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Reliable Nonuniform Discretization Algorithm for Fast and Accurate
Hybrid Mode Analysis of Multilayered Planar Transmission Lines

Abdelhamid Khodja1, *, Mustapha C. E. Yagoub2, and Rachida Touhami1

Abstract—A flexible and reliable full-wave modal integral method is proposed to efficiently characterize
planar transmission structures printed on multilayered isotropic/anisotropic substrates. Based on the
mathematical concept of operators used in electromagnetism, it consists in determining the modal inner
products obtained through the Galerkin’s procedure via a proper choice of trial functions with metallic
edge effects. To this aim, a fast and accurate nonuniform discretization algorithm is introduced for
the first time, while using a new process to accelerate the convergence with regard to the number of
areas of such inner products, thus significantly reducing the required CPU-time for planar transmission
lines analysis. To demonstrate the efficiency of the proposed numerical integral approach, a successful
comparison was achieved through a close agreement with published data.

1. INTRODUCTION

Widely used in RF/microwave systems, microwave planar transmission lines exhibit a hybrid
propagation behavior due to their inhomogeneous propagation medium, which make their
characterization highly challenging, resulting in complex boundary conditions, particularly at the air-
dielectric interface. Consequently, with the occurrence of increasingly complex structures in modern
RF/microwave devices, the associated Helmholtz’s equation becomes more and more difficult to solve.

To this aim, several powerful modeling numerical methods have been proposed to provide solutions
to such propagation issues. However, to the best of the authors’ knowledge, there is no existing approach
that globally satisfies the key challenges encountered in the analysis of multilayered isotropic/anisotropic
planar circuits such as high accuracy, minimum CPU time, and reduced memory requirement. Besides,
we have to add the versatility of the selected method so that it could be applied to a large panel
of circuits and topologies. Developing an approach that efficiently combines the above features is
therefore critical. Several modeling methods have been proposed to address this issue. However,
most of them suffer from large memory requirement and CPU time, particularly in characterizing
asymmetrical planar lines in multilayer configurations [1]. Therefore, many numerical techniques have
been retained to tackle propagation issues in multilayered structures such as the finite difference time
domain (FDTD) method [2–4], spectral domain approach (SDA) [5–7], or multimode equivalent network
(MEN) technique [8, 9], to name a few. However, they suffer from some severe limitations. Thus, the
FDTD method requires significant numerical efforts due to the complexity of its algorithm, based on
the discretization of differential equations. As for the SDA formulation, it is not straightforward for
inhomogeneous or truncated substrates because of the difficulty to set up the spectral dyadic Green’s
matrix. Regarding the MEN formulation, to the best of the authors’ knowledge, this technique was
only applied to isotropic substrates.
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Therefore, to support the ever-increasing use of multilayered isotropic/anisotropic planar
transmission lines in hybrid mode, we opted for the full-wave integral technique combined with the
formalism of mathematical operators used in electromagnetism (EM) and the method of moments
involving the Galerkin’s procedure in the modal domain. The rationale behind such formalism
is to describe, in a more convenient way, the boundary conditions of the electromagnetic fields
at the interfaces [10–12]. In fact, this technique has been successfully used to analyze lossy
transmission lines with finite metallization thickness [13], symmetrical/asymmetrical transmission
lines including isotropic/anisotropic substrates [1, 14], truncated substrates [15, 16], and multilayered
substrates [17, 18]. Note that the proposed approach has been developed from the equivalent
electrical circuit concept that allows converting the continuity relations of EM field expressions into
current-voltage relationships [10, 11], thus leading to the determination of a key parameter, i.e., the
admittance/impedance operator [1, 14]. Thanks to the relative simplicity of the considered equivalent
circuit, there is no restriction on the number of layers, which, indeed, significantly extends this integral
method to the analysis of generic symmetrical/asymmetrical planar transmission structures with an
arbitrary number of layers.

To better evaluate the field distribution or the current densities at the discontinuities due to the
presence of metallized obstacles or abrupt changes in the dielectric medium, it is more appropriate to
consider the fictitious propagation in the transverse direction instead of the longitudinal one (TEn and
TMn modes). The above technique allows obtaining the admittance/impedance operator related to
the considered structure to which the Galerkin’s procedure was applied, leading to a dispersion matrix,
whose elements are constituted of inner products (of basis functions with trial functions) deduced from
the integral calculation [17]. Setting the determinant of the above matrix to zero ensures the existence
of non-trivial physical solutions from which the propagation characteristics of the different modes can
be deduced.

However, due to constraints related to the heavy numerical computation involved, this modal
method requires truncating the series as well as the size of the dispersion matrix, which, in turn, implies
to decide on an optimal choice of trial functions in order to reach the desired solution within a tolerable
error range. Therefore, the reliability of such method is based on the proper choice of trial functions
with respect to the region to be characterized, either metallic or insulating, according to the type of
considered planar transmission structures printed on multilayered isotropic/anisotropic substrates. In
fact, this region is chosen to minimize the numerical processing while ascertaining a suitable compromise
between accuracy, speediness and memory size.

Furthermore, when trial functions taking into account metallic edge effects are involved, determining
the inner products in the modal domain is quite laborious numerically. So, most designers have
circumvented this problem by selecting trial functions with no metallic edge effects due to their simplicity
and ease of integral computation [13, 16, 19–21] such as rooftop or sinusoidal trial functions. In fact,
these latter functions allow avoiding spurious solutions [22] but at the risk of reduced accuracy.

To efficiently resolve these challenging issues in the modal domain, we considered two types of
trial functions. The first, the sinusoidal trial functions, lightens the analytical calculations but with
a slower convergence with respect to the dispersion matrix size. The second, the trial functions with
metallic edge effects, favor a faster convergence but at the cost of more complicated mathematical
processing. Therefore, to address this issue while accurately determining the inner products, a new
approach is proposed. It is based on a numerical integration using a nonuniform mesh in which the
discretization step should be very small near the conducting strip edges. The proposed nonuniform
discretization algorithm involves trapezoidal or quadratic elementary areas, while introducing for the
first time a technique that significantly accelerates the convergence with regard to the number of areas.
It is worth to mention that this numerical approach is generic, applicable to the analysis of any 2D or 3D
multilayered planar structure; it suffices to change only the trial functions and the integration boundaries
according to the study region (i.e., isolating or conducting region) of the considered structure.

