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Recent Advances in Transfer Function-Based Surrogate Optimization
for EM Design (Invited)
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Abstract—This article provides a review of transfer function-based (TF-based) surrogate optimization
for electromagnetic (EM) design. Transfer functions (TF) represent the EM responses of passive
microwave components versus frequency. With the assistance of TF, the nonlinearity of the model
structure can be decreased. Parallel gradient-based EM optimization technique using TF in rational
format and trust region algorithm is introduced first. Following that, we review the EM optimization
using adjoint sensitivity-based neuro-TF surrogate, where the neuro-TF modeling method is in
pole/residue format. The adjoint sensitivity-based neuro-TF surrogate technique can reach the optimal
EM responses solution faster than the existing gradient-based surrogate optimization methods without
sensitivity information. As a further advancement, we discuss the multifeature-assisted neuro-TF
surrogate optimization technique. With the help of multiple feature parameters, the multifeature-
assisted neuro-TF surrogate optimization has a better ability of avoiding local minima and can achieve
the optimal EM solution faster than the surrogate optimizations without feature assistance. Three
examples are used to verify the above three methods.

1. INTRODUCTION

Electromagnetic (EM)-based optimization and design often requires a large amount of CPU cost to find
the optimum design variables. Direct EM optimization is time-consuming to achieve an optimal solution
because it usually requires repetitive EM simulations with respect to different geometrical parameters.
Efficient EM optimization methods need to be developed to increase the optimization speed.

One way is to use the method of EM inverse modeling by incorporating neural networks. Using
the inverse modeling, with the design specifications as input, the design parameters can be directly
obtained. Although the optimization time is completely reduced, reverse modeling not only requires
the generation of huge data in advance, but also requires the use of complex learning methods such
as deep neural networks. A lot of work has been done in EM reverse modeling based on neural
network [1–3]. Another way is to accelerate the iteration speed of complex EM responses. Surrogate-
based EM optimization techniques can significantly increase the speed of the EM optimization. One of
the most efficient surrogate optimization techniques is space-mapping [4–6]. Space-mapping uses the
fewest fine model evaluations by exploiting coarse models (e.g., equivalent circuits or empirical) during
EM optimization, thereby combining the computational accuracy of fine models with the efficiency of
coarse models. Recent efforts on SM techniques have focused on many areas, such as implicit SM [7],
aggressive SM [8, 9], output SM [10, 11], neuro-SM [12–16], generalized SM [17], portable SM [18],
coarse- and fine-mesh SM [20], SM with adjoint sensitivities [19], and examples of various applications
using SM [21–46]. However, most SM techniques require coarse models to be available. To achieve
efficient EM optimization without available coarse models, surrogates that use transfer functions (TF)
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are utilized. As a further research, surrogates combine neural networks and transfer functions (neuro-
transfer function (neuro-TF)) have also been developed for microwave passive components [47–51].
The neuro-TF methods for EM optimization address the situation where equivalent circuits models
are unavailable [47, 48]. The TF can express EM responses of passive components versus frequency.
Sensitivity analysis has also been involved in neuro-TF optimization to increase the modeling accuracy
and optimization efficiency [49]. In [50] and [51], parallel computation has been researched in surrogate
optimization. These optimization methods use gradient-based algorithm with TF/neruo-TF models
as surrogates. When the initial EM response is far away from the design specifications, algorithms
in [50] and [51] can easily fall into local minima. To solve this problem, feature-based EM optimization
techniques have been introduced [52, 53]. With the feature parameters to assist EM optimization,
the ability of avoiding to fall into local minima has been increased. The feature-based optimization
addresses a situation where the initial EM response has an incorrect number of feature frequencies [54].
To address this situation where the EM response does not have clearly identifiable features, a surrogate
optimization exploiting the assisted feature frequencies extracted from neuro-TF is presented [55].

