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A Well-Posed and Effective High-Order Impedance Boundary
Condition for the Time-Harmonic Scattering Problem

from a Multilayer Coated 3-D Object

Bruno Stupfel1, *, Pierre Payen1, and Olivier Lafitte2

Abstract—The time-harmonic scattering problem from an isotropic multilayer coated 3-D object is
considered. The coating is modeled by an impedance boundary condition (IBC) prescribed on the outer
surface of the coating. The standard Leontovich IBC is local and constitutes a poor approximation for
low index materials. A possible remedy is to employ high order IBCs (HOIBCs) involving tangential
differential operators multiplied by coefficients. A generic HOIBC formulation (termed here IBC3)
with five coefficients is considered here. Sufficient uniqueness conditions (SUCs) are derived for the
corresponding Maxwell’s problem (i.e., Maxwell’s equations in free-space, radiation condition at infinity
and IBC3 on the surface). The IBC3 coefficients are obtained by minimizing, with the SUCs as
constraints, the error between either the exact and IBC3 impedances (local planar approximation)
or the exact and IBC3 Mie series coefficients (local spherical approximation). Finally, the IBC3 is
numerically implemented in a well-posed EFIE+MFIE formulation. Numerical results obtained on 3D
objects demonstrate the high accuracy achieved with the constrained IBC3.

1. INTRODUCTION

The full-wave solution of the time-harmonic scattering problem from an isotropic multilayer coated 3D
object via a finite or boundary element method is computationally intensive when parametric studies
(uncertainty analysis, optimization of the shape and/or coating of the object, etc.) are required. A
well-known approximation consists in substituting to the coating an impedance boundary condition
(IBC) prescribed on its closed outer surface Γ. This IBC, implemented in an integral equation, avoids
the costly solution of Maxwell’s equations inside the material layers. The simplest and most popular
one, termed here IBC0, connects the tangential components of the electric and magnetic fields via a
scalar [1]. It is strictly local (an exact IBC is non local) and constitutes a good approximation for high
index materials only.

For a thin monolayer of thickness d, effective and well-posed high order IBCs (HOIBCs) of order
k have been obtained via a multiscale asymptotic expansion of the exact solution with respect to d [2–
4], and it has been mathematically and numerically demonstrated that, if Γ is smooth enough, the
error between this expansion and the exact solution scales as O(dk+1). Regarding a low index and not
necessarily thin multilayer, essentially heuristic HOIBCs involving tangential derivatives of the tangent
electric and magnetic fields on Γ are available in the literature [5–13]. A generalized IBC was first
proposed in the space domain for 2-D problems [5] where the coefficients in the IBC are derived from
the exact reflection coefficient calculated for a plane wave incident on a planar layer. It was extended
later on to 3-D electromagnetic problems [6]. The analytical derivation of the coefficients in the IBC from
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the exact reflection coefficient or the exact impedance necessitates ad-hoc complicated approximations
that are difficult to apply to a multilayer coating [6, 8] and, to date, no numerical implementation of
the GIBC for the solution of a general 3-D problem is known. In the spectral domain (infinite plane
or 2D circular cylinder) an effective HOIBC with five coefficients has been proposed in [7] where the
IBC coefficients are calculated in such a way as to yield an impedance as close as possible to the
exact one (local planar or cylindrical approximation: LPA or LCA) in a large angular range including
evanescent incident waves, and this HOIBC has been successfully applied to axisymmetric bodies [7].
A corresponding space domain formulation, termed here IBC3, has been proposed in [8] that can be
applied to arbitrary 3D objects, and has been numerically implemented in MoM formulations [11–13].

The important issue of uniqueness of the solution of the Maxwell’s problem (i.e., Maxwell’s
equations in free-space, radiation condition at infinity and HOIBC on Γ) is discussed in [9, 11] where
sufficient uniqueness conditions (SUCs) are proposed for some HOIBCs. New SUCs specific to the IBC3
with five coefficients are presented here. Then the IBC3 is numerically implemented in the combined
electric and magnetic field integral equations formulation (EFIE+MFIE) with the electric and magnetic
currents as unknowns. This formulation has been employed in the past for the IBC0 [14, 15] and yields
accurate results when the IBC0 is valid. The IBC3 involves the discretization of the surface divergence
of n× RWG functions. This problem has been circumvented in [16] for the IBC0 and in [12] for the
IBC3 by using Buffa-Christianssen functions that, however, increase the computational cost. Instead,
the computationally very cheap div2curl and curl2div transformations [10, 11, 17] are employed here,
and the costly inversion of a full impedance matrix involved in the formulation proposed in [11] is
suppressed.