Note that applying this modal technique to symmetrical lines with finite metallization thickness
will involve a dispersion matrix containing 4-times the number of sub-matrices compared to the one
with zero-thickness, hence a matrix two-times larger [23]. Therefore, to avoid complex calculations (and
the inherent numerical errors it will implicate), we assumed conducting strip(s) with zero-thickness.
This hypothesis can be considered as reasonable knowing that the metallization thickness is assumed
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much smaller than the transverse dimensions. In fact, the focus has been made mainly on speeding-up
the convergence of the numerical integral computation.

Furthermore, according to the uniformity of the transmission structures along the propagation
axis, a 2D analysis was considered. We also assumed homogeneous, isotropic/anisotropic and lossless
dielectric substrates as well as perfectly conductive metallization with negligible thickness.

To demonstrate the efficiency of the proposed numerical integral approach with adequate choice
of trial functions, successful comparisons were achieved between the obtained numerical results and
published data.

2. MODAL METHOD DEVELOPMENT VIA MATHEMATICAL OPERATORS

The development of such modeling method via the formalism concept of mathematical operators helps
reinforcing the systematic character of this technique thus involving a clear way to solve the boundary
conditions [11, 13]. The objective of this formalism is the evaluation of the overall admittance/impedance
operator to which the Galerkin’s procedure will be applied. In fact, such key operator represents a link
between the tangential fields and the current densities. It involves an equivalent circuit of the transverse
structure that includes a non-zero virtual source represented by a set of trial functions defined on
the considered metallized discontinuity plane of the proposed transmission planar structure. For this
purpose, let us consider a generic shielded multilayer unilateral symmetrical/asymmetrical transmission
planar structure with arbitrary uniaxial bi-anisotropic stratified media above and below the metallized
interface on which several metallic strips have been arbitrarily deposited, as shown in Fig. 1(a). This
figure shows the cross sectional view of the mentioned multilayered general structure with its equivalent
circuit defined either in the insulating or metallic domain. This structure is constituted of M layers and
two regions with regard to the metallized interface, the above with M1 layers and the below with M2

layers, with M = M1 + M2. Note that the uniaxial permittivity and permeability tensors for the ith
dielectric layer can be expressed in the form of diagonal matrices such as

ε̄ri =

 εrxi 0 0

0 εryi 0

0 0 εrzi

 and µ̄ri =

 µrxi 0 0

0 µryi 0

0 0 µrzi

 (1)

which can be noted as ε̄ri = [εrxi, εryi, εrzi] and µ̄ri = [µrxi, µryi, µrzi], with εrxi = εrzi = εri⊥,
µrxi = µrzi = µri⊥, εryi = εri//, and µryi = µri//. Here, εri⊥ (µri⊥) and εri// (µri//) are the respective
transverse and longitudinal relative permittivities (permeabilities) with regard to the optical axis along
the oy direction.

The modal technique was developed by considering a fictitious propagation in the oy transverse
direction instead of the real oz longitudinal direction. As shown in Fig. 1(b) and Fig. 1(c), the transverse
section of the structure was modeled as a set of cascaded transmission lines terminated by short-circuited

loads, noted “sc”. This leads to an equivalent circuit that includes a transverse electric field “E⃗” (or

current density “J⃗”) described by trial functions defined in the slot(s) or on the metallic strip(s) of the

structure. Ŷ I and Ŷ II are the admittance operators seen by the metallized interface for the respective

upper and lower region. The Kirchoff’s laws allow writing J⃗ = J⃗I+J⃗II with J⃗I = Ŷ IE⃗ and J⃗II = Ŷ IIE⃗,

leading to J⃗ = (Ŷ I + Ŷ II)E⃗ = Ŷ E⃗, with:{
⇀

E = ẐJ⃗ = 0⃗ on the metal (2)

J⃗ = Ŷ E⃗ = 0⃗ elsewhere (3)

As mentioned in [1, 14, 17], the Ŷ and Ẑ operators can be described in the form of diagonal matrices

obtained from their spectral representation, thus Ẑ = Ŷ −1. Their evaluation requires the involvement of
a complete set of orthogonal basis functions ({|fn⟩}n=0...N ) and the calculation of the mode admittances
Y I
n and Y II

n of the respective upper and lower regions at the metallized interface (with N the number
of modes).
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IŶ  = 1MŶ  
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jŶ
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2MŶ
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Figure 1. Shielded general multilayered structure and its equivalent circuit. (a) Cross sectional view.
(b) Virtual source defined in the slot(s). (c) Virtual source defined on the metallic strip(s).

Note that such basis functions [17, 23] should satisfy the boundary conditions imposed by the
shielding. So, the admittance operator can be obtained as:

Ŷ =

N∑
n=0

[
|fn⟩ (Y I

n + Y II
n ) ⟨fn|

](e+h)
=

N∑
n=0

[|fn⟩Yn ⟨fn|](e+h) (4)

The impedance operator can be then deduced from the admittance operator as:

Ẑ =
N∑

n=0

[
|fn⟩

1

Yn
⟨fn|

](e+h)

=
N∑

n=0

[|fn⟩Zn ⟨fn|](e+h) (5)

where “e” and “h” indicate the TMn and TEn modes along the transverse direction (oy), respectively.
Here, Yn and Zn represent the respective mode admittance and mode impedance viewed at this interface.
|fn⟩ ⟨fn| represents the projection operator on the basis vectors {|fn⟩}n=0...N , knowing that the product
of vector “bra” (⟨fn|) with vector “ket” (|fm⟩) represents their inner product deducted from the integral
calculation involving only the “x” variable such as:

⟨fn, fm⟩ =
∫
ID

f⃗∗t
n (x)f⃗m(x)dx. n,m = 0. . .N (6)

The matrix representation of the admittance/impedance operator requires the determination of the
mode admittance/impedance obtained from the recursive formulation [17, 18].