In this article, recent advances in TF-based surrogate optimization for EM design are presented,
including the parallel gradient-based EM optimization technique using transfer function and trust
region algorithm, an advancement in parallel EM optimization using adjoint sensitivity-based neuro-
TF surrogate, and a further advancement in multifeature-assisted neuro-TF surrogate-based EM
optimization technique. Compared with the gradient-based surrogate optimization without adjoint
sensitivity, the accurate surrogate models with a larger valid design variables range can be obtained
accurately and efficiently by using adjoint sensitivity for surrogate optimization. The sensitivities
calculated using the developed surrogate model are much more accurate [56]. The accurate gradients
can improve the quality of surrogate optimal EM solution in each iteration. Since the gradients are
sufficiently accurate, and the surrogate model is valid in a large neighborhood, the adjoint sensitivity-
based neuro-TF surrogate technique achieves speedup in the overall optimization process. The new
multifeature-assisted neuro-TF surrogate-based EM optimization technique utilizes multiple feature
parameters to help move the passband of the filter response into the range of design specifications.
When the feature parameters of EM responses are not clearly identifiable, the pole-residue-based neuro-
TF is introduced to assist extracting the multiple feature parameters. A new trust-region updating
algorithm is derived to achieve the optimization convergence. The new multifeature-assisted surrogate
optimization has a better ability of avoiding local minima than the surrogate optimizations without
feature assistance and can speed up to achieve the optimal solution [57].

2. SURROGATE OPITMIZATION COMBINING TRANSFER FUNCTION IN
RATIONAL FORMAT WITH TRUST REGION ALGORITHMS

2.1. Transfer Function in Rational Format and Trust Region Algorithms

The vector-fitting approach [58] is used to extract the coefficients of the TF from the EM responses.
Let Rs represent the TF output. The TF in rational format is formulated [50]

Rs(s) =

N∑
i=0

ais
i

1 +

N∑
i=1

bis
i

(1)

where s is the Laplace frequency variable; ai and bi are the coefficients of the rational TF; N is the
order of the transfer function; TF to represent the EM behavior. The surrogate model, which is valid
across the all trust region (DOE sample space), provides the output response Rs.

Conventional EM optimization is generally based on single fine model evaluations per iteration.
However, trust region algorithm uses a set of fine model evaluations in a relatively larger neighborhood
around a central point to provide rich information in estimating the direction for the next iteration
update. These fine model evaluations along with the central point are used to predict the overall
behavior in the region of interest. The central point is updated after each iteration of the optimization
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using trust region framework formulas. From equations in [50], the coefficients of the TF are dependent
only on the design variables. wr represents vector weighting factors of each coefficient of the numerator
or denominator. The values of wr are optimized so that the error between the surrogate model response
and the fine model response is minimized, and w∗ for ith iteration is formulated as [50]

w∗ = argmin
w

Ns∑
k=1

∑
ω∈Ω

∥Rs −Rf∥ = argmin
w

Ns∑
k=1

∑
ω∈Ω

∥H −Rf∥ (2)

where ω represents the complete frequency points used for the fine model response, Ns the number of
samples in the trust region, and Rf the output response of the fine model. An accurate surrogate model
match is obtained not only at the DOE samples in the trust region, but also across the whole trust
region.

2.2. Surrogate Model Optimization and Trust Region Update

The surrogate optimization combining transfer function in rational format with trust region technique
is formulated as distribution of multiple data samples using sampling techniques, computation using
parallel processors, optimization update using trust region framework. The orthogonal sampling is used
for generating multiple sample points where the subspaces are sampled with the same density and are
orthogonal. The orthogonal sampling around the central point enables the surrogate model to be valid
in relatively large neighborhood compared to star distribution and also uses far fewer sampling points
than full-grid distribution [47]. Once the trust region is defined, the design of experiments (DOE) [47]
sampling strategy is used to generate a set of samples around the central point in each iteration of
the optimization process. Fig. 1 shows the design of experiments (DOE) sampling strategy used to
generate sample points around a central point. When the optimization process moves, the central point
moves to a new optimization area. All the other DOE sample points move along with the central point.
Therefore, the values of samples change from iteration to iteration. The trust region changes from
iteration to iteration based on trust radius δnew. The control index ra [50] determines whether the trust
radius has to be expanded from the previous iteration or remain unchanged, as formulate [50]