This paper is organized as follows. The IBC3 is formulated in Section 2. Its coefficients are
optimized for an infinite plane (LPA) or a sphere (local spherical approximation: LSA). Geometry
independent SUCs are derived and the efficiency of the IBC3 constrained by these SUCs is evaluated first
on an infinite plane illuminated by incident homogeneous or inhomogeneous (evanescent) plane waves,
and then on a sphere. Section 3 is devoted to the IBC3 implementation in the well-posed EFIE+MFIE
formulation and numerical results obtained on 3D objects are presented in Section 4. Conclusions are
proposed in Section 5. Time dependence exp(iωt) is assumed and suppressed throughout.

2. WELL-POSED IBC3

The IBC3 is formulated in Section 2.1. Its coefficients are obtained in Section 2.2 and SUCs are derived
in Section 2.3.

2.1. Formulation

We set
V t = −n× (n× V ); LDV t = ∇t∇t · V t; LRV t = curlΓcurlΓV t

curlΓV t = −∇t · (n× V t); curlΓu = −n×∇tu
(1)

where subindex t indicates the tangential components of a vector or operator, u a scalar, and n the
outward directed normal to Γ. From the identities in [24], we also have

LRV t = curlt{n(n · curltV t)}; curltV = ∇× V − n× ∂nV (2)

The IBC3 reads
LEEt = LJJ

LE = 1 + b1LD − b2LR ; LJ = a0 + a1LD − a2LR
(3)

E is the electric field and J = n ×H where the magnetic field H stands for η0H (η0 is the free-space
impedance). It is obtained from Eq. (22) in [8] by performing the cross product of this equation with
n and using the identities

n× LD(n × V t) = LRV t; n× LR(n× V t) = LDV t (4)

easily derived from Eq. (1) and the identities in [24]. Depending on the values of the coefficients, the
IBC3 yields the IBC0, exact when the plane is illuminated in normal incidence,

IBC0 : Et = a0J (5)

the IBC1 in [11] when a1 = a2, b1 = b2, and the IBC02 when b1 = b2 = 0.
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2.2. Calculation of the Coefficients in (3)

First the IBC3 coefficients are computed as in [11] by invoking the LPA: at an arbitrary point on Γ,
provided Γ is smooth enough, the curved coating is replaced by the infinite planar one with the same
characteristics. Then we compute them on a sphere (LSA), thus taking into account two identical
curvatures.

2.2.1. Planar Coating

We consider a planar N layers structure made up of homogeneous isotropic materials and backed by
the IBC0 in Eq. (5) where a0 = Zb is known, with Re(Zb) ≥ 0; if Zb = 0 the coating is backed by a
perfect electric conductor (PEC). z = 0 is the outer surface of the coating (Γ is the (xOy) plane). E
and H are y independent because the coating is translationally invariant along x and y. Their cartesian
components are, for TM and TE polarizations and z ≥ 0,

TM : H = (0,H, 0)t , E =
i

k
(∂zH, 0,−∂xH)t

J = (−H, 0, 0)t

TE : E = (0, E, 0)t , H = − i

k
(∂zE, 0,−∂xE)t

J = (0,Hx, 0)
t

(6)

k = 2π/λ0 = ω/c is the free-space wave number (c is the light velocity). In TE polarization† we have

E = eiksx
(
eizkξ0 + rTEe−izkξ0

)
; ξ0 =

√
1− s2

Hx = ξ0e
iksx
(
eizkξ0 − rTEe−izkξ0

) (7)

The first r.h.s. term is the incident wave (Einc,H inc) and the second one the reflected (or scattered)
wave (Es,Hs). In Eq. (7) parameter s characterizes these waves: if s ≤ 1 they are propagative
(planar homogeneous) with s = sin θ where θ is the real incidence angle counted from the z axis;
if s > 1, they are evanescent (planar inhomogeneous) and Im(ξ0) ≤ 0 to satisfy the boundary condition
at infinity. The latter are considered because evanescent surface (or guided) waves may propagate
inside the coating [18]. Reporting Eq. (3) into Eq. (7) with E = Einc + Es, H = H inc + Hs yields
rTE = [a0ξ0 − 1 + s2(b2 − a2ξ0)]/[a0ξ0 + 1 − s2(b2 + a2ξ0)]. Following along the same lines in TM and
from the following standard definition of the impedances ZTM , ZTE

