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Calculations of Bands and Band Field Solutions in Topological
Acoustics Using the Broadband Green’s Function-KKR-Multiple

Scattering Method

Leung Tsang1, Tien-Hao Liao2, *, and Shurun Tan3, 4, 5

Abstract—In this paper, we apply the BBGF-KKR-MST (Broadband Green’s function-KKR-Multiple
Scattering Theory) to calculate Band Structures and Band Field Solutions in topological acoustics.
A feature of BBGF is that the lattice Green’s functions are broadband, and the transformations to
cylindrical waves are calculated rapidly for many frequencies for speedy calculation of the determinant
of the KKR equation. For the two bands of interest, only 5 cylindrical waves are sufficient so that the
dimension of the eigenvalue matrix equation is only 5. The CPU time requirement, including setup and
using MATLAB on a standard laptop, is 5 milliseconds for a band eigenvalue. Using the eigenvalue
and scattered field eigenvector, the field in the cell is calculated by higher order cylindrical waves. The
exciting field of higher order cylindrical waves requires only 11 coefficients to represent the band field
solutions in the cell. Comparisons are made with the results of the volume integral equation method
and the commercial software COMSOL. The BBGF-KKR-MST method is significantly faster.

1. INTRODUCTION

Topological states in photonics were initially proposed by Haldane in analogy to the quantum Hall
(QH) effect in electronic systems. Topologically protected, unidirectional, backscattering-free edge
states immune to distortions have been observed in topological photonics, using photonic crystals with
gyrotropic constituents placed in an applied dc magnetic field [1]. Similar phenomena have also been
reported in topological acoustics [2, 3].

The calculation of band diagrams and band field solutions for topological photonics and topological
acoustics have been studied recently [4, 5]. The common method of band calculations is the plane
wave method [6–9]. The advantage of the plane wave method is that the eigenvalue problem is a
linear eigenvalue problem. The disadvantage of the method is the poor convergence of the plane waves
requiring a large number of plane waves. For a 2D problem, it requires several thousand plane waves
to achieve convergence particularly for sharp contrast between the scatterer and the background host
materials. The plane wave method gives an eigenvalue problem of matrix dimension of several thousands.
Discrete methods such as the finite difference method (FDM) [10, 11] and the finite element method
(FEM) [12, 13] have also been used. The commercial software COMSOL which has been extensively
used in simulations of photonic crystals and phononic crystals is based on FEM. The disadvantages of
the FDM and FEM methods are that volumetric discretization of the unit cell is required. For a 2D
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problem, it requires such as ten thousand points or elements for volumetric discretization giving an
eigenvalue problem of matrix dimension of around ten thousand.

The Korringa-Kohn-Rostoker method (KKR) [14–16] and multiple scattering theory (MST) [17–
19] were also applied. The Multiple Scattering method initially proposed by Foldy [17] and Lax [18]
has been used for decades in many areas. In remote sensing [20, 21] and in waveguides [22, 23], the
method is labelled as Foldy-Lax (FL) multiple scattering equations. In optical scattering [24, 25], it is
labelled as superposition T matrix method, after Waterman’s pioneering work [26]. It has been applied
in band structures calculations [27], quasicrystals [28], electron diffraction [29–31], and quantum many
body theories in random lasers [32]. To improve computational efficiency, an FFT-based method known
as “sparse matrix canonical grid method has also been proposed [33]. However, in its common form,
even with numerical improvement, MST is not efficient for band diagram and band fields of periodic
structures such as in photonic crystals. This is because the common MST method is a single frequency
method. The solution is computed at a given frequency. The CPU of computing the solutions at
many frequencies, such as at 100 frequencies, is 100 times that of the CPU of a single frequency. In
band diagram problems of periodic structures, the frequency is unknown. One has to first determine
the frequency which is the eigenvalue of the multiple scattering equation. To perform the calculations
with the single frequency method MST, one has to solve the MST equations repeatedly for tens and
hundreds of frequencies and then determine the frequency eigenvalues. Recently, researchers in the field
of photonic crystals and phononic crystals have been using the Finite Element method (FEM) [12, 13]
and the finite difference method (FDM) [11]. The advantage of FEM is that although the number of
unknowns is large in FEM, the eigenvalue problem is linear in FEM so that the band field solutions
for the first few bands are computed efficiently. In addition, the FEM method is applied to a single
cell, and the Bloch conditions are imposed readily on opposite sides of the cell boundary [12, 13].
Simulations of band diagrams of topological photonic and topological phonon crystals are largely based
on COMSOL [34–36]. KKR refers to eigenvalue equation from which the band eigenvalue frequency for
a given Bloch vector is determined. KKR equation can be derived by various methods. In this paper,
we use MST method to derive KKR equation. Based on the single scatterer T -matrix in MST, we show
that the dimension of the KKR eigenvalue equation is small, and the dimension is only 5 by 5 in this
paper.

Recently we developed Broadband Green’s functions (BBGF) method [5, 37–41] for band diagram
calculations that has two distinct features. Firstly, after an initial setup is completed, the calculations
for many frequencies are performed rapidly, making the method broadband. Secondly, unlike classical
expansions of Green’s functions which are poorly convergent, the BBGF expansions are rapidly
convergent by making use of imaginary wavenumber extractions [42, 43]. We have implemented BBGF
in band calculations in two methods. In the first method, the solutions were obtained by combining the
BBGF with the integral equation and solved by the method of moment (MoM). The method is labelled
as the BBGF-MoM method [5, 37–39]. Recently we proposed the second method [40, 41] in which we
combined the Broadband Green’s function (BBGF) method with the KKR method and the Multiple
Scattering Theory (MST). We label the method as BBGF-KKR-MST. In the usual KKR method, the
lattice Green’s function which is the periodic Green’s function without the plurality of scatterers is
calculated. The convergence of the lattice Green’s function is accelerated by the Ewald method which
is a single frequency method. In BBGF, we use the Broadband Green’s function to derive analytic
expressions of the broadband transformation to cylindrical waves. The method requires a setup after
which the determinant for many frequencies is computed readily. Thus, for broadband calculations,
the BBGF method is much faster than the Ewald method [42, 43]. In the formulation, we utilize the
MST in which the band eigenvalue problem is expressed in terms of the single scatterer T matrix of
the scatterer. The size of the matrix can be made small because in deriving the matrix equation, the
exciting fields are in the extinction region of the scatterer so that low order cylindrical waves can be
used. After the eigenvalues are solved, the field throughout the entire cell is calculated by higher order
cylindrical waves. We have applied the BBGF-KKR-MSR method to topological photonics, and it is
shown that the BBGF-KKR-MST method is significantly faster than COMSOL [40, 41].