δnew =


c1δ

(i), ra < 0.1

min
(
c2δ

(i),∆max
)
, ra > 0.75

δ(i), Otherwise

(3)

where ∆max is the maximum limit for each design variable. c1 = 0.69 and c2 = 1.3. Parallel
computational approach is used for fine model evaluations over multiple samples. Parallel computational
approach is implemented to accelerate data generation.

central

Figure 1. Illustration of orthogonal arrays (a type of DOE) sampling technique to generate multiple
sample points in the trust region [50].
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3. SENSITIVITY-ANALYSIS-BASED NEURO-TF SURROGATE OPTIMIZATION

3.1. Structure of the Sensitivity-Analysis-Based Neuro-TF Model

An advanced method for building neuro-TF models with less training data is sensitivity analysis. Fig. 2
shows the structure of a sensitivity-analysis-based neuro-TF model. The sensitivity-analysis-based
neuro-TF model consists of two sub-models, i.e., the neuro-TF model and adjoint neuro-TF model
based on sensitivity analysis [56]. Two sub-models share the same inputs x. The sensitivities of the
outputs ys of original neuro-TF model with respect to the inputs x, denoted as ỹs, are defined as the
outputs of the adjoint neuro-TF model. The original neural networks and the adjoint neural networks
map the relationship between the sensitivities of TF parameters and geometrical parameters. The
response H(s) of the pole-residue-based TF is formulated as follows [56]

H(s) =

N∑
i=1

ri
s− pi

(4)

where pi and ri represent the poles and residues in the TF, and N represents the order of the TF.
Vector-fitting [58] is used to extract the coefficients pi and ri.
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Figure 2. The general structure of the sensitivity-analysis-based neuro-TF model. The model consists
of the neuro-TF model and the adjoint neuro-TF model [55].

3.2. Two-Stage Training for the Sensitivity-Analysis-Based Neuro-TF Model

The sensitivity-analysis-based model is trained through a two-stage training process, including
preliminary training and refinement training.

In the first stage training, the original and adjoint neural networks are trained simultaneously. Let
ĉk and Âk represent the data of transfer function parameters and their sensitivities with respect to x,
respectively. (xk, ĉk) represents the training data for the original neural networks. (xk, Âk) represents
the training data for the adjoint neural networks. c(x,w) is a vector including the outputs of the neural
networks, i.e., TF parameters. The error function for the first stage training is formulated as [56]

EPre(w) =
1

2ns

ns∑
k=1

∥c(xk,w)− ĉk∥2 +
1

2ns

ns∑
k=1

∥∥∥∥∂c(xk,w)

∂xT
− Âk

∥∥∥∥2
F

(5)

where ∥ · ∥ and ∥ · ∥F represent L2 norm and Frobenius norm; ns represents the number of training
samples.
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The second-stage training is performed to refine the overall model. (xk, dk) and (xk, d
′
k) represent

the training data for original and adjoint neuro-TF models, respectively. The error function of the
refinement training is formulated as [56]

ETr(w) = Eorig(w) + Eadj(w) =
1

2ns

ns∑
k=1

ny∑
j=1

aj∥yj(xk,w)− dk,j∥2

+
1

2ns

ns∑
k=1

ny∑
j=1

nx∑
i=1

bj,i

∥∥∥∥∂yj(xk,w)