The application of the Galerkin’s technique, for the asymmetrical structure with an arbitrary
number of slots and metallic strips, requires the decomposition of the unknown electric field defined in
the slots or current density on the metallic strips in terms of trial functions pondered by their coefficients
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such as:

In the slots:


Ex =

K∑
p=1

epx1Φpx1 +
K∑
p=1

epx2Φpx2 + . . .+
K∑
p=1

epxiΦpxi + . . . =
I max∑
i=1

 K∑
p=1

epxiΦpxi


Ez =

K∑
q=1

eqz1Φqz1 +

K∑
q=1

eqz2Φqz2 + . . .+

K∑
q=1

eqziΦqzi + . . . =

I max∑
i=1

 K∑
q=1

eqziΦqzi

 (7)

On the strips:


Jx =

K∑
p=1

e′px1Φ
′
px1 +

K∑
p=1

e′px2Φ
′
px2 + . . .+

K∑
p=1

e′pxiΦ
′
pxi + . . . =

I max∑
i=1

 K∑
p=1

e′pxiΦ
′
pxi


Jz =

K∑
q=1

e′qz1Φqz1 +

K∑
q=1

e′qz2Φ
′
qz2 + . . .+

K∑
q=1

e′qziΦ
′
qzi + . . . =

I max∑
i=1

 K∑
q=1

e′qziΦ
′
qzi

 (8)

where K indicates the number of trial functions per component along the ox and oz directions, and Imax

is the number of slots or metallic strips. (Φpxi, Φqzi) or (Φ′
pxi, Φ

′
qzi) are the transverse trial function

components along ox and oz directions represented in the ith slot or metallic strip, respectively.
For structures involving one slot or one metallic strip, like finlines or microstrip lines, respectively

(Fig. 2(a) and Fig. 2(b)), the transverse electric fields or current densities are represented as follows:
Ex =

K∑
p=1

epxΦpx

Ez =

K∑
q=1

eqzΦqz

or


Jx =

K∑
p=1

e′pxΦ
′
px

Jz =

K∑
q=1

e′qzΦ
′
qz

(9)
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Figure 2. Multilayered asymmetrical transmission planar structures involving one slot or metallic
strip. (a) Microstrip type structure. (b) Finline type structure.
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Note that (Φpx,Φqz) are the transverse trial functions defined in the slot of the symmetri-
cal/asymmetrical finline and (Φ′

px,Φ
′
qz) the transverse trial functions defined on the metallic strip of

the symmetrical/asymmetrical microstrip line.
The transverse current densities or electric fields are zero in the slot or on the metallic strip,

respectively. They can be determined using the admittance or impedance operator as:

|J⟩(e+h) = Ŷ (e+h)

[
|Ex⟩
|Ez⟩

]
= |0⟩ (in the slot) (10)

or

|E⟩(e+h) = Ẑ(e+h)

[
|Jx⟩
|Jz⟩

]
= |0⟩ (on the metallic strip) (11)

The application of the Galerkin’s technique to Eq. (10) or (11), while involving the respective
admittance or impedance operator, requires the use of testing functions identical to trial functions
expressed in the slot or on the metallic strip, which allows obtaining a homogeneous system of algebraic
equations according to the insulating or conducting domain. In fact, for each specific domain, we can
obtain the vector containing the weighting coefficients of trial functions as well as the dispersion matrix
(of dimension 2K × 2K) consisting of 4 sub-matrices composed of mode admittance/impedance and
inner products of trial functions with basis functions [17, 18].

For asymmetrical transmission configurations involving two slots at the dielectric-air interface, such
as coplanar structures (Fig. 3(a)), or two metallic strips like coupled microstrip structures (Fig. 3(b)),
the transverse electric fields or current densities can be represented as follows:

Ex =

K∑
p=1

epx1Φpx1 +

K∑
p=1

epx2Φpx2

Ez =

K∑
q=1

eqz1Φqz1 +

K∑
q=1

eqz2Φqz2

or


Jx =

K∑
p=1

e′px1Φ
′
px1 +

K∑
p=1

e′px2Φ
′
px2

Jz =

K∑
q=1

e′qz1Φqz1 +

K∑
q=1

e′qz2Φ
′
qz2

(12)
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Figure 3. Multilayered asymmetrical transmission planar structures involving two slots or metallic
strips. (a) Coupled microstrip type structure. (b) Coplanar type structure.
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Here (Φpx1,Φqz1) and (Φpx2,Φqz2) are the respective trial functions defined in the first and second
slot of the asymmetrical coplanar lines. (Φ′

px1,Φ
′
qz1) and (Φ′

px2,Φ
′
qz2) are the respective trial functions

defined on the first and second metallic strip of the asymmetrical coupled microstrip lines, with
respective widths d1 and d2. Knowing that the transverse current densities or electric fields are zero in
the two slots or on the two metallic strips, respectively, these quantities can be determined using the
admittance or impedance operator and Eq. (12) as:

|J⟩(e+h) = Ŷ (e+h)

[
|Ex⟩
|Ez⟩

]
= |0⟩ (in the two slots) (13)

or

|E⟩(e+h) = Ẑ(e+h)

[
|Jx⟩
|Jz⟩

]
= |0⟩ (on the two metallic strips) (14)

The Galerkin’s technique involving trial functions expressed in the two slots or on the two metallic
strips leads to a homogeneous system of equations [17, 18]. It should be noted that, for the symmetrical
case (i.e., d1 = d2 = d), only half of the coplanar (or coupled microstrip) structure was considered in
the analysis. Therefore, the unknown transverse electric fields (or current densities) can be expressed
on the base of trial functions Φpx and Φqz (or Φ′

px and Φ′
qz) defined only in the right slot (or on the right

metallic strip). In addition, transverse electric fields (or current densities) can be determined in terms
of trial functions by using the expressions in Eq. (12), thus, the Galerkin’s technique requires the same
expressions as in Eq. (13) or (14). Of course, trial functions of such coplanar or coupled microstrip lines
do not have the same expressions as those of finline or microstrip structures.

As for the size of the resulted dispersion matrix, it will be of 4K × 4K, constituted of 16 sub-
matrices for asymmetrical coupled microstrip [14] and coplanar lines [1], and of 2K × 2K, composed
of 4 sub-matrices for the symmetrical case and for symmetrical/asymmetrical finline and microstrip
structures [17]. Indeed, the size of the global dispersion matrix depends on the number of slots (or
metallic strips), i.e., 2ImaxK × 2ImaxK for asymmetrical lines with 4I2max sub-matrices, where Imax

indicates the number of slots (or metallic strips) [17]. Thus, the non-trivial solution, obtained by
setting the determinant of the dispersion matrix to zero, allows evaluating, at a given frequency, the
propagation parameters of the dominant and higher order propagation modes.

