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Numerical Computation of SAR in Human Head with Transparent
Shields Using Transmission Line Method
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Abstract—The tremendous proliferation of mobile smartphone handsets and their usage worldwide
makes human life comfortable, while the radiation hazards associated with them are alarming, especially
among children. There is a necessity to minimize the Electro Magnetic Field (EMF) radiation levels.
For the evaluation of Radio Frequency (RF) radiation from the mobile phone, one of the dosimetric
parameters used is the Specific Absorption Rate (SAR). The RF radiation can be mitigated by
incorporating a barrier or a shield of suitable material in the mobile handset design. In the proposed
work, the analysis of SAR evaluation absorbed by the human head is determined with the performance
of the shielding material called Shielding Effectiveness (SE) using Transmission Line Method (TLM)
mathematically. The proposed shielding materials are composed of flexible and transparent thin films.
Flexible and transparent thin shielding materials are advantageous over the other shielding materials
in reduced size, less weight, non-corrosiveness, and easy processing. These materials include highly
conductive Silver film, Silver Nanowire (AgNW) doped with PDDA (poly(diallyldimethyl-ammonium
chloride)) polymer single shields, and a laminated shield comprising AgNW/PDDA with PEDOT:PSS
(poly(3,4-ethylenedioxythiophene)poly-styrene sulfonate) polymer as lamination. The SARs of planar
multi-layered human head models for different ages are estimated at various mobile frequencies with
these shields. Under four-layered head models at 6GHz, adult and child heads absorb 0.0006W/kg
and 0.000024W/kg of RF radiation using pristine Silver film as a single shield. Using a single shield of
Ag nanowire and PDDA, the adult and child heads absorb SARs of 0.00058W/kg and 0.000023W/kg,
respectively. With the laminated shield of AgNW/PDDA and PEDOT:PSS as coating material, the
same models are exposed to minimal amounts of 0.00054W/kg and 0.000012 W/Kg of SAR. At
6GHz frequency, under seven-layered head models, adult and child heads absorb 0.000047W/kg and
0.000002W/kg of power, respectively, using Ag film. With AgNW/PDDA shield, the adult and child
heads absorb SARs of 0.000046W/kg and 0.0000019W/kg, respectively. The SAR of 0.000043W/kg and
a negligible value of 0.0000018W/kg are absorbed by adult and child heads individually with the help
of AgNW/PDDA/PEDOT:PSS laminated shield. The results exhibit a significant amount of reduction
in Specific Absorption Rate with transparent shielding materials compared to SAR absorbed by the
head without any shield. This maximum RF exposure rate reduction from mobile phones with the Ag
Nanowire/PDDA/PEDOT:PSS laminated shield is achieved for a seven-layered child head model.

1. INTRODUCTION

The electromagnetic dosimetry gives the dependence of induced fields on the biological body and the
distribution of an electromagnetic field in free space. The biological effects of electromagnetic radiation
on living cells can be classified into ionizing and non-ionizing effects, based on the capability of radiation
to ionize atoms and break chemical bonds. The non-ionizing effect raises the temperature in human
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tissues. The only influence that electromagnetic radiation has on human tissues is the non-ionizing
effect when the source frequency is between 100 kHz and 300GHz. The exposure conditions and the
characteristics of the incident EMF wave have resulted in the implementation of the concept of SAR
as a measure of exposure to EMF. The SAR quantifies the energy is absorbed in human tissues at the
RF spectrum [1], averaged over 1 g or 10 g of tissue. The SAR depends on the tissue conductivity (σ),
the mass density of the tissue (ρ), and the electric field intensity (E) induced in the tissue, expressed
in units of W/kg. The general formula for SAR measurement is given by:

SAR =
σE2

2ρ
(1)

The regulatory compliance for the standardized SAR limit of 1.6W/kg set by the Federal
Communication Commission (FCC) is accepted by most countries [2].