Et =

(
ZTM 0
0 ZTE

)
J (8)

with

ZTM =
ξ0
(
1 + rTM

)
1− rTM

; ZTE =
1 + rTE

ξ0 (1− rTE)
(9)

we get, as in [7],

ZTM = ZTM
ibc =

a0 − a1k
2s2

1− b1k2s2
; ZTE = ZTE

ibc =
a0 − k2a2s

2

1− k2b2s2
(10)

where subindex ibc stands for the approximate impedance derived from the IBC3. The exact impedances
Zp
ex(s) with p = TM,TE are obtained from Eq. (9) where rp = rpex computed from the multilayer as

indicated in [19]. Then χ = (a0, a1, a2, b1, b2)
t ∈ C

5 is obtained by minimizing the error between the
exact and approximate impedances for s ∈ [0, sM ] where sM is a given maximum value of s

χLPA = argmin

⎧⎨⎩ ∑
p=TM,TE

∫ sM

0

∣∣Zp
ex(s)− Zp

ibc(s, χ)
∣∣ ds
⎫⎬⎭ (11)

as indicated in [11] for the derivation of the IBC1 coefficients.

† TM is obtained from TE via the following operations: μ → ε, Z → 1/Z, rTE → −rTM .
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2.2.2. Spherical Coating

We consider a PEC sphere of radius R. d is the total thickness of the coating on the outermost boundary
of which the IBC3 is prescribed. In spherical coordinates and for r ≥ R+ d the scattered field is given
by the following standard Mie series that read, with the same notations as in [20],

Es(r) = −
∞∑
n=1

fn
[
αnM1n(r) + βnN1n(r)

+n(n+ 1)
(
αnM−1n(r)− βnN−1n(r)

)]
Hs(r) = −i

∞∑
n=1

fn
[
βnM1n(r) + αnN1n(r)

−n(n+ 1)
(
βnM−1n(r)− αnN−1n(r)

)]
(12)

In what follows, αex
n , βexn denote the coefficients that take the coating exactly into account and αibc

n ,
βibcn the approximate ones derived by substituting the above expressions of Es, Hs in Eq. (3):

αibc
n (χ) =

j̃n(x)

h̃n(x)

[
i(a0 − γna2) + (1− γnb2)/An

i(a0 − γna2) + (1− γnb2)/An

]
βibcn (χ) =

jn(x)

hn(x)

[
i(a0 − γna1)−An(1− γnb1)

i(a0 − γna1)−An(1− γnb1)

]
x = k(R+ d) γn =

n(n+ 1)

x2

An =
j̃n(x)

xjn(x)
; An =

h̃n(x)

xhn(x)

(13)

jn(·), hn(·) are the spherical Bessel and Hankel functions of order n and j̃n(x) =
d
dx(xjn(x)), h̃n(x) =

d
dx(xhn(x)). The IBC3 coefficients are obtained by minimizing the error between the approximate and
exact coefficients for n ≤ N where the series in Eq. (12) are truncated at n = N :

χLSA = argmin

{
N∑

n=1

∣∣∣αex
n − αibc

n (χ)
∣∣∣+ ∣∣∣βexn − βibcn (χ)

∣∣∣} (14)

2.3. Well-Posedness

It is well known [21] that the solution of the Maxwell’s problem is unique if

Re

{∫
Γ
E∗ · J

}
≥ 0 (15)

where superscript ∗ denotes complex conjugate. We obtain in Appendix A the following sufficient
uniqueness conditions (SUCs) that imply Eq. (15):

a0 �= 0; a1 �= 0; a2 �= 0 :

z = 1− b1a0/a1 − b2a0/a2
Re(a0) ≥ 0; Re(a1) ≤ 0; Re(a2) ≤ 0

Re(a∗0z) ≥ 0; Re(a∗1z) ≤ 0; Re(a∗2z) ≤ 0

Re(b1/a1) ≥ 0; Re(b2/a2) ≥ 0

Re(
b1a

∗
2

a1a
∗
0

) ≤ 0; Re(
b2a

∗
1

a2a
∗
0

) ≤ 0

a1 = a2 = 0 :

Re(a0) ≥ 0; Re(a∗0b1) ≤ 0; Re(a∗0b2) ≤ 0

(16)
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Then, if S denotes the subset of C5 that satisfies Eq. (16), we have

χLPA = argminχ∈S

{∑
p

∫ sM

0

∣∣Zp
ex(s)− Zp

ibc(s, χ)
∣∣ ds} (17)

for the plane and

χLSA = argminχ∈S

{
N∑

n=1

∣∣∣αex
n − αibc

n (χ)
∣∣∣+ ∣∣∣βexn − βibcn (χ)

∣∣∣} (18)

for the sphere. Note that, for the plane, Eq. (15) implies |rp(s)| ≤ 1 for s ≤ 1 (theorem 9 in [9]).