3. CHOICE OF TRIAL FUNCTIONS

The accuracy of the numerical results, obtained through the Galerkin’s technique by solving the
homogeneous system, depends mainly on the proper choice on trial functions, which also allows speeding-
up the convergence with regard to the number of trial functions per component (K) and modes (N) while
ensuring physical solutions [24]. Indeed, such correct selected functions involve a good approximation of
the expanded transverse electric fields (or current densities) in the slot(s) (or on the metallic strip(s)) of
the considered planar structure. However, this choice must respect some criteria as mentioned in [17],
such as boundary, proportionality, and metallic edge effect conditions. In addition, it should respect the
parity condition for the symmetrical structure. In fact, due to the presence of the electric wall (or the
magnetic wall) on the symmetry plane, the x- and z-components of such transverse trial functions must
be respectively both even and odd (or odd and even) with respect to the middle of the symmetry plane
of the considered line [25, 26]. Furthermore, this parity condition imposes that the nth mode should
be even, i.e., n = {0, 2, 4, . . .} (or odd, i.e., n = {1, 3, 5, . . .}) according to the electrical (or magnetic)
wall on the symmetry plane. Nevertheless, because it is difficult to simultaneously satisfy all the above
conditions, we have to optimize the choice of these functions to fulfill these criteria as much as possible.
For this purpose, a set of sinusoidal type trial functions with and without metallic edge effects have
been selected, knowing that trial functions taken into account edge effects are known by their tendency
to become infinite at the vicinity of the metallic edge. It involves a reduction of the dispersion matrix
size obtained from the previous homogeneous system. Tables 1 and 2 summarize some trial functions
that take into account metallic edge effects for shielded symmetrical/asymmetrical lines.

Note also that the transverse trial functions of symmetrical finlines and microstrip lines can be
deducted by setting S1 = (a − w)/2 (see Fig. 2) and by choosing the origin in the middle of those
structures with regard to the x-axis. As for symmetrical coplanar and coupled microstrip lines, trial
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Table 1. Trial functions with edge effects for some shielded asymmetrical transmission planar
structures.

Finline-type structures Microstrip-type structures 
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functions can be obtained by setting d1 = d2 = d, C1 =
a−w
2 − d, and C2 =

a+w
2 (see Fig. 3), where the

origin of the x-axis is on the top of these planar lines. Note that these latter functions must also verify
the parity conditions described by the even and odd modes.

It should be highlighted that the above expressions do not seem to satisfy the proportionality
condition, involving thus the existence of spurious propagation parameters [22] (described as infinite
solutions) instead of physical ones. However, these non-physical solutions could be easily eliminated
by choosing only the solutions obtained by the modal method that do not exceed the value

β0
√
max(εrmax⊥, εrmax //)max(µrmax⊥, µrmax //) for the phase constants (β), where β0, εrmax⊥

(µrmax⊥) and εrmax // (µrmax //) indicate the respective phase constant in free space, the maximum
transverse, and the maximum longitudinal relative permittivities (permeabilities) among the layers of
the considered line.
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Table 2. Trial functions with edge effects for some shielded symmetrical transmission planar structures.

Finline-type structures Microstrip-type structures 
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4. FORMULATION OF THE PROPOSED FAST NUMERICAL INTEGRAL
APPROACH INVOLVING NONUNIFORM DISCRETIZATION STEP SIZE

Solving the homogeneous system requires calculating the transverse inner products of basis functions
with trial functions of the dispersion matrix, deducted from the integral formulation resulting from
Eq. (6); the integration boundaries are given by the width of the slot (or metallic strip) related to
the considered planar line. Nevertheless, because cosine trial functions with edge effects cannot be
analytically integrable [17], the related inner products should be determined numerically. Then, the
integral computation can be further improved by using a non-uniformly distributed discretization step
with sinusoidal variations. Because of the shape of these trial functions, the integral discretization step
needs to be large in the middle of the slot(s) (or of the metallic strip(s)) and very small close to the
metallic strip edges, as shown in Fig. 4.

Metallic

0x

Metallic
stripstrip

Φx

xxNa

Slot

Hi

x i

Elementary areas of non-uniform width

Na Areas in the slot

Metallic strip

Elementary areas of non-uniform width

Φz

Na
x x x0

Slot Slot

Hi

xi

Na Areas on the strip

(a) (b)

Figure 4. Nonuniform discretization by taking the origin to the top of the considered line. (a)
Discretization in the slot such as finline and coplanar line. (b) Discretization on the metallic strip such
as microstrip and coupled microstrip lines.

Here, x0 and xNa indicate the respective first and last abscissa (or the first and the last position
in the x-axis), involved in the integration boundaries of the inner products, while “i” and Na indicate
the respective ith discretization step and the number of elementary areas of the numerical integration
in the insulating (or metallic) region.

Furthermore, if the origin of x-axis is chosen on the top of the transmission planar lines such as in
all asymmetrical structures as well as in symmetrical coplanar and coupled microstrip type structures,
the ith discretization step can be expressed as:

xi =
x0 + xNa

2
+

(
xNa − x0

2

)
sin

(
(2i−Na)π

2Na

)
(15)

knowing that i = {0, 1, 2, . . . , Na} and xi ∈ [x0, xNa]. However, by taking 1 ≤ i ≤ Na, the width of
each elementary area is determined by:

Hi = xi − xi−1 = (xNa − x0) sin
( π

2Na

)
cos

(
(2i− 1−Na)π

2Na

)
(16)

which represents also the nonuniform discretization parameter of the numerical integration. Moreover,
according to Fig. 5, when the origin is chosen in the middle of the analyzed symmetrical finline or
microstrip structure, xi and Hi are expressed as follows:

xi = x0 + (xNa − x0) sin

(
iπ

2Na

)
(17)

Hi = xi − xi−1 = 2(xNa − x0) sin
( π

4Na

)
cos

(
(2i− 1)π

4Na

)
(18)