In previous work of topological bands, we have applied the BBGF-KKR-MST method to topological
photonics [40, 41]. In this paper, we apply the method to topological acoustics. In applying the MST,
which is the same as the Foldy-Lax multiple scattering equations [44–48], we utilize the concept of “the
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final exciting field” and “the final scattered field”. For the eigenvalue equation, the final exciting field is
inside the scatterer region by the extinction theorem. We demonstrate the topological acoustics for the
case of scatterer of radius b = 0.4a, where a is the lattice constant. A low order of 2nd order cylindrical
waves is sufficient for the 2 bands of interests, and the eigenvalue equation is only of dimension 5 by
5 based on the cylindrical wave harmonics of n = 0,±1,±2. After obtaining the eigenvector of surface
fields, the higher order cylindrical waves are used to compute the fields for the (0,0) cell. The higher
order cylindrical waves include higher harmonics for the band fields inside the entire (0,0) cell. For
the example illustrated, these are carried n = 0,±1, . . . ,±5. It means that the band fields in the cell
are represented by merely 11 cylindrical wave coefficients. This count is much less than volumetric
methods of discretization of FEM and FDM where the number of field values is the same as the number
of discretized points in the cell.

The outline of the paper is as follows. In Section 2, we derive the integral equations of the BBGF-
KKR-MST method. In Section 3, the cylindrical wave expansions are used in solving the integral
equations. In Section 4, the eigen-value matrix equation is derived using the single scatterer T matrix.
In Section 5, the calculation of fields is described using higher order cylindrical waves. In Section 6,
we calculate the T matrix for the problem of rotating fluid of Reference [2]. The normalization of the
band fields is done analytically in Section 7. Numerical results and CPU requirements are described in
Section 8.

2. MST FORMULATION OF INTEGRAL EQUATIONS IN PERIODIC
STRUCTURES

The multiple scattering theory (MST) formulation is used to derive the integral equations for general
scatterers. Consider a periodic lattice with lattice constant a. Let the cells be labeled as (m,n).
Consider the (0, 0) cell (Figure 1). The scatterer is of arbitrary shape and is enclosed by a circular
boundary SB of radius b. Let SC be the boundary of the (0, 0) cell. We use V1 to denote the region
inside SB (including the arbitrarily shaped scatterer) and V0 the region outside the scatterer region V1
and is within the cell (0, 0). Let ψ be the wave function in V0 that satisfies the wave equation(

∇2 + k2
)
ψ = 0 (1)

where k = ω/c is the wavenumber of the background medium, ω the angular frequency, and c the
acoustic wave velocity in the background medium. Setting c equal to unity, the normalized frequency is
fN = k/(2π). We only need to solve the band fields in (0, 0) cell as fields in other cells can be obtained
by applying Bloch theorem.

In MST, the formulation is performed for a single isolated scatterer. The wave function ψ is the
sum of ψex, the “final” exciting field, and ψs the “final” scattered field. Both ψex and ψs refers to that
of the “single scatterer” that resides inside V1. The self-consistent equations of MST allow ψex and ψs

to be calculated in a self-consistent manner [44, 45].

ψ (r̄) = ψex (r̄) + ψs (r̄) ; for r̄ in V0 (2)

Using extinction theorem, ψex(r̄) is also defined in V1. Thus, ψex exists in V0 and in V1. The
exciting field obeys the equation with the wave number k even though r̄ can be in V1.(

∇2 + k2
)
ψex = 0; for r̄ in V0 and in V1 (3)

Because ψs is the scattered field from the single scatterer, it exists outside the scatterer. It exists
in V0 and outside the cell all the way to infinity.(

∇2 + k2
)
ψs = 0; for r̄ in V0 and to infinity (4)

For a Bloch vector k̄i let gP (k, k̄i, r̄, r̄
′) be the lattice Green’s function. The lattice Green’s function

is a function of k and k̄i. The lattice Green’s function gP obeys the Bloch theorem and obeys the wave
equation (

∇2 + k2
)
gP

(
k, k̄i, r̄, r̄

′) = −δ
(
r̄ − r̄′

)
; where r̄ and r̄′ can be in V0 or V1 (5)

The gP (k, k̄i, r̄, r̄
′) is the periodic Green’s function for an empty lattice. Thus, the r̄ and r̄′ can be

in V0 or V1.



140 Tsang, Liao, and Tan

Using Green’s theorem, it can be shown that the following equation holds∫
SB

dl′
[
ψ
(
r̄′
)
n̂′ · ∇′gP

(
k, k̄i, r̄, r̄

′)− gP
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψ
(
r̄′
)]

=

{
0 for r̄ in V1

ψ (r̄) for r̄ in V0
(6)

where
∫
SB
dl′ is integration over SB.

In the (0, 0) cell, the lattice Green’s function gP (k, k̄i, r̄, r̄
′) can be written as a sum of the free

space Green’s function g0(k, r̄, r̄
′) and the response Green’s function gR(k, k̄i, r̄, r̄

′).

gP
(
k, k̄i, r̄, r̄

′) = g0
(
k, r̄, r̄′

)
+ gR

(
k, k̄i, r̄, r̄

′) (7)

where the free space Green’s function is g0(k, r̄, r̄
′) = i

4H
(1)
0 (k |r̄ − r̄′|), and it obeys the wave equation(

∇2 + k2
)
g0

(
k, r̄, r̄′

)
= −δ

(
r̄ − r̄′

)
(8)

The response Green’s function obeys the homogeneous wave equation(
∇2 + k2

)
gR

(
k, k̄i, r̄, r̄

′) = 0 (9)

The physical interpretation of gP (k, k̄i, r̄, r̄
′) is the scattering from all cells while gR(k, k̄i, r̄, r̄

′) is the
scattering from other cells into the (0, 0) cell. Integral equations are next derived based on whether r̄
is in V0 or V1.