∂xi
− d′k,j,i

∥∥∥∥2 (6)

where Eorig represents the training error between the original neuro-TF model and the EM simulation
data. Eadj represents the training error between the EM sensitivity data and the adjoint neuro-TF
model. ny and nx are the numbers of elements of y and x, respectively. ns is the total number of
training samples. aj and bj,i are the weighting parameters for the original neuro-TF model and the
adjoint neuro-TF model. dk,j represents the EM simulation data of the kth sample for the jth output.
d′k,j,i is the EM sensitivity data of the kth sample for the jth output with respect to the ith input. The
overall training process terminates until the total training error is smaller than a defined error threshold.
The original neuro-TF model has accurate sensitivity information after overall training. Because the
adjoint neuro-TF model is only used for the training process, the final model is simple and can be
further used in optimization design.

3.3. Optimization Formulation Using Adjoint-Sensitivity Based Neuro-TF Surrogate

Optimization formulations for trained surrogate model are used to minimize the sum of the squared
differences between the surrogate model and the fine model, which is formulated as [56]

Ek(w) = αEk
o (w) + βEk

a(w)

= α

ns∑
i=1

nf∑
j=1

∥∥∥ys (xk
i ,w, sj

)
− yf

(
xk
i , sj

)∥∥∥2
+β

ns∑
i=1

nf∑
j=1

∥∥∥ỹs

(
xk
i ,w, sj

)
− ỹf

(
xk
i , sj

)∥∥∥2 (7)

wk = argmin
w

Ek(w) (8)

where yf and ỹf represent the fine model EM response and the adjoint EM sensitivities, respectively. ns

represents the number of fine models used. Ek represents the training error of the original and adjoint
neuro-TF models in the kth optimization iteration, Ek

0 the training error of the neuro-TF models, Ek
α

the training error of the adjoint neuro-TF models, nf the number of frequencies, and α and β represent
the weighting parameters. wk are the optimal parameters of the neuro-TF at the kth iteration. The
accurate sensitivity information leads to speedup of the surrogate optimization and reduce the number
of iterations.

4. FEATURE-ASSISTED NEURO-TF SURROGATE OPTIMIZATION

Further, feature parameters are used to speed up surrogate optimization for EM design. Usually, the
feature frequency points and frequency responses at specific locations are used as feature parameters [57].
The feature parameters can avoid local minima and help drive the optimization to reach the optimal
EM solution faster. The feature frequencies and EM responses at locations of design requirement are
usually used as feature parameters. Fig. 3 shows the structure of the feature-assisted neuro-TF model.
The pole-residue-based TF is used in the feature-assisted neuro-TF. The feature parameters are the
outputs of neural networks in the feature-assisted neuro-TF model.
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Figure 3. Structure of the feature-assisted neuro-TF model [57]. The TF transfer parameters are
poles/residues/gain.

When the neuro-TF model is well trained, we can further extract the multiple feature parameters

to assist the surrogate optimization, including feature frequencies yfl and feature heights yh. The feature
frequencies are related to the imaginary parts of residues of the TF. The extracting formulation is [57]

yfl (x,w) =
Im (ZQl

(x,w))

2π
, l = 1, 2, . . . , Nf (9)

where l = 1,

Ql = argmin
q∈{1,...,Nk}


ns∑
j=1

∥∥Re (zjq)∥∥
 (10)

l ≥ 2,

Ql = argmin
q∈[1,...,Nk}

q/∈{Q1,...,Ql−1}


ns∑
j=1

∥∥Re (zjq)∥∥
 (11)

where zjq is the data of the qth residue of the TF for the jth geometrical sample. ns represents the number
of training samples. yh is the magnitude of the S-parameter which is located at the midfrequencies
between two feature frequencies. After feature parameter extraction, we perform the surrogate-based
EM optimization using the feature-assisted neuro-TF model [57].