The process of limiting the EM field flow between the mobile phone and the head can take place
with a single layer of shield material called a single shield or with two or more layers stacked together
called a laminated shield. Keeping in view the lightweight property of the mobile device and the minimal
size of the shield, the shielding material adopted for the proposed analysis is flexible and transparent.
Networks of metal nanowires are a substitute for Transparent Conductive Films (TCFs), which provide
an improvement in the conductivity, do not change their shielding properties, and remain intact under
flexing [3]. Nowadays, it is a pressing priority for any electronic gadget. The silver nanowires are
reinforced with polymer composites to enhance the electrical conductivity of the composite film formed
as a function of metal nanowire content for the formation of transparent conductive composite films.

In the literature review reported recently under transparent and flexible shielding materials, Yang et
al. in [4] have made an approach to enhance the conductivity and stability of metal nanowires synthesized
by reduced GO nanosheets on AgNWs in the X-band range. The shielding effectiveness of 35.3 dB was
exhibited using the Scattering parameters method, and the thickness achieved was 31 nm. Wan et
al. in [5] and Chen et al. in [6] have achieved shielding effectiveness of densified CNT film and
cellulose nanofibre/silver nanowire conductive paper at around 51 dB and 39.3 dB, respectively using
S-parameters method only.

Recently, Alibakhshikenari et al. have explained the design practicality and applications of
composite right-handed/left-handed metamaterial-based transmission lines in antenna systems to
enhance their performance parameters in dimension, radiation pattern, gain, and efficiency extending
over a wide range of frequency band [7–9]. Alibakhshi-Kenari et al. have proposed an ultrawideband
printed CRLH-TL metamaterial antenna for a mobile handset with improved radiation efficiency
characteristics and miniaturized size [10]. Ojaroudi et al. in [11] have reported a design of a wide
radiation coverage for 5G smartphone applications wherein antenna array consisted of diamond-ring
slot elements with improved impedance bandwidth, good isolation and gain characteristics. Specifically
for the MIMO application of mobile smartphones, the total active reflection coefficient and envelope
correlation coefficient were very low.

In the literature of recent times under the Specific Absorption Rate absorbed by various human
head models, the long-term exposure of radiation on the human head by analyzing SAR reduction for
voice calling, messaging, and video calling features for GSM 900 and 1800 bands for only one adult
head model was suggested by Tamim et al. in [12]. The authors of the article Belrhiti et al. in [13]
have reported SAR with four different adult human head models exposed to radiation for Wireless LAN
applications. For carrying out SAR assessment, software simulation tools were used in the reported
literature.

The novelty of the proposed research is to mitigate the EM radiation due to mobile phone radiation
exposure of the human head. For this purpose, suitable transparent shields based on their shielding
performance or effectiveness for the mobile phone are selected. The Specific Absorption Rate is
calculated numerically in the human heads of an adult and a child at different mobile frequencies
both in the absence and presence of different transparent thin films (single and laminated shields) using
theoretical and mathematical analysis of Transmission Line Method as the SAR is not measured using
this method in the previously reported literature. The internal structure of the mobile-phone antenna
design and its performance remain unaffected throughout the analysis. The head models used in this
work are planar multi-layered because the human head model is considered circular, and at a point
of contact of the mobile phone, the arc in the circumference of the circle looks like a straight line.
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Furthermore, the proposed work focuses on transparent shielding materials and SAR estimation by
considering the worst-case/normal incidence of the RF field. The simulations for planar layered head
models are performed using MATLAB R2021a.

2. THEORETICAL ANALYSIS

2.1. Layered Head Models of an Adult and a Child for the Estimation of Shielding
Effectiveness of the Human Head

Case A: When the Shield Is not Considered: For the theoretical analysis of shielding effectiveness
of planar multi-layered head models of an adult and a child, an adult aged 50 years and a child aged 8
years are considered. The head models are considered to have the following four layers or tissues: Skin
Dry, Bone Cortical, Brain Gray Matter, and Brain White Matter, and following seven layers: Skin Dry,
Fat, Bone Cortical, Dura, Cerebrospinal Fluid (CSF), Brain Gray Matter, and Brain White Matter.
The thicknesses of the tissues in the head models of an adult [14] and a child [15, 16] are indicated in
Fig. 1 and Fig. 2. The dimensions of an adult four-layered head model with tissues are shown in Fig. 3.
The total head diameter for an adult head model is 14.4 cm.

