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Noninvasive Continuous Glucose Monitoring on Aqueous Solutions
Using Microwave Sensor with Machine Learning
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Abstract—In this paper, an electrically-small microwave dipole sensor is used with machine learning
algorithms to build a noninvasive continuous glucose monitoring (CGM) system. As a proof of concept,
the sensor is used on aqueous (water-glucose) solutions with different glucose concentrations to check
the sensitivity of the sensor. Knowledge-driven and data-driven approaches are used to extract features
from the sensor’s signals reflected from the aqueous glucose solution. Machine learning is used to build
the regression model in order to predict the actual glucose levels. Using more than 19 regression models,
the results show a good accuracy with Root Mean Square Error of 1.6 and 1.7 by Matern 5/2 Gaussian
Process Regression (GPR) algorithm using the reflection coefficient’s magnitude and phase.

1. INTRODUCTION

Diabetes is a chronic disease that occurs because of the high levels of glucose in the blood [1]. According
to the International Diabetes Federation (IDF), 463 million people are currently living with diabetes,
and this number is projected to reach 573 million by 2030 [2]. People with diabetes are encouraged
to regularly check their blood glucose levels to monitor any changes (increasing or decreasing) in those
levels and to adjust their medications accordingly. This process is called Continuous Glucose Monitoring
(CGM), and it is categorized based on the invasiveness as invasive, minimally invasive, and noninvasive.

Invasive techniques are the most widely used because they have the highest accuracy. In invasive
CGM, a blood sample is extracted using a lancet; typically, the fingertip is the most widely used human
body part from which the blood is extracted. The blood sample is read by a glucometer to measure the
glucose level. Due to the pain and inconvenience caused by the frequent finger prick, minimally invasive
techniques are introduced to help in reducing the pain. In minimally invasive techniques, measuring
the glucose level is done by subcutaneous needle-type electrodes implanted in the body. However, these
techniques are still not recommended because they involve direct interaction with tissues and need to be
replaced from time to time. In addition, minimally invasive devices are not as accurate as the invasive
ones. The last and most recent category is the noninvasive techniques in which there is no need for any
blood sample extraction or any implantation of electrodes in the body.

Many research groups are working on developing noninvasive CGM methods using different body
fluids. Those fluids include blood [3], saliva [4], sweat [5, 6], urine [7], tears [8, 9], breath [10], and
interstitial fluid [11]. Clearly, there is a need for a noninvasive CGM device, which is simple, pain-
free, and relatively inexpensive. In this paper, an electrically-small microwave dipole sensor is used
with machine learning algorithms to build a noninvasive CGM system. Initially, the sensor is used on
aqueous solutions with different glucose concentrations as a proof of concept and in order to check the
sensitivity of the sensor to those concentrations. Machine Learning (ML) techniques are used to analyze
the aqueous glucose data and build regression models to predict the glucose levels. The physical principle
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of using microwaves in monitoring glucose is based on the fact that microwave sensors do not produce
ionizing radiation, so the molecular structure of the material under test (MUT) remains unaltered. In
addition, the reflected signal will contain a signature that depends on the concentration of the glucose
in the MUT.

2. METHODOLOGY

In this section, we will show the methodology of the system. The experimental setup consisting of
an electrically-small dipole sensor (the sensor used is adopted from [12]), a keysight 8.5GHz VNA
(E5071C), and glucose-water solutions with nine different concentrations as shown in Fig. 1.

Figure 1. The experimental setup.

The methodology of the system is shown in Fig. 2. First, we prepare the aqueous glucose solutions
and place the microwave sensor on top of those solutions to start reading the signals. Then, machine
learning is applied by starting with prepossessing to clean and prepare the data for feature extraction.
In the feature extraction step, we reduce the dimensionality of the feature space and include the most
relevant features only. Next, we train the system to build the regression model which will be used to
predict actual glucose concentrations. In the next subsections, we will give a brief explanation of the
different components and techniques used by the system.

Figure 2. Building blocks of the prediction process.