Remind that because of the symmetry of the proposed structures cited above, only half of the
transverse section was considered, involving a reduction of the CPU time by 2. In the case of uniform
discretization (i.e., all elementary areas have the same width Hi = H), Eqs. (15), (17) and (16), (18)



Progress In Electromagnetics Research B, Vol. 94, 2021 185

metallic

Elementary areas of non-uniform width

Metallic
stripstrip

Φx

x

Slot

Hi

xi

Na Areas in the half slot

xNax0=0

Elementary areas of non-uniform width

Slot

Φz

x

Metallic strip 

Hi

xi xNa

Slot

Na Areas on the half strip

x0=0

(a) (b)

Figure 5. Nonuniform discretization by taking the origin in the middle of the considered line. (a)
Discretization in the slot for the finline. (b) Discretization on the metallic strip for the microstrip line.

can be reduced to

xi = x0 + i

(
xNa − x0

Na

)
(19)

Hi = H =
xNa − x0

Na
(20)

To avoid heavy numerical computation of the inner products involving elementary areas, sinusoidal
trial functions with no edge effects can be used, since they are analytically integrable. Such functions
can be obtained by only considering the numerator of every cosine trial functions reported in Tables 1
and 2. Note that, for symmetrical and asymmetrical structures, such sinusoidal functions with no
edge effects satisfy the boundary and proportionality conditions (as well as the parity condition for the
symmetrical case). Also, although these functions neither generate spurious solutions [22] nor involve
complex calculations, the convergence of the solutions (obtained by the zero determinant condition)
is slower with regard to the size of the dispersion matrix. In fact, improving the non-trivial solution
convergence of the previous homogeneous system requires using a dispersion matrix of relatively larger
size.

5. ANALYTICAL APPROACH FOR COMPUTING INNER PRODUCTS USING
TRIAL FUNCTIONS WITH METALLIC EDGE EFFECTS

In this section, we focus on the expressions required to numerically compute the transverse inner
products involving cosine trial functions with edge effects (regarding the inner products involving
sinusoidal trial functions, they can be determined analytically because they are more easily integrable).
To numerically integrate them, let us use trapezoidal or quadratic elementary areas.

5.1. Uniform Width of Elementary Areas

In the case of uniform discretization step size, while considering the origin on the top of the modeled
structure, the well-known expressions of the inner products are [27]:

• Trapezoidal Areas

⟨Φmfn⟩ = H

{
Φm(xo)fn(xo) + Φm(xNa)fn(xNa)

2
+

Na−1∑
i=1

(Φm(xo + iH)fn(xo + iH))

}
(21)

• Quadratic Areas

⟨Φmfn⟩ =
H

6
{Φm(xo)fn(xo) + Φm(xNa)fn(xNa)

+4

Na∑
i=1

Φm

(
xo +

(
i− 1

2

)
H

)
fn

(
xo +

(
i− 1

2

)
H

)
+ 2

Na−1∑
i=1

Φm(xo+iH)fn(xo+iH)

}
(22)



186 Khodja, Yagoub, and Touhami

5.2. Nonuniform Width Of Elementary Areas

As for the integration involving nonuniform areas, original expressions of the inner products are
introduced below. To the best of the authors’ knowledge, such innovative expressions have never been
proposed. In addition, to further increase the efficiency of the proposed approach, a technique to
accelerate the convergence with regard to the number of areas will be investigated in the next section.

When the origin is taken on the top of the considered structure, the inner products, which depend
only on the x variable, can be described by the following new expressions involving a nonuniform
discretization step:

• Trapezoidal Areas

⟨Φmfn⟩ =
H1Φm(xo)fn(xo) +HNaΦm(xNa)fn(xNa)

2

+
Na−1∑
i=1
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2
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 fn
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Hj

 (23)

• Quadratic Areas

⟨Φmfn⟩ =
H1Φm(xo)fn(xo) +HNaΦm(xNa)fn(xNa)
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It should be noted that if the origin is taken in the middle of a given structure such as symmetrical
finlines (or microstrip lines), it suffices to multiply the four above formulas by two, where x0 = 0 and
Na indicates for the number of elementary areas defined in only half of the insulating (or metallic)
region.

6. CONVERGENCE STUDY WITH REGARD TO THE NUMBER OF AREAS

This section highlights the convergence of the inner products. It involves only cosine trial functions, with
regard to the number of areas while introducing a process to accelerate this convergence. To this aim, let
us consider a symmetrical finline and its dual configuration, i.e., the symmetrical suspended microstrip
line. As shown in Fig. 6, it includes two layers filled with air (µr1 = µr3 = 1; εr1 = εr3 = 1) and one
layer constituting the substrate of εr2 = εr = 2.2 and µr2 = 1. The dimensions are a = b1 = 3.556mm,
b2 = 0.127mm and b3 = 3.429mm, with f = 26GHz and β = 345 rd/s. Since these planar structures
are symmetrical, only half of their section was considered during the numerical treatment.
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Figure 6. Cross section of shielded symmetrical planar structures. (a) Finline. (b) Suspended
microstrip line.
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Figure 7. Position of the last nonuniform discretization width. (a) In the slot. (b) On the metallic
strip.

The position of the last discretization of the numerical integration will be first varied. So, let ∆ be
the narrowest width of the last nonuniform elementary area in the slot or on the metallic strip, which
is the closest to the metallic edge, as shown in Fig. 7. Its expression is deducted from Eq. (18), as

∆ = HNa = xNa − xNa−1 = 2 (xNa − x0) sin
( π

4Na

)
cos

(
(2Na− 1)π

4Na

)
(25)

The latter discretization is located by the abscissa xNa = w/2− q∆ with respect to the metal edge
while varying the factor q from 0 to 0.4. In fact, this last discretization is shifted by q∆ with respect to
the metallic edge. In this case, the integration boundaries of these inner products are taken between 0
and w/2− q∆.
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Figure 8. Convergence of inner products with regard to the last discretization position by using two
types of nonuniform numerical integration. (a) Nonuniform trapezoidal areas. (b) Nonuniform quadratic
areas.
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Figure 8 illustrates the evolution of the inner products versus the number of nonuniform trapezoidal
and quadratic areas for different positions of the last discretization (depending on the factor q), with
w/a = 0.9, m = 2, and n = 100 for the symmetrical finline and n = 99 for the symmetrical suspended
microstrip line.