Figure 1. Thicknesses of head tissues in a planar four and a seven-layered adult head in millimetres.

Figure 2. Thicknesses of head tissues in a planar four and a seven-layered child head in millimetres.

The head size for the child model is also taken in a similar way to the head dimensions of the adult
head model. Human head tissues have values of dielectric properties dependent on frequency, geometry,
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Figure 3. Head dimensions with tissues for an adult four-layered human head.

and size of tissues and water contents [16]. The variation of complex relative permittivity as a function
of frequency for head tissues in an adult is obtained through Cole-Cole dispersion equation [17].

ˆε (ω) = ε∞ +
4∑

n=1

∆εn

1 + (jωτn)
(1−αn)

+
σi

jωε0
(2)

where n = 1 − 4 range for fitting parameters of tissues. α is a measure of broadening of dispersion. τ
is the polarization time constant of relaxation regions of dielectric spectrum of tissue. σi is the static
ionic conductivity. ε∞ is the permittivity at high frequencies. εs is the permittivity at low frequencies.
∆εn is the magnitude of dispersion. ε0 is the permittivity of free space.

The values of fitting parameters of tissues are obtained from [18]. The other dielectric property is
the conductivity of tissues in the adult head in variation with mobile frequencies from [19].

σ =
ε0 εr
τ

(3)

For finding the dielectric properties of a child’s head, the age-dependent dielectric parameters of
biological tissues are collected. As described in [20], the relaxation time constant is almost independent
of age. Thus, at least one parameter out of relative permittivity or conductivity of biological tissue has
to be known, and the other can be calculated using Eq. (3). The dielectric properties of tissues depend
on tissue composition. Human biological tissues are constituted mainly by water, and each biological
tissue is considered to be composed of water and organ-specific tissue. For simplification, it is assumed
that the organ-specific part is not dependent on age, and the central part of biological tissue is the Total
Body Water (TBW) that changes as a function of age [21].

TBWch in

(
L

kg

)
=

0.0846 (Height ∗Weight)0.65

Weight
(4)

The height and weight of an 8-year-old child for finding TBW are obtained from [22]. TBW in (L/kg)
for an adult of 50 years age is found directly from [23]. The tissue hydration rate α varies with TBW
and mass density ρ for both the adult and child as:

α = TBWρ (5)
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The relative permittivity of a child’s head as a function of child and adult biological tissue hydration
rates is formulated as described in [24] and thus expressed as:

εch = ε
αch−αA
1−αA

rw ε
1−αch
1−αA
rA (6)

where αch and αA are tissue hydration rates in children and adults, respectively. εrw is 74.3, the relative
permittivity of water at 37◦C, and εrA is the relative permittivity of tissues in the adult head, calculated
using Eq. (2). The mass density does not change with age; the only parameters that change with age
are tissue hydration rates and TBW. The following equations for intrinsic impedance and propagation
constant of each layer are derived from dielectric characteristics of head layers.

η = 1 + j

√
πfµ

σ
(7)

γ =
√

jωµ (σ + jωε) (8)

where µ = µ0µr. The relative permeability of biological tissues is considered to be one, so µr = 1.
ω = 2πf , ε = ε0εr. µ is the permeability of a medium, and µ0 is the permeability of free space.

For a four-layered adult or a child head model, taking a small region of the head and assuming
it to be a laminated shield of three layers of skin-dry, bone-cortical, and brain gray matter, the
shielding effectiveness of the head is formulated from transmission coefficient, reflection coefficients,
and impedance at each layer using Transmission Line Method [25–27].

The transmission coefficient for power entering into brain white matter through the layers of skin,
bone, and brain gray matter is expressed as:

p =
16zwηsηbηg

(zw + ηs) (ηs + ηb) (ηb + ηg) (ηg + ηw)
(9)

where zw is the characteristic impedance of free space. ηs, ηb, ηg, and ηw are intrinsic impedances of
skin, bone, gray matter, and white matter, respectively.