2.1. Integral Equations with r̄ in V1

Since both ψex and gP can be in V1 we apply Green’s theorem by volumetric integration dr̄′ over V1
with r̄ in V1 ∫∫

V1

dr̄′
[
ψex

(
r̄′
)
∇′2gP − gP∇

′2ψex
(
r̄′
)]

=

∫
SB

dl′
[
ψex

(
r̄′
)
n̂′ · ∇′

gP
(
k, k̄i, r̄, r̄

′)− gP
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψex

(
r̄′
)]

= −ψex (r̄) for r̄ in V1 (10)

Subtracting Equation (10) from Equation (6) and using Equation (2) gives

ψex (r̄) =

∫
SB

dl′
[
ψs

(
r̄′
)
n̂′ · ∇′gP

(
k, k̄i, r̄, r̄

′)− gP
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψs

(
r̄′
)]

(11)

Figure 1. Periodic hexagonal cells with identical scatterers. In the (0, 0) cell: scatterer enclosed by
circle of radius b; V1: scatterer region; V0: outside circle of radius b and within the (0, 0) cell; ψs:
scattered field in V0; ψ

ex: exciting field in both V0 and V1; ā1 and ā2 are primitive lattice vectors.
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Next integration of dr̄′ over V0 and to infinity, and applying radiation boundary condition∫∫
V0 and to infinity

dr̄′
[
ψs

(
r̄′
)
∇′2g0 − g0∇

′2ψs
(
r̄′
)]

= 0

=

∫
SB

dl′
[
ψs

(
r̄′
)
n̂′ · ∇′g0 − g0n̂

′ · ∇′
ψs

(
r̄′
)]

(12)

Subtraction of (12) from (11) gives

ψex (r̄) =

∫
SB

dl′
[
ψs

(
r̄′
)
n̂′ · ∇′gR

(
k, k̄i, r̄, r̄

′)− gR
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψs

(
r̄′
)]

(13)

The physical interpretation of Equation (13) is the scattering from other cells into cell (0, 0) resulting
in the exciting field.

2.2. Integral Equations with r̄ in V0

We carry out volumetric integration dr̄′ in V0 + V1 with r̄ in V0 + V1∫∫
V1+V0

dr̄′
[
ψex

(
r̄′
)
∇′2gP − gP∇

′2ψex
(
r̄′
)]

=

∫
SC

dl′
[
ψex

(
r̄′
)
n̂′ · ∇′

gP
(
k, k̄i, r̄, r̄

′)− gP
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψex

(
r̄′
)]

= −ψex (r̄) r̄ in V0 + V1 (14)

where
∫
SC
dl′ is integration over the cell boundary SC (Figure 1). Next, we carry out volumetric integral

dr̄′ in V0. Then∫∫
V0

dr̄′
[
ψex

(
r̄′
)
∇′2gP

(
k, k̄i, r̄, r̄

′)− gP
(
k, k̄i, r̄, r̄

′)∇′2ψex
(
r̄′
)]

=

∫
SC

dl′
[
ψex

(
r̄′
)
n̂′ · ∇′gP

(
k, k̄i, r̄, r̄

′)− gP
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψex

(
r̄′
)]

−
∫
SB

dl′
[
ψex

(
r̄′
)
n̂′ · ∇′gP

(
k, k̄i, r̄, r̄

′)− gP
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′ψex
(
r̄′
)]

= −ψex (r̄) (15)

Taking the difference (14) and (15) gives∫
SB

dl′
[
ψex

(
r̄′
)
n̂′ · ∇′gP

(
k, k̄i, r̄, r̄

′)− gP
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψex

(
r̄′
)]

= 0 r̄ in V0 (16)

Take the difference of (16) and (6), and using (2), then gives

ψ (r̄) =

∫
SB

dl′
[
ψs

(
r̄′
)
n̂′ · ∇′gP

(
k, k̄i, r̄, r̄

′)− gP
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′ψs
(
r̄′
)]

r̄ in V0 (17)

Next integrate dr̄′ in V0 and to infinity, and using radiation boundary condition∫∫
V0 and to infinity

dr̄′
[
ψs

(
r̄′
)
∇′2g0 − g0∇

′2ψs
(
r̄′
)]

= −ψs (r̄)

= −
∫
SB

dl′
[
ψs

(
r̄′
)
n̂′ · ∇′g0 − g0 n̂

′ · ∇′
ψs

(
r̄′
)]

(18)

Adding Eqs. (17) and (18), and using Equation (7) gives

ψ (r̄) = ψs (r̄) +

∫
SB

dl′
[
ψs

(
r̄′
)
n̂′ · ∇′gR

(
k, k̄i, r̄, r̄

′)− gR
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψs

(
r̄′
)]

(19)

Using Eq. (2) in Eq. (19) means that r̄ in V0

ψex (r̄) =

∫
SB

dl′
[
ψs

(
r̄′
)
n̂′ · ∇′gR

(
k, k̄i, r̄, r̄

′)− gR
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψs

(
r̄′
)]

(20)
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Equation (20) looks the same as Equation (13). The difference is that Equation (13) has r̄ in V1 while
Equation (20) has r̄ in V0. Thus, the number of terms in the cylindrical wave expansion of ψex(r̄)
will be different between Eqs. (13) and (20). The physical interpretation of Eqs. (13) and (20) is
that ψex(r̄) is the scattering from scatterers in other cells into the cell (0, 0). For physical interpretation∫
SB
dl′

[
ψs (r̄′) n̂′ · ∇′gR

(
k, k̄i, x, y, x

′, y′
)
− gR

(
k, k̄i, x, y, x

′, y′
)
n̂′ · ∇′

ψs (r̄′)
]
= ψso where “so” denotes

scattering from other cells into the cell (0, 0).

3. CYLINDRICAL WAVE EXPANSIONS

The final scattered field is in V0 and all the way to infinity, which can be expressed as outgoing cylindrical
waves. Using cylindrical coordinates (r, θ)

ψs (r̄) =

NL∑
n=−NL

asnH
(1)
n (kr) einθ (21)

where H
(1)
n is the Hankel function of first kind.

The summation of the expansion is to |n| = NL. In MST, the key expansion is the convergence
of the final scattered field. We note that in photonic crystal, the band eigen-frequencies are usually
in the range of 0 ≤ fN ≤ 1.5. The size of the scatterer is of small or moderate size compared with
wavelength. Thus, the maximum cylindrical wave index NL is not large. The exciting field, as given in
Equations (13) and (20) are in two regions V1 and V0. The number of terms in the expansions in the
two regions will be different. For r̄ in V1

ψex (r̄) =

NL∑
n=−NL

anJn (kr) e
inθ for r̄ in V1 (22)

The exciting field expansion, because of the Bessel function Jn(kr), is a nonuniform convergent
series. Due to r̄ in V1 in Eq. (22) we need only to match to the scattered field with the maximum index
of NL.