The above figure shows a fast convergence of inner products versus the number of trapezoidal areas
when the last discretization is shifted by 0.25∆ from the metallic edge (i.e., xNa = w/2 − 0.25∆).
Therefore, this position of “xNa” can be considered to be adequate for fast and accurate analysis of
planar structures. On the other hand, varying the position of the last discretization (by varying “q”)
has no influence on the convergence when quadratic areas are used.

To further emphasize the optimal position of the last discretization with respect to the convergence
speed of the inner products, we report in Tables 3 and 4 the convergence of the inner products involving
cosine trial functions as function of the number of elementary areas (Note that the trapezoidal form is
involved only for finline and microstrip structures).

Table 3. Convergence of inner products versus trapezoidal areas for finline structure.

hhhhhhhhhhhhhhhNumber of areas

Last position
xNa = w

2

−0.1∆

xNa = w
2

−0.2∆

xNa = w
2

−0.25∆

xNa = w
2

−0.3∆

xNa = w
2

−0.4∆

10 −0.2818 −1.0760 −1.3022 −1.4835 −1.7733

50 1.6720 1.5265 1.4894 1.4620 1.4236

100 1.5809 1.5083 1.4896 1.4759 1.4567

300 1.5201 1.4958 1.4897 1.4851 1.4787

1000 1.4988 1.4915 1.4897 1.4883 1.4864

10000 1.4906 1.4899 1.4897 1.4895 1.4893

50000 1.4899 1.4897 1.4897 1.4896 1.4896

500000 1.4897 1.4897 1.4897 1.4897 1.4897

Table 4. Convergence of inner products versus trapezoidal areas for microstrip structure.

hhhhhhhhhhhhhhhNumber of areas

Last position
xNa = w

2

−0.1∆

xNa = w
2

−0.2∆

xNa = w
2

−0.25∆

xNa = w
2

−0.3∆

xNa = w
2

−0.4∆

10 −24.1096 −24.8946 −25.158 −25.3760 −25.716

50 −3.3129 −3.3784 −3.3956 −3.4086 −3.4274

100 −3.3440 −3.3753 −3.3834 −3.3893 −3.3978

300 −3.3688 −3.3791 −3.3817 −3.3837 −3.3864

1000 −3.3778 −3.3809 −3.3817 −3.3823 −3.3831

10000 −3.3813 −3.3816 −3.3817 −3.3817 −3.3818

50000 −3.3816 −3.3817 −3.3817 −3.3817 −3.3817

500000 −3.3817 −3.3817 −3.3817 −3.3817 −3.3817

These two tables clearly show that the convergence of the inner products becomes faster when the
last discretization step is shifted by 0.25∆ from the metallic edge, knowing that xNa = w/2 − 0.25∆
represents the upper boundary of the numerical integration of the inner products.
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Figure 9. Convergence of inner products using two types of discretization steps. (a) Symmetrical
finline. (b) Symmetrical suspended microstrip line.

Nevertheless, to further verify the efficiency of the proposed nonuniform numerical integral
technique compared to the uniform one, we displayed the evolution of the ox- and oz-inner products of
the symmetrical finline (Fig. 9(a)) and suspended microstrip line (Fig. 9(b)), respectively, as function
of the number of trapezoidal or quadratic areas for these two types of discretization steps. In this
part, we considered two values for xNa namely, when the last discretization line is on the metallic edge
(xNa = w/2) and when it is shifted by 0.25∆ from the latter (xNa = w/2 − 0.25∆), with w/a = 0.9,
K = 2, N = 100 for the finline and N = 99 for the suspended microstrip line.

From this figure, we can deduce that when the last discretization is on the edge (xNa = w/2),
the convergence was very slow requiring at least 1,000,000 and 3,000 elementary areas while using
uniform and nonuniform discretization steps, respectively. However, and as expected, the convergence
was considerably accelerated when the last discretization was shifted by 0.25∆ from the metallic edge
(xNa = w/2− 0.25∆) implying more reduction of trapezoidal or quadratic areas.

Figure 10 shows a comparative study of the determinant of the dispersion matrix obtained from the
two numerical integration methods using uniform/nonuniform discretization steps, when trial functions
with edge effects are considered. We note a faster convergence according to the number of nonuniform
trapezoidal areas while shifting the last discretization by 0.25∆ from the metallic edge, knowing that
this convergence does not exceed 500 areas.

According to the obtained results, the computational integral method using nonuniform trapezoidal
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Figure 11. Convergence of the phase constant with respect to the position of the last discretization
step.

areas can be an appropriate choice for proper and reliable analysis of planar transmission lines.
Therefore, we report in Fig. 11 the convergence of the phase constant (β) of the dominant mode
with regard to the nonuniform trapezoidal areas for the two above positions of the last discretization
(xNa) and by taking at least 2000 modes and 2 trial functions per component. Then, for a number not
exceeding 400 nonuniform trapezoidal areas, we reached the convergence for xNa = w/2− 0.25∆.

So, we considered only nonuniform trapezoidal areas when the last discretization was located at
w/2− 0.25∆. Fig. 12 shows the convergence of the dominant mode phase constant (β) with respect to
the number of nonuniform trapezoidal areas, for different values of normalized widths w/a of the slot
(metallic strip) of the symmetrical finline (suspended microstrip line).

Figure 12 shows a slower convergence when the slot (metallic strip) for the symmetrical finline
(suspended microstrip line) is wider. Note that, because we used a sinusoidal nonuniform discretization
step, this convergence does not exceed 500 areas whatever the case.

Figure 13 highlights the convergence with regard to the number of trial functions (K) and modes
(N) while choosing narrow or wide slot (or metallic strip). In this case, both trial functions with and
without edge effects were used.
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Figure 13. Convergence of the phase constant with regard to the number of trial functions per
component (K) and modes (N). (a) Trial functions with edge effects. (b) Trial functions without edge
effects.

We can notice that using trial functions with edge effects results in both a slower convergence with
regard to N and a faster one with regard to K, requiring up to 3000 modes and between 2 and 8 trial
functions. On the other hand, by using trial function without edge effects, the convergence is slower
with respect to K, requiring at least 20 trial functions per component to reach a stable solution, thus
implying the use of a relatively large size dispersion matrix, knowing that this convergence is obtained
from 300 modes.