If the whole structure is assumed to be a transmission line, then the input impedances looking to
the right of the bone and gray matter layers are expressed as:

z (l1) = ηg
ηw cosh (γgl3) + ηg sinh (γgl3)

ηg cosh (γgl3) + ηw sinh (γgl3)
(10)

z (l2) = ηb
ηg cosh (γbl2) + ηb sinh (γbl2)

ηb cosh (γbl2) + ηg sinh (γbl2)
(11)

where γb and γg are propagation constants of the wave in bone and gray matter, respectively, and l2
and l3 are the thicknesses of bone and gray matter.

The reflection coefficients of the electromagnetic wave at the interfaces of air-skin, skin-bone, and
bone-gray matter are:

qas =
(ηs − zw) [ηs − z (l1)]

(ηs + zw) [ηs + z (l1)]
(12)

qsb =
(ηb − ηs) [ηb − z (l2)]

(ηb + ηs) [ηb + z (l2)]
(13)

qbg =
(ηg − ηb) (ηg − ηw)

(ηg + ηb) (ηg + ηw)
(14)

The total transmission coefficient of the radiated wave into human skin, bone, and gray matter for a
four-layer adult or a child’s head is expressed as:

T = p
[(

1− qase
−2γsl1

)(
1− qsbe

−2γbl2
)(

1− qbge
−2γgl3

)]−1
e(−γsl1−γbl2−γgl3) (15)
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Similar to the expressions in a four-layered model of the head, the expression for T can be extended to
a seven-layer head model of an adult and a child as:

T = p
[(

1− qase
−2γsl1

)(
1− qsfe

−2γf l2
)(

1− qfbe
−2γbl3

)
(
1− qbde

−2γdl4
)(

1− qdce
−2γcl5

)(
1− qcge

−2γgl6
)]−1

e(−γsl1−γf l2−γbl3−γdl4−γcl5−γgl6) (16)

where p is the transmission coefficient for the power of wave entering into brain white matter through
the layers of skin, fat, dura, CSF, bone, and brain gray matter. qsf , qfb, qbd, qdc, and qcg are reflection
coefficients of the wave at the interfaces of skin-fat, fat-bone, bone-dura, dura-CSF, CSF-gray matter,
respectively. l1, l2, l3, l4, l5, and l6 are the thickness of skin, fat, bone, dura, CSF and gray matter,
respectively. γs, γf , γd, and γc are propagation constants of skin, fat, dura and CSF layers in that order.

The shielding effectiveness in dB for a four-layered head model or a seven-layered head model for
both adult and child heads can thus be formulated from the total transmission coefficient of the wave
as:

SE = −20 log10 |T | (17)

Case B: When the Shield is Considered: The second case considers an external shield when the
mobile phone is in use. An external shield is positioned between the mobile phone and the skin of an
adult’s head, as in Fig. 4. The same shield can be positioned between a phone and child’s head. The
shield materials considered for analysis of transparent materials are:

• Single Shield of pure Silver (Ag) film.

• Single Shield of AgNW/PDDA composite film.

• Laminated Shield of AgNW/PDDA composite film with PEDOT:PSS polymer film coating.

The material characteristics are enumerated in detail in Table 1. In the DC conductivity of AgNW-
PDDA from the table, l1 and l2 stand for thicknesses of AgNW layer and PDDA layer which are 100 nm
and 2 nm, respectively. The DC conductivity of AgNW/PDDA composite film is obtained from the
classical percolation theory [28]. The percolation threshold of a composite material in general can be
calculated from

σdc = σf (vf − vfc)
t (18)

Figure 4. Positioning of shield along with coating for adult head model. Thickness of head tissues are
in millimetres. Shield and coating thickness are in nanometres.
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where σdc is the DC conductivity of the composite film, and σf and t are the electrical conductivity of
filler and critical exponent, respectively. vf is the volume fraction of filler, and vfc is the percolation
threshold needed to make an insulator behave as a conductor. The values of parameters for DC
conductivity are incorporated from [29]. Using Eq. (18), the DC conductivity of AgNW/PDDA
composite conductive film in Table 1 is obtained from parameters from [29] and the thickness of AgNW
and PDDA layers considered. The DC conductivity and relative permittivity of pristine PEDOT:PSS
films are referred from [30].

Table 1. Material characteristics of transparent thin films.