For r̄ in V0, r is much larger when it is close to the cell boundary so that the argument of the
Bessel function can be much larger. We need to have more terms with a larger upper index of Ncyl in
the expansion. Thus, we have

ψex (r̄) =

Ncyl∑
n=−Ncyl

aCn Jn (kr) e
inθ for r̄ in V0 (23)

where Ncyl ≥ NL. We use two different symbols for the coefficients an and aCn to distinguish the two
regions. The response Green’s function, gR

(
k, k̄i, r̄, r̄

′), obeys the homogeneous wave equation. The
expansion is expressed as

gR
(
k, k̄i, r̄, r̄

′) = ∑
l

i

4
D̃l

(
k, k̄i

)
Jl

(
k
∣∣r̄ − r̄′

∣∣) eilθr̄r̄′ (24)

where Jl is the Bessel function of order l, and θr̄r̄′ is the angle that the vector r̄−r̄′ makes with the x-axis.
The merit of BBGF is that the lattice Green’s function can be computed fast for multi-frequencies. The
method consists of imaginary extractions and a setup of the frequency independent part. The lattice
Green’s functions are transformed into cylindrical waves, and broadband expressions of D̃l(k, k̄i) are

obtained. This procedure enables D̃l(k, k̄i) to be computed fast for many frequencies which are useful
for searching the eigenvalue frequency. The details and computations are described in the previous
paper [40]. We will discuss the number of terms in

∑
l. The requirement is not for the convergence of

gR(k, k̄i, r̄, r̄
′), but the number of terms in Eq. (23) is to get correct results for the scattered field and

the two exciting fields. Using translational addition theorem [44] in Eq. (24).

gR
(
k, k̄i, r̄, r̄

′) = i

4

∑
l

D̃l

(
k, k̄i

)∑
n

Jn (kr) e
inθJn−l

(
kr′

)
e−i(n−l)θ′ (25)
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Substituting into Equations (13) and (20),
∫
S dl

′ = b
∫ 2π
0 dθ′ and performing the integration, we have∫

S
dl′ψS

(
r̄′
)
n̂′ · ∇′gR

(
k, k̄i, r̄, r̄

′)= iπbk

2

∑
n

Jn (kr) e
inθ

NL∑
m=−NL

[
asmH

(1)
m (kb) J ′

m(kb)
]
D̃n−m(k, k̄i) (26)

and

−
∫
S
dl′gR

(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψs

(
r̄′
)
= − iπbk

2

∑
n

Jn (kr) e
inθ

NL∑
m=−NL

[
asmH

(1)′
m (kb)

]
D̃n−m(k, k̄i)Jm(kb)

(27)

Combining and making use of the Wronskin [49] H
(1)′

m (kb) Jm (kb) − H
(1)
m (kb) J ′

m (kb) = i2/(πkb) we
have

ψex (r̄) =

∫
SB

dl′
[
ψs

(
r̄′
)
n̂′ · ∇′

gR
(
k, k̄i, r̄, r̄

′)− gR
(
k, k̄i, r̄, r̄

′) n̂′ · ∇′
ψs

(
r̄′
)]

=
∑
n

Jn (kr) e
inθ

NL∑
m=−NL

asmD̃n−m

(
k, k̄i

)
(28)

From Eqs. (13) and (20), we have the same equation with different numbers of terms in the expansion
of ψex(r̄).

4. EIGENVALUE PROBLEM AND SINGLE SCATTER T MATRIX
IMPLEMENTATION

Comparing Equations (22) and (28)

NL∑
m=−NL

D̃n−m

(
k, k̄i

)
asm = an; n = 0,±1, . . . ,±NL (29)

which is the eigenvalue equation.
The dimension of the eigenvalue equation is 2NL+1. Because the index of D̃n−m is n−m we need

to compute D̃l(k), l = 0,±1, . . . ,±NDL with

NDL = 2NL (30)

The eigenvalue Equation (29) can be put in matrix form of dimension 2NL +1, by using indices in
the following order: −NL,−NL + 1, . . . ,−1, 0, 1, . . . , NL − 1, NL. In matrix form

ā = D̃ās (31)

where [
D̃

]
nm

= D̃n−m; n,m = −NL, . . . ,−1, 0, 1, . . . , NL (32)

As discussed in Section 2, the MST formulation uses the concept of isolated single scatterer. The
relation between scattered field and exciting field is through the single scatterer T matrix coefficients
Tmn(k). The T matrix Tmn(k) is independent of the Bloch vector k̄i. The scattered field and T -matrix
coefficients exist outside the circle with radius b.

asm =

NL∑
n=−NL

Tmn (k) an; m = −NL, . . . , 0, . . . , NL (33)

Using the matrix notations

ās = T ā (34)
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where ās and ās are column vectors of dimension 2NL+1, containing respectively the scattered field and
exciting field coefficients respectively. Substituting Eq. (34) in Eq. (31). we have the matrix eigenvalue
equation

S (k) ā = 0 (35)

where

S = I − D̃T (36)

where I is the unit matrix of dimension 2NL + 1. The eigenvector is the exciting field coefficients ā.
Next, we convert the eigenvalue equation into one with eigenvector being the scattered field coefficients

ās. Let t be related to the inverse of the T matrix as follows

T
−1

= −I − it (37)

Then we obtain
Λ (k) ās = 0 (38)

where

Λ = D − 1

4
t (39)

and

D =
i

4

(
D̃ + I

)
(40)

Equations (38) and (39) are labelled as “KKR determinant equation”. In index notations

Dnm = Dn−m =
i

4

(
D̃n−m + δnm

)
(41)

Λnm = Dn−m − 1

4
tnm (42)

where δnm is the Kronecker delta. The T matrix is that of an isolated single scatterer and is independent
of the lattice and independent of the Bloch vector k̄i. Furthermore, the T matrix is a smooth function
of k because the scatterer size is small to moderate in the frequency range of interest.

After Equation (38) is solved, the eigenvalue k is determined. The normalized frequency fN =
k/(2π) of the band at the Bloch vector k̄i is determined. The eigenvector ās and ā are determined.

5. HIGHER ORDER CYLINDRICAL WAVES IN REGION V0

After the eigenvalue k, the eigenvector ās and ā are determined, and we need to calculate the field in
V0 using Equations (21) and (23).