5. SURROGATE OPTIMIZATION APPLICATIONS IN PASSIVE MICROWAVE
COMPONENTS

5.1. Transfer Function-Based Surrogate Optimization for Inter-Digital Band-Pass Filter

An inter-digital band-pass filter example [50] is illustrated in Fig. 4. g is the gap between the end of
the resonator and the cavity wall. lr is the length of the resonator. s1, s2, and s3 are the spacing
between the resonators. The model has four input geometrical variables, i.e., x = [g s1 s2 s3]

T . The
model output is the magnitude of S11. The initial central point is selected by designer experience of the
problem in case of the corresponding fine model response too far away from the optimal solution.

For this application, the design specification is |S11| ≤ −30 dB in the frequency range of 1.3GHz–
1.8GHz. The initial point for optimization is x0 = [0.423 0.125 0.247 0.232]T (mm). The optimization
is performed using the surrogate optimization combining transfer function in rational format with trust
region algorithms. The EM data generation and optimization verification are performed using HFSS.
The optimized geometrical solution x6 = [3.0128 0.728381 1.92592 2.28048]T (mm) is achieved after six
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Figure 4. Structure of a inter-digital band-pass filter [50].

(a) (b)

(c) (d)

Figure 5. Comparison of three different optimization methods [50].

optimization iterations. Fig. 5(a) and Fig. 5(d) show the fine model response at the initial and final
central point. Coarse and fine mesh space mapping optimization method is used to optimize this filter
for comparison. Fig. 5(c) shows the optimal solution obtained after three iterations exploiting coarse
and fine mesh method. For a further comparison, EM optimization of this filter using HFSS internal
optimization feature is performed. The direct EM optimization method uses HFSS’s built-in gradient
based quasi-Newton optimization algorithm. Fig. 5(b) shows the final optimal point obtained that needs
302 fine model evaluations using direct EM optimization.

Figure 6 shows the values of the objective function for the surrogate optimization combining TF in
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TF Surrogate with Trust Region

Figure 6. Values of objective function of different methods for the inter-digital band-pass filter [50].

rational format with trust region and coarse and fine mesh SM optimization. The surrogate optimization
combining transfer function in rational format with trust region algorithm converges to the optimal
solution and has high parallel efficiency even with different numbers of design variables.

5.2. Sensitivity-Analysis-Based Neuro-TF in Surrogate Optimization of Four-Pole
Waveguide Filter

For this example, the sensitivity-analysis-based neuro-TF algorithm is used to illustrate the optimization
of a four-pole waveguide filter example [56], as shown in Fig. 7. The input and output waveguides and
resonant cavities are WR-75 waveguides, a = 19.05mm and b = 9.525mm. h1, h2, and h3 are the heights
of posts in the coupling windows. hc1 and hc2 are the heights of the posts in the resonant cavities. The
thickness of the coupling windows is 2mm. Fig. 8 shows the structure of sensitivity-analysis-based
neuro-TF model for the four-pole waveguide filter. In this application, pole-residue-based TF is used.
x = [h1 h2 h3 hc1 hc2]

T are the input geometrical variables of the model. The magnitude of S11 and its
sensitivities with respect to five design variables are the model outputs. The model is developed using
NeuroModelerPlus software.

Figure 7. The structure of the four-pole waveguide filter [56].

The design specification is |S11| ≤ − 26 dB in the range of 10.85–1.15GHz. The initial point
for optimization is x0 = [3.0 4.0 3.5 3.3 3.0]T (mm). The optimization is performed using the
sensitivity-analysis-based neuro-TF algorithm. The EM data generation and optimization verification
are performed using HFSS. The optimized geometrical solution x6 = [3.524 4.231 3.726 3.255 2.963]T
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Figure 9. EM responses of the EM optimization using the adjoint-sensitivity-based neuro-TF surrogate
for initial iteration and sixth iteration [56].
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(mm) is achieved after six optimization iterations. Fig. 9 shows the EM responses of the filter at the
initial point and at the optimized geometrical solution using the sensitivity-analysis-based neuro-TF
algorithm. Fig. 10 and Fig. 11 compare the outputs and sensitivities respectively from the neuro-TF
models trained with less data and more data, the sensitivity-analysis-based neuro-TF model trained with
less data, and EM data evaluated at one test sample. Even if the model is trained with less training
data, the sensitivity-analysis-based neuro-TF model can achieve accurate modeling and provide accurate
sensitivity information.
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Figure 10. Comparison of the sensitivities of
the neuro-TF models trained with less/more data,
the sensitivity-analysis-based neuro-TF model
trained with less data and HFSS EM sensitivity
data at one sample [56].
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neuro-TF models trained with less/more data,
the sensitivity-analysis-based neuro-TF model
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5.3. EM Structural Design of Microwave Cavity Filter Using Feature-Assisted Neuro-TF