Material
Thickness

(nm)

DC Conductivity

(S/m)

Relative

Permittivity

Ag film 100 6.3e7 1

AgNW-PDDA film 102 3.34e− 5(l1/l2) 1

PEDOT:PSS film 600 360000 5143

Using the dielectric properties of shield and from the theoretical analysis in the absence of a shield,
the transmission coefficient of the radiated electromagnetic wave with Ag or AgNW/PDDA single shield,
for a four-layer model, is given by:

T = p
[(

1− qaShe
−2γshl1

)(
1− qShae

−2γfsl2
)(

1− qase
−2γsl3

)(
1− qsbe

−2γbl4
)

(
1− qbge

−2γgl5
)]−1

e(−γshl1−γfsl2−γsl3−γbl4−γgl5) (19)

where qaSh and qSha are reflection coefficients at air-shield and shield-air interfaces. Here, l1, l3, l4, and
l5 are thicknesses of shield, skin, bone, and gray matter, respectively. l3 is the gap distance of 1mm
between shield and skin layer of head. γsh and γfs are propagation constants of shield and free space
in that order. The transmission coefficient of radiated EM wave with AgNW/PDDA/PEDOT:PSS
laminated shield, for a four-layered head model, is:

T = p
[(

1− qShae
−2γShl1

)(
1− qShce

−2γcol2
)(

1− qcae
−2γfsl3

)
(
1− qase

−2γsl4
)(

1− qsbe
−2γbl5

)(
1− qbge

−2γgl6
)]−1

e(−γshl1−γcol2−γfsl3−γsl4−γbl5−γgl6) (20)

where qShc and qca are reflection coefficients at shield-coating and coating-air interfaces. Here, l1 and l2
are the thicknesses of the shield and coating, respectively. l3 is the gap distance of 1mm between shield
and skin. γsh and γco are propagation constants of shield and coating. Similar to the four-layer model
with a shield positioned between the head and the mobile phone, the equations for T are formulated
for a seven-layer adult or a child’s head. Thus, the shielding effectiveness of a four or a seven-layered
head with shield placed is estimated from Equation (17).

2.2. Computation of SAR from the Shielding Effectiveness of the Human Head

Since the SAR absorbed by the human head depends on the frequency of the source, in the proposed
work, the SAR is estimated at each of the mobile frequencies of 800MHz, 1800MHz, 2.5GHz, 3.6GHz,
4.5GHz, 5GHz, and 6GHz. The shielding effectiveness in dB of any barrier is defined for the electric
field as the equation [31]:

SE = 20 log10
Ei

Et
(21)

Ei is the incident electric field strength, and Et is the electric field strength after coming out from the
shield. The power density generated by the mobile phone can be calculated by using:

Wmax =
PtGt

4πd2
(22)
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where Pt is the radiated power by mobile antenna taken to be 125mW [32]. Assuming an isotropic
antenna, Gt is considered one, and d is the minimum separation distance of 1mm between the mobile
phone and the head. Power density is expressed in W/m2.

The impedance of head tissues at the air and skin interface remains fixed as 377 ohms. From the
maximum power density, the induced or incident electric field in V/m is calculated as:

Ei =
√

2Wmaxη (23)

For each of the shielding effectiveness values of the adult and child heads obtained above, the transmitted
electric-field (Et) is assessed for both without shield and with Ag film, AgNW/PDDA single shields,
and AgNW/PDDA/PEDOT:PSS laminated shield using Eq. (21).

From the calculated Et emerging out of the shield and entering the brain white matter tissue, the
SAR (W/kg) absorbed by brain white matter in both the adult and child is computed with the formula:

SAR =
σE2

t

2ρ
(24)

σ is the conductivity of brain white matter, computed at different mobile frequencies, and ρ is the mass
density of white matter, which is 1073 kg/m3 [33].

3. RESULTS OF SIMULATION FOR SHIELDING EFFECTIVENESS OF HUMAN
HEAD MODELS AND NUMERICAL COMPUTATION OF SAR

3.1. Shielding Effectiveness of Head Models without Shield

The shielding effectiveness for four and seven layers of both the adult and child’s head models without
the shield placed on the front side of the mobile phone is plotted against the frequency for the mobile
frequency range 800MHz to 6GHz. The result is shown in Fig. 5.
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Figure 5. Simulation of shielding effectiveness for four and seven-layered adult and child head models
without the shield.