ψ (r̄) = ψs (r̄) + ψex (r̄) =

NL∑
n=−NL

asnH
(1)
n (kr) einθ +

Ncyl∑
n=−Ncyl

aCn Jn (kr) e
inθ (43)

Comparing Equations (23) and (28)

aCn =

NL∑
m=−NL

asmD̃n−m(k); n = 0,±1, . . . ,±NL, . . . ,±Ncyl (44)

The index of aCn is higher at Ncyl. Because the locations in V0 have larger r than that of the
locations in V1, we need to go to higher order cylindrical waves Ncyl ≥ NL.

For the scattered field āsm,m = 0,±1, . . . ,±NL. Because the index of D̃n−m is n−m, we need to

compute D̃l (k), l = 0,±1, . . . ,±NL, . . . ,±(NL + Ncyl), with the determined k. Comparing Eqs. (29)
and (44), we have

aCn =


an for = 0,±1, . . . ,±NL

NL∑
m=−NL

asmD̃n−m

(
k, k̄i

)
for n = ± (NL + 1) , . . . ,±Ncyl

(45)
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The second half of Equation (45) gives the equation to compute the higher order coefficients aCn of
the exciting field ψex(r̄).

6. T MATRIX FOR THE ACOUSTIC SCATTERER OF ROTATING FLUID

The equations developed in previous sections are applicable to scatterers with an arbitrary shape
characterized by an isolated single scatterer T matrix Tmn(k). In this Section we derive the T matrix
for the circular acoustic scatterer of rotating fluid which is used in [2]. The fluid field equations are
complicated in the rotating region. We started with the acoustic master equation of the velocity
potential, but used a simplified version that neglects the secondary effects from the spatial gradient of
the ambient sound speed c, air density, high order terms of v0≪c, and the quadratic terms of Ā. We
thus have Equation (2) of reference [39] which will be solved in this paper. The rotating fluids are in
the region r1≤r≤r2 (Figure 2).

Figure 2. Circular scatterer of rotating fluid, rotating in r1 ≤ r ≤ r2; Neumann boundary condition
∂ψ1/∂n = 0 at r = r1.

For this case, b = r2, the wave function in r1≤r≤r2 is ψ1. The simplified linearized wave equation
with the above approximations is in [42](

∇2 + k2
)
ψ1 = i2Ā · ∇ψ1 (46)

where Ā = ωv̄0(r̄)
c2

and the angular velocity, v̄0 (r̄), of the rotating fluid is

v̄0 (r̄) = θ̂
Ωr21

r22 − r21

(
−r + r22

r

)
(47)

In Equation (47), Ω is the angular velocity of radians/sec at r1. Note that the angular velocity, v̄0(r̄),
is 0 at r2. The boundary conditions are that ∂ψ1/∂r = 0 at r = r1. The wave functions and normal
derivatives are continuous at r = r2.

Because the scatterer is circular, the T matrix is diagonal with Tmn(k) = δmnTn(k). Then the wave
equation is

∂2ψ1

∂r2
+

1

r

∂ψ1

∂r
+

1

r2
∂2ψ1

∂θ2
+ k2ψ1 = −i2 ω

c2
Ωr21

r22 − r21

(
−r + r22

r

)
1

r

∂ψ1

∂θ
forr1 < r < r2 (48)

To solve Equation (48), let

ψ1 =

NL∑
n=−NL

cn(r)e
inθ (49)

where n are integers. We truncate the summation at the same order ±NL as that of the scattered wave.
Substituting in Eq? (48) and simplifying, we obtain the second order differential equation for cn(r)

d2cn(r)

dr2
+

1

r

dcn(r)

dr
+ cn (r) k

2
1 −

cn (r)

r2
ν2 = 0 (50)
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where

k21 = k2 + 2n
ω

c2
Ωr21

r22 − r21
(51)

ν2 = n2 + r222n
ω

c2
Ωr21

r22 − r21
(52)

The solutions of Eq. (50) are Bessel functions of non-integer order ν. We write in terms of Jν(k1r)
and Nν(k1r) which are Bessel function and Neumann function of non-integer order ν. Let

ψ1 (r̄) =

NL∑
n=−NL

[cnJν (k1r) + dnNν(k1r)] e
in θ (53)

The boundary conditions are Neumann boundary condition ∂ψ1/∂r = 0 at r = r1 and continuity of
fields and normal derivatives at r = r2.

∂ψ1

∂r
(r = r1) = 0 (54)

ψ1 (r = r2) = ψ (r = r2) =

NL∑
n=−NL

[
anJn (kr2) + asnH

(1)
n (kr2)

]
einθ (55)

∂ψ1

∂r

∣∣∣∣
r=r2

=
∂ψ

∂r

∣∣∣∣
r=r2

= k

NL∑
n=−NL

[
anJ

′
n (kr2) + asnH

(1)′
n (kr2)

]
einθ (56)

These give three simultaneous linear equations relating the coefficients an, a
s
n, cn, and dn. Solving

the simultaneous equations give
dn = pncn (57)

where

pn = − J ′
ν(k1r1)

N ′
ν(k1r1)

(58)

Since,
asn = Tnan (59)

We obtain

Tn = − k1qnJn (kr2)− kJ ′
n(kr2)

k1qnH
(1)
n (kr2)− kH

(1)′
n (kr2)

(60)

qn =
J ′
ν (k1r2) + pnN

′
ν(k1r2)

J ′
ν (k1r2) + pnN ′

ν(k1r2)
(61)

We also have

cn =
Jn (kr2) + TnH

(1)
n (kr2)

Jν (k1r2) + pnNν(k1r2)
an (62)

Thus, for this case of rotating fluid scatterer, the T matrix coefficients, are

Tmn = δmnTn (63)

tmn = δmntn (64)

where

tn =
k1qnNn (kr2)− kN ′

n(kr2)

k1qnJn (kr2)− kJ ′
n(kr2)

(65)
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7. NORMALIZATION OF BAND FIELDS

As shown in the Appendix, the normalization is∫∫
V0c

dxdy |ψ|2 +
∫∫

V0r

dxdy |ψ|2 +
∫∫

V1

dxdy |ψ1|2 = 1 (66)

The hexagonal cell is divided into three domains for volumetric integrations V1, V0c, and V0r
(Figure 3(a)).

(a) (b)

Figure 3. (a) V1: r1≤r≤r2; V0c: r2≤r≤a/2; V0r: remainder of hexagonal cell; V
(1)
0r : first section of V0r.