2.1. The Dipole Sensor

The sensor was designed as a printed dipole of length 92mm and trace width of 2mm hosted on a
RO4003 Rogers material with a thickness of 1.52mm and a dielectric substrate of a relative permittivity
of ϵr = 3.38. The electrical length of the dipole is λ/12 (where λ is the wavelength in free space)
which results in a very low radiation efficiency (corresponding to near unity reflection coefficient (S11)).
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The dipole sensor is operated over the frequency range of 100–300MHz, thus providing radiation that
penetrates effectively inside the human body. The dipole is tuned to resonate at 200MHz. We emphasize
that the frequency range was only considered based on purely physical considerations, and, therefore,
other frequency ranges could have been selected provided that the radiation penetration remains
sufficient within the solutions and/or the human body, and also provided that the antenna/probe
remains sufficiently small to be used in practical scenarios. (More information about the design of the
sensor is available here [12].)

The sensor was placed above the solution with a standoff distance of 5mm (see Fig. 3). The aqueous
solutions are made up of 9 different concentrations: (0 (i.e., water only), 2, 4, 6, 8, 10, 14, 28, 42mg\dl).
The magnitude and phase of the reflection coefficient (S11) of the sensor were then recorded via the
VNA at 201 uniformly spaced frequencies spanning the operating frequency range of 100 to 300MHz.

Figure 3. The Dipole Sensor and its proximity to the solution.

In order to have a clear picture about the nature of the data, in Figs. 4 and 5, we show the
responses of the dipole sensor with the water-glucose solutions for the nine different concentrations
using the (S11) magnitude and phase. We observe that the range of frequencies that have the most
notable discrimination between the responses due to different glucose levels using S11 magnitude and
phase are 140–240MHz and 170–200MHz, respectively, as shown in Figs. 4(b) and 5(b). We observe that
the most notable difference between the nine different glucose concentrations occurs around 180MHz.

(a) (b)

Figure 4. Magnitude of S11 for different glucose levels. (a) Entire frequency range. (b) Frequency
range of interest.
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(a) (b)

Figure 5. Phase of S11 for different glucose levels. (a) Entire frequency range. (b) Frequency range of
interest.

Next, we imported and prepared the data using MATLAB [13] to be in a suitable form for feature
extraction.

2.2. Feature Extraction

In this subsection, we highlight the step of feature engineering in order to reduce the dimensionality of
the feature space by excluding any redundant or irrelevant features and include the most discriminative
features only. Our data consisted of three feature vectors: magnitude, phase, and frequency. Each
feature vector contains 201 values, which corresponds to the 201 frequencies and the S11 magnitude and
phase values of each frequency. We adopted two different approaches to extract the feature: a data-
driven approach and a domain-knowledge approach. In the data-driven approach, we used Principle
Component Analysis (PCA) [14] and selected the highest two Principle Components (PCs) as they
preserve 95% of the variance of the whole data. In the domain knowledge-driven approach, we selected
the frequency with the minimum S11 magnitude and phase (The resonance area). We extracted the
minimum two values of S11 magnitude and phase. It is worth mentioning here that in both approaches,
only two features have been selected from the entire 201 features. This selection of reduced features
will help to easily train the regression model in the next step.

Figure 6. PCA using Magnitude of S11 with different glucose levels.
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2.3. Regression

Finally, after selecting the most relevant features, they were inputted in the regression model to predict
the actual glucose concentrations. A total of 19 different regression models were trained using Matlab
regression learning App. RMSE was used as the criteria to select the most accurate regression model
(least RMSE).

3. RESULTS AND DISCUSSION

First, we will show the results of the feature extraction step. Here we have four different features:
highest 2 PCs using S11 magnitude, highest 2 PCs using S11 phase, minimum two S11 magnitude, and
minimum two S11 phase. Figs. 6 and 7 show the values of the nine glucose levels representing by the

Figure 7. PCA using Phase of S11 with different glucose levels.

Figure 8. Minimum two Magnitude of S11 with different glucose levels.
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Figure 9. Minimum two Phase of S11 with different glucose levels.

highest two PCs using magnitude and phase of S11. Figs. 8 and 9 show the values of the nine glucose
levels representing by the minimum two S11 magnitude and phase, respectively.

As we can see from all the figures representing the glucose levels with different extracted features,
there is a noticeable difference between the glucose levels. However, this difference is not the main goal
of the model, and we need to have a good regression function that will easily map each value to its
corresponding glucose level with a high accuracy.