The result obtained indicates that the shielding effectiveness for both four and seven-layer adult
head models is less than for four and seven-layer child head models.

3.2. Shielding Effectiveness of Head Models with Shield

The shielding effectiveness for four and seven-layered head models of both adult and child with pure
silver (Ag) transparent film as shield is plotted against the mobile frequencies. The shield thickness
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Figure 6. Simulations of shielding effectiveness for adult and child head models with four and seven
layers using single shields of (a) Ag-film and (b) AgNW/PDDA film.

is considered as low as 100 nm. The graph against frequency for shielding effectiveness of all the four
head models using Silver Nanowire-PDDA polymer transparent conducting composite film of thickness
102 nm is plotted. The thickness of PDDA layer is 2 nm. The results for both are shown in Figs. 6(a) and
6(b). The AgNW/PDDA single shield with PEDOT:PSS polymer as coating on top forms the laminated
shield for AgNW/PDDA/PEDOT:PSS film. The thickness of the coating a material is considered to be
600 nm. The shielding effectiveness plot for the laminated shield using AgNW/PDDA and PEDOT:PSS
coating material is simulated in Fig. 7. From the plots, it is observed that the seven-layered child head
model achieves the highest shielding effectiveness with all the three transparent shields, and the shielding
effectiveness being the lowest for the four-layered adult model.

3.3. Computation of SAR Absorbed by the Head Using Shielding Effectiveness

The SAR absorbed by the white matter tissue is theoretically attained from the difference in shielding
effectiveness of the head without shield and with shield considered. SAR in W/kg is obtained using
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Figure 7. Simulation of shielding effectiveness for four and seven-layered adult and child head models
with AgNW/PDDA/PEDOT:PSS laminated shield.

Table 2. SAR absorbed by brain white matter tissue in adult four-layered head model.

Frequency
(GHz)

SAR absorbed
by head without
shield (W/kg)

SAR absorbed by head using
Transparent shields (W/kg)

Ag-film
AgNW/

PDDA film
AgNW/PDDA/
PEDOT:PSS film

0.8 3644.43 0.005 0.0048 0.0045
1.8 3039.92 0.0043 0.0041 0.0039
2.5 2802.57 0.0052 0.0050 0.0047
3.6 1164.07 0.0020 0.00198 0.0018
4.5 734.71 0.0014 0.00138 0.00129
5.0 551.64 0.0011 0.00109 0.00101
6.0 276.57 0.0006 0.00058 0.00054

Table 3. SAR absorbed by brain white matter tissue in child four-layered head model.

Frequency
(GHz)

SAR absorbed
by head without
shield (W/kg)

SAR absorbed by head using
Transparent shields (W/kg)

Ag-film
AgNW/

PDDA film
AgNW/PDDA/
PEDOT:PSS film

0.8 9253.80 0.1089 0.104 0.09
1.8 3400.93 0.0321 0.0309 0.0243
2.5 1341.69 0.0109 0.0105 0.0077
3.6 265.64 0.00173 0.00166 0.0011
4.5 65.26 0.00036 0.00034 0.00021
5.0 29.32 0.000146 0.00014 0.000081
6.0 5.76 0.000024 0.000023 0.000012
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the Et values from Section 2.2. The SARs absorbed by the brain white matter tissue at various
mobile frequencies for adult and child four-layered head models are represented in Table 2 and Table 3.
Furthermore, the powers absorbed by the white matter tissue for adult and child head models consisting
of seven layers are tabulated in Table 4 and Table 5, respectively.

The results clearly show that the specific absorption rate from the mobile phone is reduced
considerably using Ag film, AgNW/PDDA, and AgNW/PDDA/PEDOT:PSS transparent films
as shield between head and the mobile phone. The shielding effectiveness demonstrated by
AgNW/PDDA/PEDOT:PSS laminated shield is the maximum among shields, and thus using this
shield, the reduction of SAR absorbed by the adult or child head model is the maximum. A seven-
layered adult or a child head model absorbs less radiation than a four-layered adult or a child head. At
initial frequencies, the child model may have absorbed more SAR than the adult model, for both four
and seven head layers as in literature. However, as the frequency is raised further till 6GHz is reached,
the SAR absorption declines to a lower extent. Comparatively, among all the head models from the
results displayed, a seven layered child head model absorbs the least amount of radiation.