(b) V
(1)
0r : equilateral triangle with one-sixth of circle of radius a/2 subtracted from it.

The integrals are performed analytically using the indefinite integrals of Bessel function. For Zp

and Bp that are Bessel functions, Neumann functions and Hankel functions of first and second kind,
the indefinite integrals are

I1 (p, α, c, d, Z) =

∫ d

c
xZp (αx)Zp (αx) dx =

x2

2
[Zp (αx)Zp (αx)− Zp−1 (αx)Zp+1 (αx)] (67)

I2 (p, α, c, d, Z,B) =

∫ d

c
xZp (αx)Bp (αx) dx

=
x

2α
[αxZp (αx)Bp (αx)− αxZp−1 (αx)Bp+1 (αx)

+p (Zp−1 (αx)Bp (αx)− Zp (αx)Bp−1 (αx))]
x=d
x=c (68)

In V0

ψ (r̄) =

Ncyl∑
n=−Ncyl

[
asnH

(1)
n (kr) + acnJn(kr)

]
einθ (69)

We have set
asn = 0 for |n| > NL (70)

For V0c, which is an angular region with inner radius r2 and outer radius a
2∫∫

V0c

dxdy |ψ|2 = 2π


Ncyl∑

n=−Ncyl

[
|asn|

2
(
I1

(
n, k, r2,

a

2
, J

)
+ I1

(
n, k, r2,

a

2
, N

))]

+2Re
(
asn(a

C
n )

∗I2

(
n, k, r2,

a

2
, J,H(1)

))
+

Ncyl∑
n=−Ncyl

[∣∣aCn ∣∣2 I1 (n, k, r2, a2 , J)]
 (71)
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The remainder region V0r can be divided into 6 parts V0r = V
(1)
0r + V

(2)
0r + . . .+ V

(6)
0r .

For each part it is the remainder of an equilateral triangle with the circular sector of radius a
2

subtracted from it (Figure 3(b)). The equilateral triangle has height a/2 and side a/
√
3.

For every circle of radius r, where a/2 ≤ r ≤ a/
√
3, the circle will intersect each of the six sides of

the hexagon at two points.
For the north-east side of the hexagon, the two points are at θ = γNH (r) and θ = π/3−γNH (r), where

γNH (r) = cos−1


√
3 + 2

√(r
a

)2
− 1

4

4
(r
a

)
 (72)

Then referring to that as V
(1)
0r , we have∫∫

V
(1)
0r

dxdy |ψ|2 =

∫ a√
3

a
2

drr

Ncyl∑
n=−Ncyl

(
asnH

(1)
n (kr) + acnJn (kr)

)
Ncyl∑

m=−Ncyl

[(
as∗mH

(2)
m (kr) + ac∗mJm (kr)

)
I
(1)
H (n−m, r)

]
(73)

where

I
(1)
H (n, r) =

[∫ γN
H (r)

0
dθ +

∫ π/3

π/3−γN
H (r)

dθ

]
einθ (74)

Adding the six parts and with rearrangement of limits of integrations, we have∫∫
V0r

dxdy |ψ|2 =

∫ a√
3

a
2

drr

Ncyl∑
n=−Ncyl

(
asnH

(1)
n (kr) + acnJn (kr)

)
Ncyl∑

m=−Ncyl

[(
as∗mH

(2)
m (kr) + ac∗mJm (kr)

)
IH (n−m, r)

]
(75)

where

IH (n, r) =

[∫ π/3+γN
H (r)

π/3−γN
H (r)

dθ +

∫ 2π/3+γN
H (r)

2π/3−γN
H (r)

dθ +

∫ π+γN
H (r)

π−γN
H (r)

dθ +

∫ 4π/3+γN
H (r)

4π/3−γN
H (r)

dθ

+

∫ 5π/3+γN
H (r)

5π/3−γN
H (r)

dθ +

∫ 2π+γN
H (r)

2π−γN
H (r)

dθ

]
einθ (76)

Integrating, we have

IH (n, r) =


6∑

l=1

[
einθ

in

]θ= lπ
3
+γN

H (r)

θ= lπ
3
−γN

H (r)

for n ̸= 0

12γNH (r) for n = 0

(77)

and
6∑

l=1

represents the summation over the six parts.

The formulas of integrations above of V0c and V0r are applicable to scatterer of arbitrary shape. For
the case of the rotating fluid scatterer in the angular region of r1 ≤ r ≤ r2 which is V1, the volumetric
integral is ∫∫

V1

dxdy |ψ1|2 = 2π

NL∑
n=−NL

(
|cn|2 I1 (ν, k1, r1, r2, J) + |dn|2 I1 (ν, k1, r1, r2, N)

+2Re (c∗ndn) I2 (ν, k1, r1, r2, J,N)) (78)
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8. NUMERICAL RESULTS AND DISCUSSIONS

As in [2], we choose r1 = 0.2a and r2 = 0.4a where a is the lattice constant. We consider the K point
in the Brillouin zone. Let the rotating angular velocity [2] be Ω = 0.2332 × (2πc/a). We consider
the hexagonal lattice with primitive lattice vectors ā1 = a

2

(√
3x̂+ ŷ

)
and ā2 = a

2

(
−
√
3x̂+ ŷ

)
. In the

hexagon of Figure 1, the vector from the southwest corner to the northeast corner is ā1 while the vector

from southeast corner to the northwest corner is ā2. The reciprocal lattice vectors are b̄1 =
2π
a

(
1√
3
x̂+ ŷ

)
and b̄2 = 2π

a

(
− 1√

3
x̂+ ŷ

)
. We shall illustrate the calculations of the band eigenvalue and band field

at the point K in the first Brillouin zone. At the point K, the Bloch vector is k̄i = 1
3 b̄1 + 1

3 b̄2. In
the calculations, we let the lattice constant be a = 1 and speed of light c = 1. In the calculations
of the broadband cylindrical wave coefficients Dl(k), with imaginary extractions [40], the numerical
parameters Nspa, Nspe,ξ, and R are used in the evaluation of the broadband Dn coefficients. They are
described in [40]. Nspa is the truncation number of the summation for the spatial part, and Nspe is
for the spectral part. ξ is the imaginary wavenumber, and R is the radius of the circle used in the
integration to get the Dn coefficients. Nspa, Nspe, ξ, and R are robust parameters that can have many
choices. We have not optimized them. In this paper, we used Nspa= 4, Nspe= 4, ξ= 3, R = 0.96.