Now we will show the results of the best regression models using all the different features approaches
(Minimum S11 magnitude and phase, and highest 2 PCs using both magnitude and phase). Results
from the Matern 5/2 Gaussian Process Regression (GPR) algorithm [15, 16] showed the least RMSE
with 1.6 and 1.7 using minimum S11 magnitude and phase, respectively. This selection of the minimum
S11 magnitude and phase is worthy comparing to the available small data size. Figs. 10 and 11 show the
response plot of the prediction model by the Matern 5/2 Gaussian Process Regression (GPR) algorithm
using the minimum S11 magnitude and phase values to predict the actual aqueous glucose levels.

Figure 10. Response plot of the prediction model using minimum Magnitude of S11.
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Figure 11. Response plot of the prediction model using minimum Phase of S11.

Results of the regressions using the highest two PCs gave RMSE = 6.7 and 7.7 using S11 magnitude
and phase, respectively. Those results were obtained using cubic support vector machine (SVM) [17]
regression algorithm.

4. CONCLUSION

In this paper, an electrically-small microwave dipole sensor is used with machine learning algorithms
to build a noninvasive CGM system. As a proof of concept, the sensor is used on aqueous (water-
glucose) solutions with nine different glucose concentrations to check the sensitivity of the sensor to
those different glucose concentrations. Feature engineering uses knowledge-driven and data-driven
approaches to extract the features from the sensor’s reflection coefficient from the aqueous glucose
solutions. Machine learning is used to train and build the regression model using those extracted
features in order to predict the actual glucose levels. Using more than 19 regression models, the results
from minimum S11 magnitude and phase showed a good accuracy with Root Mean Square Error (RMSE)
around 1.6 by Matern 5/2 Gaussian Process Regression (GPR) algorithm. Regression using the data-
driven approach by applying PCA with the highest two PCs gave higher RMSE than knowledge-driven
features (minimum S11 magnitude and phase). In the future, we will use more data and different types
of microwave sensors to improve the accuracy of the prediction. In addition, the sensor will be used
with human body tissues in order to build a noninvasive CGM system.

ACKNOWLEDGMENT

The authors acknowledge the Hadhramout Foundation, Hadhramout, Yemen for their support during
this research.

REFERENCES

1. DeFronzo, R. A., E. Ferrannini, P. Zimmet, and G. Alberti, International Textbook of Diabetes
Mellitus, John Wiley & Sons, 2015.

2. Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri,
L. Guariguata, A. A. Motala, K. Ogurtsova, et al., “Global and regional diabetes prevalence
estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes
federation diabetes atlas,” Diabetes Research and Clinical Practice, Vol. 157, 107843, 2019.



134 Bamatraf, Aldhaeebi, and Ramahi

3. Hanna, J., M. Bteich, Y. Tawk, A. H. Ramadan, B. Dia, F. A. Asadallah, A. Eid, R. Kanj,
J. Costantine, and A. A. Eid, “Noninvasive, wearable, and tunable electromagnetic multisensing
system for continuous glucose monitoring, mimicking vasculature anatomy,” Science Advances,
Vol. 6, No. 24, eaba5320, 2020.

4. Zhang, W., Y. Du, and M. L. Wang, “Noninvasive glucose monitoring using saliva nano-biosensor,”
Sensing and Bio-Sensing Research, Vol. 4, 23–29, 2015.

5. Olarte, O., J. Chilo, J. Pelegri-Sebastia, K. Barbe, and W. Van Moer, “Glucose detection in
human sweat using an electronic nose,” 2013 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), 1462–1465, IEEE, 2013.

6. Heikenfeld, J., “Non-invasive analyte access and sensing through eccrine sweat: Challenges and
outlook circa 2016,” Electroanalysis, Vol. 28, No. 6, 1242–1249, 2016.

7. Mun, P. S., H. N. Ting, Y. B. Chong, and T. A. Ong, “Dielectric properties of glycosuria at
0.2–50GHz using microwave spectroscopy,” Journal of Electromagnetic Waves and Applications,
Vol. 29, No. 17, 2278–2292, 2015.

8. Yan, Q., B. Peng, G. Su, B. E. Cohan, T. C. Major, and M. E. Meyerhoff, “Measurement of
tear glucose levels with amperometric glucose biosensor/capillary tube configuration,” Analytical
Chemistry, Vol. 83, No. 21, 8341–8346, 2011.
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