Table 4. SAR absorbed by brain white matter tissue in adult seven-layered head model.

Frequency

(GHz)

SAR absorbed

by head without

shield (W/kg)

SAR absorbed by head using

Transparent shields (W/kg)

Ag-film
AgNW/

PDDA film

AgNW/PDDA/

PEDOT:PSS film

0.8 1484.67 0.00134 0.00128 0.00120

1.8 913.82 0.00089 0.00086 0.00080

2.5 951.82 0.00110 0.00123 0.00116

3.6 344.33 0.00054 0.00052 0.00049

4.5 137.44 0.00028 0.00026 0.00025

5.0 73.39 0.000167 0.000160 0.000149

6.0 17.73 0.000047 0.000046 0.000043

Table 5. SAR absorbed by brain white matter tissue in child seven-layered head model.

Frequency

(GHz)

SAR absorbed

by head without

shield (W/kg)

SAR absorbed by head using

Transparent shields (W/kg)

Ag-film
AgNW/

PDDA film

AgNW/PDDA/

PEDOT:PSS film

0.8 6551.191 0.075 0.071 0.067

1.8 1627.79 0.0152 0.0146 0.0136

2.5 481.56 0.0039 0.0037 0.0035

3.6 60.575 0.00039 0.00038 0.00036

4.5 10.25 0.000056 0.000054 0.00005

5.0 3.74 0.0000189 0.0000181 0.000017

6.0 0.48 0.000002 0.0000019 0.0000018
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4. CONCLUSION

The mathematical analysis of shielding effectiveness incorporating various transparent thin films as
shields for head models of two different age groups is implemented in this research. The plane wave
shielding effectiveness of single shields using flexible and transparent materials of pristine Ag film and
AgNW with PDDA is presented here. The plane wave shielding effectiveness of laminated shield
using transparent conductive composite film of AgNW with PDDA layer and PEDOT:PSS polymer
as the coating layer is also presented. The coating layers of PDDA and PEDOT:PSS films not only
prevent silver from oxidation but also are cost-effective. The SAR absorbed by the human head
due to mobile phone exposure is numerically estimated both in the absence and presence of these
transparent shields at various mobile frequencies. The SAR is computed from the shielding effectiveness
of three shields obtained through theoretical analysis of Transmission Line Method. Theoretically,
AgNW/PDDA/PEDOT:PSS laminated shield exhibited the highest shielding effectiveness of 100 dB
for the child seven-layered head model. Among four-layered head prototypes, at 6GHz, positioning
AgNW/PDDA/PEDOT:PSS laminated shield between adult head and mobile phone reduced the SAR to
0.00054W/kg from 276.57W/kg when no shield was used. On the other hand, a child head model of four
tissue layers at 6GHz absorbed a minimal value of SAR 0.000012W/kg incorporating the same shield
in comparison with child head with no shield of 5.76W/kg SAR. Among seven-layered head models, at
a peak frequency of 6GHz, placing the laminated shield made of Ag Nanowire/PDDA and PEDOT:PSS
material reduced the SAR to 0.000043W/kg from 17.73W/kg with no shield in between mobile phone
and the user’s head. On the contrary, at 6GHz mobile frequency, the child seven-layered head model
absorbed a least radiation of 0.0000018W/kg in the presence of the same laminated shield. Therefore, a
seven layered child head with the Ag Nanowire/PDDA and PEDOT:PSS laminated transparent shield
placed between the mobile smartphone and the head absorbs the least amount of RF radiation power
level. All the RF radiation exposure levels obtained with the transparent conducting films from the
results of the mathematical evaluation of SAR demonstrate that they comply with the FCC standardized
SAR limit accepted worldwide. Hence, these results serve a good purpose for the betterment of present
society, especially for children, where the alarming risks associated with the RF exposure of mobile
smartphones are increasingly high with the utilization of these devices.
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