8.1. Eigenvalue and Normalized Eigenvector

The eigenvalue part is the CPU intensive part of the method. Thus, based on discussion in the previous
section, we choose a low NL = 2. Then NDL = 4. We use the BBGF method to calculate Dl(k),
l = 0,±1,±2, . . . . . . ,±4. The first step is the set-up for the frequency independent part of Dl(k) [40].
In the frequency scanning method, Dl(k) are calculated in a broadband manner for many ks. In the
bisection method, we only calculate Dl(k) for the ks needed. We solve the eigenvalue problem from

Equation (38), Λ(k)ās = 0.
The dimension of the matrix of the eigenvalue equation is 2NL + 1 = 5. The approach with

bisection method in searching for k is the more efficient method. Table 1 shows CPU time for frequency
scanning method and bisection method. Using the frequency scanning method, the absolute value of the
determinant is shown in Figure 4. The figure clearly shows that the two eigenvalues are fN = 0.5527 and
fN = 0.5980. This corresponds to the splitting of the degenerate eigenvalue for the rotating fluid [2, 39].

Figure 4. Frequency response of determinant of Λ(k), showing 2 eigenvalues at 0.5527 and 0.5980.

The iterative approach with bisection method is applied in searching for k. The CPU time table is
shown in Table 1.

The CPU table shows that using the bisection method, the CPU time including setup is merely
5 milliseconds for an eigenvalue. Simulation with COMSOLTM takes 2 seconds to compute the bands
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Table 1. BBGF-KKR-MST method CPU time comparisons for computing band eigenvalue frequencies.
Nspa = 4, Nspe = 4.

(CPU: 3.2GHz 6-core Intel Core i7, Memory 32GB 2667MHz DDR4)

Method
Set-up

(milliseconds)

Number

of bands
NL

Number

of

frequencies

Dl and

det(P )

(milliseconds)

Total CPU

time

(milliseconds)

Frequency

scanning
1.7 1 2 1000 124.9 126.6

Frequency

scanning
2.6 1 3 1000 183.4 186

Bisection 2.1 1 2 14 2.9 5

Bisection 3.4 1 3 14 5.1 8.5

at a given point in the Brillouin zone. On the other hand, the BBGF-KKR-MST requires only 5
milliseconds for a single eigenvalue for the K point in this paper. We also show the band fields as
computed by COMSOL. In the paper on topological photonics [41], we have used COMSOL and noted
that the BBGF-KKR-MST method is significantly faster than COMSOL. In this paper, BBGF-KKR-
MST method also shows much faster computation than COMSOL’s, more than 100 times from Table 1.
We next calculate the band field solution. For the eigenvalue fN = 0.5980, we have k = 3.757. The
eigenvector for the 5 by 5 eigenvalue problem is for the scattered field coefficients, asn = −2,−1, 0, 1, 2.
Only 2 coefficients are not small while other coefficients are small. The value is given in Table 2.

Table 2. Normalization of the eigenvector for the matrix equation.

Normalized eigenvector n = −2 n = 1

asn 0.2618 0.9651

The eigenvector is normalized so that
√(

as−2

)2
+ (as1)

2 = 1. Note that this normalization of the

eigenvector for the matrix equation is not the normalization of the band field solution which will be
calculated later.

8.2. Obtain Higher Order Cylindrical Waves

After the eigenvalue and eigenvector of the scattered field coefficients are obtained, we obtain

higher order coefficients by the relation from Equation (44), aCn =
NL∑

m=−NL

asmD̃n−m(k); n =

0,±1, . . . ,±NL, . . . ,±Ncyl.
The physical interpretation is that the exciting field ψex is the scattered field from other cells

into the (0, 0) cell. This is made possible by the gR part of the lattice Green’s function giving the
relation above. We choose Ncyl = 5. This means NL + Ncyl = 7, then we need more Dl(k = 3.757),
l = 0,±1, . . . ,±7 for that single k = 3.757. They are tabulated below in Table 3 for those Dl that are
significant values.

Then we apply the relation in Eq. (44) to obtain the higher order coefficients, aCnn =
0,±1, . . . ,±NL, . . . ,±Ncyl. For the scatterer region, we obtain the coefficients by using cn =
Jn(kr2)+TnH

(1)
n (kr2)

Jn(k1r2)+pnNn(k1r2)
aCn and dn = pncn, n = 0,±1, . . . ,±Ncyl. We also get higher order coefficients for

asn by using T matrix coefficients Tn(k = 3.757).
The coefficients are tabulated below for values that are not small. The values in parenthesis are

the results after band field normalized to be discussed later.
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Table 3. Additional Dl coefficients at the eigen-wavenumber (k = 3.757) to be used for higher order
cylindrical waves.

Dl (k = 3.757)

l = −6 2.688

l = −3 1.169

l = 0 0.9407

l = 3 1.169

l = 6 2.688

8.3. Normalization of Wave Functions

We calculate the integrals of unnormalized band-fields. The values are below.
The normalization factor for the wave functions is [

∫∫
V1
dxdy |ψ1|2 +

∫∫
V0c

dxdy |ψ|2 +∫∫
V0r

dxdy |ψ|2]
1
2 = 2.9268. This factor is used to normalize the coefficients. The normalized coefficients

are in parenthesis in Table 4. Integrals for unnormalized band-fields to calculate the normalization of
band-fields are tabulated in Table 5.

Table 4. Higher order cylindrical wave coefficients, values based on normalized eigenvector; values in
parenthesis are based on normalized band field solutions.

n = −5 n = −2 n = 1 n = 4

aCn
−i11.60
(−i3.964)

−0.262− i5.499

(−0.089− i1.879)

−0.965− i4.856

(−0.330−i1.659)
−i7.329
(−i2.504)

cn
85.488 + i44.031

(29.209+i15.044)

−i6.725
(−i2.298)

−i4.938
(−i1.687)

−i2.948
(−i1.007)

dn
8.726× 10−8 − i4.494× 10−8

(2.982×10−8 − i1.536×10−8)

i0.1603

(i0.0548)

i1.338

(i0.457)

i1.22× 10−4

(i4.191×10−5)

asn
4.004× 10−6

(1.368×10−6)

0.2618

(0.08945)

0.9652

(0.3298)

−4.963× 10−5

(−1.696× 10−5)

Table 5. Integrals for unnormalized band-fields to calculate the normalization of band-fields.

