation. For this, we can again investigate the dependency of the gain on the distance. In
this part, an array of 3 monopoles in transmission is considered. The main lobe is centered at ϑ = 90◦

and φ = 0◦. The system is matched for operation at 10MHz, and Fig. 16 depicts the antennas used.
Before checking the applicability of the classical definition of gain, the formulas adjusted to surface

wave propagation for directivity and gain are introduced. The modification to be made, in order to take
into account the surface wave properties, deals with the directivity D. In Equation (6), the squared
distance corresponds well to the distance evolution of the power density radiated by the antenna for a
classical free space propagation. For surface wave propagation, the directivity DSW is defined using the
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Figure 16. 3D representation of the 3 monopoles antenna array in FEKO.

compensation coefficient C(Γ||, F (w)):

DSW =

R2Srad

C(Γ||, F (w))

Wrad

4π

(26)

It follows a new expression of the gain GSW of the antenna, given by:

GSW (θ, φ) = ηDSW (θ, φ) (27)

Equations (5) and (27) are applied to the obtained simulation data on the monopoles array. The
results are presented in Fig. 17. The good convergence of the gain term GSW , modified for surface wave
propagation, can be observed. On the contrary, the classical gain G term does not converge as expected
and depends on distance.

(a) Application of equation (27) (b) Application of equation (5) 

Figure 17. Gain GSW of an array of 3 monopoles in the case of surface wave propagation, (a) compared
to the classical gain G, (b) (at 10MHz).

6.2. Simulation and Application to the Radar Equation

After adjusting the gain and the RCS for surface wave propagation, the interest is focussed now on the
impact of these terms in the radar equation, especially for the evaluation of the power received by the
receiving antenna. The new radar equation considered for the following simulations and applications is
the following:

WrSW =
WtGtSW

4πR2
A

1

LA

σSW
4πR2

B

1

LB

λ2GrSW

4π
(28)
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where Wt is the power radiated by the transmitting antenna; WrSW is the received power after
application of the definitions tuned for surface wave propagation; GtSW is the transmitting gain; GrSW

is the receiver gain; σSW is the target RCS; RA and RB are the transmitter to target and target to
receiver distances, respectively; λ is the wavelength; LA and LB are the propagation losses respectively
for the path between the transmitter and the target and between the target and the receiver.

The simulation scene and its characteristics are shown in Fig. 4, in Section 2. The formulas adjusted
to surface wave propagation for gain GSW (Equation (27) assuming antennas with unitary efficiency)
and RCS σSW (Equation (25)) are applied to determine the received power WrSW . The different terms,
and their values, are summarized in Table 3. It appears that the calculation of the received power
(Wrsw = −110.84 dBm) corresponds well to the power obtained in simulation with the FEKO software
(WrFEKO = −110.74 dBm).

Table 3. Factors of the radar equation determined with definitions appropriate for surface wave
propagation.

GtSW (φi = 0◦) 4.83 dB

σSW (φd = 15◦) 31.55 dB ·m2

GrSW (φd = 15◦) 8.21 dB

WrSW −110.84 dBm

7. CONCLUSION

In this paper, it has been shown that the usual free space definition of the Radar Cross Section and the
antenna gain are not suitable in the case of a surface wave propagation, as they are not independent
of the distance. Thanks to the study of three analytical and numerical models, an analysis of the
surface wave propagation has been performed. Using Bannister’s equations set, we have proposed a
new definition of the RCS suitable for the surface wave propagation and independent of the observation
distance. RCS variations of two distinct ships have been computed and discussed. They confirm the
relevance of the new definition of the RCS in the case of surface wave propagation. The interest was
then focused on the implementation of this term in the radar equation. For this, it was required to also
adjust the definition of the gain to the surface wave propagation using the same approach. It could
then be observed that using the two adjusted definitions, the calculated received power corresponds well
to the one determined in simulation. In the future, comparisons with measurements undertaken with
previous and new prototype of surface wave radars developed by ONERA will be carried out.
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