The feature-assisted neuro-TF technique is verified by surrogate EM optimization of a microwave cavity
filter example [57], as shown in Fig. 12, where Hc1, Hc2, and Hc3 are the heights of the large cylinders
positioned at the cavity centers; W1, W2, W3, and W4 are the iris widths for each section. The model

Figure 12. Structure of the interdigital bandpass filter which has five geometrical variables for EM
optimization [57].
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has seven input geometrical variables, i.e., x = [Hc1 Hc2 Hc3 W1 W2 W3 W4]
T . The model outputs

contain not only the magnitude of S11, but also two sets of feature parameters (feature frequencies and
feature heights) from the filter response. The feature frequencies are the imaginary parts of the TF
residues. The feature heights are the magnitudes of the TF responses at the mid-frequencies between
two feature frequencies. The feature-assisted neuro-TF model is performed using NeuroModelerPlus
software.

The design specification is |S11| ≤ − 20 dB in the range of 703–713MHz. The initial point for
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Figure 13. EM responses of the multifeature-assisted surrogate optimization. (a) EM response at the
starting point. (b) EM responses at fifth iteration. (c) EM responses at the final solution after seven
iterations [57].
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optimization is x0 = [43 50.5 50.5 115 51 50 55]T (mm). The optimization is performed using the feature-
assisted neuro-TF method. The EM data generation and optimization verification are performed using
HFSS. The optimized geometrical solution x7 = [42.072 50.343 50.473 115.78 50.123 44.179 47.612]T

(mm) is achieved after seven optimization iterations. Fig. 13 shows the EM responses of the filter at the
initial point, after the 7th iteration, and at the optimal design solution using the feature-assisted neuro-
TF algorithm [57]. When the response at the initial point is far away from the design specifications,
the optimization with the assistance of feature parameters can have better chances to avoid the local
minima than the optimization without feature assistance.

6. CONCLUSION

TF-based approaches for fast surrogate optimization have been described when geometrical parameters
need to be repetitively changed for EM design. Trust-region based optimization algorithm combining
TF speeds up optimization process without coarse models. Further, Neuro-TF techniques are used for
high-level EM optimization with repetitive design variations. The adjoint-sensitivity-based neuro-TF
surrogate is used for parallel gradient-based EM optimization. Since the surrogate model is valid in a
large range, and the sensitivities are much accurate, the adjoint-sensitivity-based neuro-TF surrogate
optimization has achieved the optimal solution faster than the existing surrogate optimization without
sensitivity information. The multifeature-assisted surrogate-based EM optimization for filter design has
been introduced to address the situations that the EM response of the initial point for the optimization
is far away from the design specifications. These methods have achieved a further EM optimization
speedup over the existing surrogate EM optimization methods.

We have focused on a review of TF-based surrogate optimization approaches of passive microwave
components. One possible future direction is to further expand the range of optimizable parameters
of these methods. That is, when the range of optimizable parameters becomes larger, the applicability
of these methods is still maintained. To achieve this goal may need to solve some new problems. A
second possible direction is to expand these methods to calculate more EM samples at the same time,
especially when the design space increases with the increase in parameters dimensionality. These will
further increase the application value of TF-based surrogate optimization methods for EM design.
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