Integrals of unnormalized band-fields∫∫
V1
dxdy |ψ1|2 3.9513∫∫

V0c
dxdy |ψ|2 3.5455∫∫

V0r
dxdy |ψ|2 1.0692

sum 8.5660 = (2.9268)2

8.4. Plotting the Fields

After the higher order coefficients are obtained, we can calculate the normalized fields throughout the
entire cell (0, 0). The normalized band field solution coefficients are given in Table 4.
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(a) (b)

Figure 5. Normalized field along (a) horizontal center line, (b) vertical center line of the (0, 0) cell.

In Figure 5(a), we plot the normalized fields for the horizontal center line, y = 0 and −a/
√
3 ≤ y ≤

a/
√
3. In Figure 5(b), we plot the normalized fields for the vertical centerline x = 0 and −a/2 ≤ y ≤ a/2.

We plot |ψ1| for r1 ≤ r ≤ r2 and |ψ| for r2 ≤ r ≤ a/2. For the region V0

ψ (r̄) =

NL∑
n=−NL

asnH
(1)
n (kr) einθ +

Ncyl∑
n=−Ncyl

aCn Jn (kr) e
inθ (79)

For the field inside the scatterer we use

ψ1 (r̄) =

NL∑
n=−NL

[cnJν (k1r) + dnNν(k1r)] e
inθ (80)

For the vertical center line, the displacement between the North tip (x = 0 and y = a/2) and the South
tip (x = 0 and y = −a/2) is R̄ = aŷ = ā1+ ā2. The Bloch condition phase shift between the two tips for

the K point in the Brillouin zone is eik̄i·R̄ = ei(
1
3
b̄1+

1
3
b̄2)·(ā1+ā2) = ei

4π
3 . The results from Figure 5(b) are

the band field ψ = −1.0441 + i0.6036 at (x = 0, y = −a/2) and the band field ψ = 1.0441 + i0.6036 at
(x = 0, y = a/2). The phase shift between the two complex band fields is −2π

3 showing that the Bloch
condition is obeyed. In using MST with cylindrical waves, the Bloch condition is implicit through the
lattice Green’s function expressed in cylindrical waves. We next plot in Figure 6 the band field within
the entire hexagon of the (0, 0) cell. The field solutions are in good agreement with the previous method
of BBGF-MoM.

Convergences of Cylindrical waves: The field patterns in Figure 6 clearly show that of cylindrical
waves. Figure 6(a) shows the normalized field pattern at fN = 0.5980 from BBG-KKR-MST method
presented in this paper. For the comparison, Figure 6(b) shows the unnormalized field pattern at
fN = 0.5925 from VIE-MoM method. In [39], the fields within rotating fluid are shown. Here the
results are extended to cover the entire hexagon. Figure 6(c) shows unnormalized field pattern at
fN = 0.594 from COMSOL. For BBG-KKR-MST and VIE-MoM methods, the acoustics differential
equation in the rotating fluid region, Equation (46), is used. For COMSOL, based on options of
equations in the software, the Navier-Stokes equation was used. Thus, a low order of 11 cylindrical
waves is sufficient to characterize the fields in the cell (0, 0) of the hexagon. The fields in other cells can
be obtained by applying the Bloch condition. In MST theory, the solutions of the eigenvalue problem
have attained the accuracy if the scattered waves are calculated accurately. The coefficients of the
scattered wave are the product of the exciting field coefficient with the T matrix coefficients. The



Progress In Electromagnetics Research, Vol. 171, 2021 153

 
(a) (b)

(c)

Figure 6. Field solution of the hexagon in cell (0, 0) (a) normalized field at eigenvalue fN = 0.5980 from
BBG-KKR-MST method, (b) unnormalized field at eigenvalue fN = 0.5925 from VIE-MoM method,
(c) unnormalized field at eigenvalue fN = 0.594 from COMSOL.

convergence of the scattered wave convergence depends on the convergence of the single scatterer T
matrix with the cylindrical wave order n. The rule of thumb of n maximum is 1.5k to 2k times the
radius. For the present problem a= 1 and radius of the scatterer is r2 = 0.4a. We determined the band
eigenvalue with fN = 0.5980 and k= 3.757, then 1.5kr2= 2.25. Thus, the choice of n maximum which
is NL= 2 is sufficient for the convergence of the scattered wave. The cylindrical waves expansion has
high computational efficiency because both the size of the scatterer and the size of the cell are smaller
than or comparable to wavelength. The physical reason is that the field distribution in the cell is well
represented by cylindrical waves. In previous papers [40, 41], we have compared the CPU time with
COMSOL. The method of BBGF-KKR-MST is significantly faster than that of COMSOL.

The fields in Figure 6 are for (0, 0) cell. For band-fields in other cells, they can be calculated by
applying Bloch condition.
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9. CONCLUSIONS

In this paper, we apply the BBGF-KKR-MST method to calculate band eigenvalue frequencies, band
fields and the normalizations of band fields for topological acoustics. The advantages of the approach are
(a) the low dimension of the eigenvalue matrix equation which is 5 by 5 for the first 2 bands in question,
(b) the band field solutions are represented by 11 cylindrical wave coefficients, and (c) normalization
of band field solutions are carried out without volumetric integrations. Accuracy of the solutions
is demonstrated. In MST, the T matrix used is that of a single scatterer which is independent of the
lattice and independent of the Bloch vector. Thus, for a general scatterer, the T matrix can be calculated
separately in the frequency range of interest and then used for all lattices and Bloch vectors. This will
further increase the computational efficiency of the BBGF-KKR-MST method. The BBGF-KKR-MST
is a computational efficient method because (i) band fields are the results of multiple scattering; (ii) the
field patterns are well characterized by cylindrical waves; and (iii) the BBGF facilitates the broadband
search of the eigenvalue frequencies. With the band field solutions determined, we will calculate the
BBGF with the plurality of scatterers [50–53].

APPENDIX A.

In this Appendix we derive the orthogonal relation and the normalization condition. For two bands β1
and β2 of the same k̄i, the two eigenvalues are kβ1 = ω(β1)/c and kβ2 = ω(β2)/c. The wave functions

ψ
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In region V0 (
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The ψ(β1) and ψ(β2) have the same Bloch vector k̄i. Because of Bloch condition, and since we
have the product of conjugate and the other function, the integration on the opposite sides of the cell
boundary will cancel ∫
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The two corresponding terms in Eqs. (A4) and (A10) will cancel when the two equations are added.
Thus, we have orthogonal relation for β1 ̸= β2.(
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Thus, we set ∫∫
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as the normalization condition.
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