To demonstrate the reliability of the proposed numerical integral technique, we evaluated β versus
the normalized width while selecting either 4 trial functions by component when edge effects are
considered or 20 when edge effects are disregarded (Fig. 14). We accordingly noted a close similarity
between the results that we obtained from these two types of trial functions, thus validating the
numerical integral approach based on a proper computation of the inner products. In fact, the use
of our numerical approach with cosine trial functions taking into account edge effects leads to the
same results derived from an analytical integral calculation based on cosine trial functions without edge
effects.

Nevertheless, the same figure shows a decrease of β versus the normalized slot width of the finline-
type structure, and a decrease then an increase of β versus the normalized metallic strip width of the
microstrip-type structure. In fact, this increase is due to the influence of the shielding vertical walls on
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Figure 14. Phase constant versus normalized width w/a for two types of trial functions.

the electromagnetic field distribution, especially when the edges of the metallic strip are closer to these
walls.

The efficiency of the proposed modeling method depends not only on the accuracy of the expected
results but also on the required computing time. In fact, CPU time is another key criterion to evaluate
the performance of our approach. As shown in Fig. 15, the CPU time increases linearly with the
number of modes N and in a quadratic form with the trial functions by component K (i.e., the size
of the dispersion matrix); the finline structure parameters are a = b1 = 3.556mm, b2 = 0.127mm,
b3 = 3.429mm, w/a = 0.1, F = 26GHz, εr = 2.2, Na = 150.

Indeed, the proposed approach helps reducing the CPU time by calculating the determinant of the
dispersion matrix for only one value of the phase constant. Also, this figure clearly shows the influence
of the dispersion matrix size, which ascertains a suitable compromise between memory size, accuracy,
and CPU time. From this figure, we can also deduce that the numerical integration approach involving
trapezoidal areas reduces the CPU time by a factor of 1.5 compared to the case where quadratic areas
are used, since the mathematical expression of the numerical integration using trapezoidal areas is
simpler than the one involving quadratic elementary areas. As illustration, for K = 8 and N = 3000,
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Figure 15. CPU time required to obtain the determinant versus the number of trial functions with
edge effects (K) and modes (N).
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the CPU time is about 20 s and 30 s for respectively trapezoidal and quadratic areas. So, the trapezoidal
approach is about 1.5 times faster than the quadratic approach.

We, therefore, retained the trapezoidal numerical approach including a nonuniform mesh when trial
functions with edge effects are selected (while shifting the last discretization step by 0.25∆ from the
metallic edge).

7. NUMERICAL EXAMPLES INCLUDING SYMMETRICAL/ASYMMETRICAL
STRUCTURES

To further confirm the efficiency of the proposed numerical integral approach, the obtained results have
been compared to those published in the technical literature, by using a sufficient number of areas,
modes, and trial functions with and without edge effects. For this purpose, we derived the effective
permittivity, normalized wavelength, and phase constant for the dominant mode as function of different
physical and electrical parameters of the retained symmetrical/asymmetrical structures (where the study
region is taken either in the slot(s) or on the metallic strip(s), according to the type of considered lines).

7.1. Finline-Type Structure

Starting with symmetrical finline structures with isotropic/anisotropic substrates, we plotted in Fig. 16
the effective permittivity vs. the normalized slot (w/a) where the two types of trial functions (with and
without edge effects) were used. The retained anisotropic materials, for such finline, are Epsilam 10,
sapphire, and boron nitride characterized by their electrical tensors ε̄r = [13, 10.2, 13], ε̄r = [9.4, 11.6, 9.4]
and ε̄r = [5.12, 3.4, 5.12], respectively. Note that the decrease of the effective permittivity with respect
to the w/a ratio is in close agreement with the results published by Shalaby and Kumar [28] with an
overall average relative error less than 1.2%. Note that the two types of trial functions yield practically
the same results by selecting a sufficient number of modes (N = 3000), areas for trial functions with
edge effects (Na ≤ 700), and trial functions by component (i.e., K ≤ 8 and K ≤ 25 for trial functions
with and without edge effects, respectively).
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Figure 16. Propagation characteristics versus normalized slot (w/a) for the symmetrical finline inserted
into a WR-28 metallic box with a = 3.556mm, b1 = b3 = 3.4935mm, b2 = 0.125mm, F = 30GHz,
N = 3000, Na ≤ 700.

7.2. Microstrip-Type Structure

Figure 17 plots the frequency variation of the dispersion parameters of the microstrip-type structure
with a maximum of 3 layers such as symmetrical microstrip with overlay. Note that the structure
consists of a metallic strip inserted between two identical isotropic (anisotropic) dielectric layers of
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Figure 17. Dispersive behavior of symmetrical microstrip-type structure with b3 = w, b = 2w,
b1 = b− b3 − b2 = w − b2, N = 3000, Na = 75.

εr = 4.08 (εr = [5.12–3.4–5.12]). We can observe an increase of the effective permittivity (εeff ) versus
both the w/λ0 ratio and the height of the 2nd layer (b2) of the covered symmetrical microstrip, with λ0

being the free space wavelength.
On the other hand, for b2/w = 1, the frequency has nearly no effect on dispersion since εeff is

almost constant, because this structure becomes a homogeneous stripline (b1 = 0), consisting of a single
medium in which the same concentration of the EM fields is confined. So, by using trial functions
with and without edge effects, our results generally agree well with those of Marques and Horno [29].
Nevertheless, when the strip is very narrow with respect to the wavelength (w/λ0 < 0.02), trial functions
without metallic edge effects led to less accurate values than those obtained from trial functions that
include edge effects. Hence, in this case, favoring the use of trial functions with edge effect ensures
better accuracy of the dispersion parameters. Moreover, by referring to the work of Marques and Horno
who used the spectral method including basic functions with edge effects [29], we obtained close results
with an average error of 0.32% and 0.44% while using trial functions with and without edge effects,
respectively.

7.3. Coupled Microstrip-Type Structure

The next step is to consider coupled microstrip-type structures. Fig. 18 illustrates the quasi-static
analysis by varying the effective permittivity versus physical parameters of symmetrical/asymmetrical
coupled microstrip-type structures. In Fig. 18(a), we notice an increase of the even- and odd-mode
effective permittivity (εeff ) versus the b3/b2 ratio for the shielded inverted coupled microstrip lines with
isotropic/anisotropic substrate. In fact, by increasing the height b3, the EM fields are less attracted
towards the lower horizontal wall of the shielding, thus increasing the concentration of these fields in the
substrate and, therefore, the effective permittivity. However, when the metallic strips are sufficiently
away from the lower horizontal wall by further increasing the height b3, this latter wall will have no
effect on the propagation characteristics, since most of the EM fields will be attracted into the substrate,
thus stabilizing εeff when the ratio b3/b2 increases. Furthermore, this figure highlights a close agreement
with results published in [30] with an average relative error that does not exceed 0.84% when the two
types of trial functions were used.

Figure 18(b) deals with three types of asymmetrical anisotropic coupled microstrip lines namely,
open suspended coupled lines (b1 ≈ ∞, b3 = 0.2mm, εr(1) = εr(3) = 1, ε̄r2 = [9.4, 11.6, 9.4]), open
coupled lines (b1 ≈ ∞, b3 = 0mm, εr(1) = 1, ε̄r2 = [9.4, 11.6, 9.4]), and coupled lines with overlay
(b1 = 1mm, b3 ≈ ∞, ε̄r1 = [9.4, 11.6, 9.4], εr(2) = 13, εr(3) = 1). By varying εeff versus the normalized
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Figure 18. Effective permittivity versus physical parameters of symmetrical/asymmetrical coupled
microstrip-type structures. (a) Symmetrical inverted coupled microstrip lines with a = 40mm,
w = 0.1mm, b1 = 10mm, b2 = 1mm, d = 1mm, N = 3000, Na = 100. (b) Asymmetrical coupled
lines in microstrip technology with b2 = 1mm, w = 0.5mm, d1 = 1mm, N = 3000, Na1 = 50,
50 ≤ Na2 ≤ 150.

width (d2/d1) of the metallic strips, this figure highlights a decrease of εeff for both suspended coupled
lines and coupled lines with an overlay while it is increasing for coupled microstrip lines. Moreover,
according to this figure, when d2/d1 < 1, trial functions without edge effects lead to less accurate
values, which favors the use of trial functions with edge effects. Indeed, the total average relative errors
resulting from trial functions with and without edge effects are 0.16% and 0.63%, respectively, while
comparing our values with those of Kitazawa and Mittra [31].

7.4. Coplanar-Type Structure

After selecting a sufficient number of modes, trapezoidal areas, and trial functions, we computed the
normalized phase constant and effective permittivity of shielded coplanar structures with isotropic
magnetic/non-magnetic substrates and inserted in a WR28-type waveguide of section 3.556×7.112mm2.
To this aim, we first considered a symmetrical coplanar waveguide printed on a magnetic isotropic
substrate while varying the values of the relative permeability. In this case, as shown in Fig. 19(a),
there is a clear influence of the magnetic isotropy on the dispersion curve by plotting the square of
the normalized phase constant (β/β0)

2 of the dominant mode (even mode) versus frequency. Note
that this ratio was numerically determined by Mazé et al. [32] who defined it as the product of the
effective permittivity with the effective permeability (εeff ∗ µeff ). In addition, the dispersion becomes
higher with the increase of µr, with a significant influence of the non-magnetic isotropy on the dispersion
characteristics. On the other hand, when µr = 1 (non-magnetic isotropy case), a very slight dispersion is
observed. With an average relative error not exceeding 0.92%, our computed results can be successfully
compared to those reported in [32], knowing that the two types of selected trial functions led to similar
results.

Figure 19(b) shows the evolution of the effective permittivity of the shielded asymmetrical coplanar
structure versus the width of the lateral metallic strip (C1) for both C- and π-modes. From this figure,
we see a quasi-stability of εeff with respect to C1 for both C- and π-modes, highlighting a negligible
influence of the vertical metallic walls on the dispersion characteristics when these walls are sufficiently
away from the central metallic strip. For both trial functions with and without edge effects, the obtained
results are in good agreement with those reported by Schmidt et al. [33] with an average error less than
0.35%.
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Figure 19. Evolution of the normalized phase constant and effective permittivity with respect to
the electrical and physical parameters for symmetrical/asymmetrical coplanar-type structures. (a)
Symmetrical case with a = 3.556mm, b = b1 + b2 + b3 = 7.112mm, b1 = 0.5b = 3.556mm,
b2 = 0.1b = 0.7112mm, b3 = 0.4b = 2.8448mm, w = d = a/5 = 0.7112mm, εr = 3, N = 3000,
Na = 500. (b) Asymmetrical case with a = 3.556mm, b1 = b3 = 3.4935mm, b2 = 0.125mm,
w = 0.2mm, d1 = d2 = 0.1mm, εr = 2.2, F = 33GHz, N = 2000, Na = 50.

8. CONCLUSION

An integral method based on the EM mathematical concept of operators was proposed to analyze
arbitrary isotropic/anisotropic multilayered structures, involving the Galerkin’s procedure in the modal
domain. For this purpose, two types of trial functions were selected namely, sinusoidal trial functions,
which allow lighter analytical calculations but with slower convergence (with respect to the dispersion
matrix size), and trial functions with metallic edge effects that favor a faster convergence by using
numerical integration with a nonuniform discretization step, but at the expense of higher mathematical
development. Furthermore, optimal convergence of the propagation parameters was investigated leading
to close agreement of the obtained results with those published in the technical literature. We should
notice that in some cases, i.e., when the width of the slot or metallic strip is much smaller than that
of the concerned structure, trial functions with edge effects will improve the accuracy. Thus, this
numerical integral approach constitutes an advanced modeling tool for the efficient and reliable design
of RF/microwave planar circuits.
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32. Mazé, G., S. Tedjini, and J. L. Bonnefoy, “Analysis of a CPW on electric and magnetic biaxial
substrate,” IEEE Trans. Microwave Theory and Tech., Vol. 41, 457–461, Mar. 1993.

33. Schmidt, L. P., T. Itoh, and H. Hofmann, “Characteristics of unilateral fin-line structures with
arbitrarily located slots,” IEEE Trans. Microwave Theory Tech., Vol. 29, 352–355, Apr. 1981.