3. IMPLEMENTATION OF THE HOIBC IN THE EFIE+MFIE FORMULATION

Let M = n× E and g(r, r′) =
e−ik|r−r′|

4π|r − r′| . The EFIE and MFIE read for r ∈ Γ:

EFIE : Et(r)/2 + T J(r)−KM (r) = Einc
t (r)

MFIE : Ht(r)/2− TM(r)−KJ(r) = H inc
t (r)

T J(r) = i

k
∇t

∫
Γ
g(r, r′)∇′ · J(r′) dr′ + ik

[∫
Γ
g(r, r′)J(r′) dr′

]
t

KM(r) =

[
p.v.

∫
Γ
∇g(r, r′)×M (r′) dr′

]
t

(19)

(p.v. stands for principal value). The IBC3 is implemented successively in the EFIE and MFIE. J and
M are discretized in H(div):

J(r) =
N∑
j=1

Ijφj(r); M(r) =
N∑
j=1

mjφj(r) (20)

where φ
j
(r) is an RWG basis function, and Ij , mj are the unknowns, defined on the N edges of the

triangular mesh of Γ, of the final global system obtained at the end of this Section.

3.1. Discretization of the EFIE

Eq. (3) entails
Et/2 = LJJ/2− (b1LD − b2LR)Et/2 (21)

and the EFIE reads
(LJ/2 + T )J − (b1LD − b2LR)Et/2−KM = Einc

t (22)

Et is also discretized in H(div):

Et(r) =

N∑
j=1

ejφj(r) (23)

Then Eq. (22) projected onto the {φ
i
} basis (i.e., performing the inner product on Γ with φ

i
) yields{

1

2

(
a0G+ a1L

D − a2L
R
)
+T

}
I − 1

2

(
b1L

D − b2L
R
)
e−Km = bE (24)

with

Tij = ik

∫
Γ×Γ

g
(
r, r′
)
φ
i
(r) · φ

j

(
r′
)
drdr′ − i

k

∫
Γ×Γ

g
(
r, r′
)
∇ · φ

i
(r)∇′ · φ

j

(
r′
)
drdr′

Kij =

∫
Γ×Γ

φ
i
(r) ·

[
∇g
(
r, r′
)
× φ

j

(
r′
)]
drdr′
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LD
ij =

∫
Γ
φ
i
· LDφj = −

∫
Γ
∇t · φi∇t · φj

LR
ij =

∫
Γ
φ
i
· LRφj =

∫
Γ
∇t ·

(
n× φ

i

)
∇t ·

(
n× φ

j

)
Gij =

∫
Γ
φ
i
· φ

j
; bEi =

∫
Γ
φ
i
(r) ·Einc (r) dr

(25)

(G is the Gram matrix of the RWG basis). The expression of LD
ij in Eq. (3.1) comes from the definition

of LD in Eq. (1) and integration by parts on Γ. LR
ij is obtained as follows from the definition of LR in

Eq. (1) and integration by parts:

LR
ij = −

∫
Γ
φ
i
·
(
n×∇tcurlΓφj

)
=

∫
Γ

(
n× φ

i

)
· ∇tcurlΓφj

= −
∫
Γ
curlΓφj∇t ·

(
n× φ

j

) (26)

The evaluation of LR
ij is problematic because ∇t · (n×φ

i
) involves Dirac distributions centered on the

edge associated with φ
i
. Let {p

i
= −n × φ

i
} be the H(curl) basis on Γ. As in [11], a simple way to

circumvent this difficulty is to use the curl2div transformation, recalled in Appendix B, that expresses
p
i
in the {φ

i
} basis and gives (see Appendix B)

LR = −9G̃tLDG̃ (27)

From Eqs. (20) and (23) we get

M =

N∑
j=1

mjφj(r) = n× E =

N∑
j=1

ejn× φ
j
= −

N∑
j=1

ejpj ∈ H(curl) (28)

and the div2curl transformation yields (see Eqs. (B1) and (B2) in Appendix B)

e = 3G̃m (29)

Finally, from Eqs. (27) and (29), Eq. (24) reads{
1

2

(
a0G+ a1L

D + 9a2G̃
tLDG̃

)
+T

}
I −
{
3

2
(b1L

D + 9b2G̃
tLDG̃)G̃+K

}
m = bE (30)

3.2. Discretization of the MFIE

Eq. (3) entails

Ht/2 =
n× (a1LD − a2LR)J −M − n× (b1LD − b2LR)Et

2a0
(31)

Then M is discretized as in Eq. (20) and Et = −n ×M =
∑N

j=1mjpj. J is discretized as in Eq. (20)

for the KJ(r) term in Eq. (19), and in H(curl) for the {n× (a1LD − a2LR)J} term:

J(r) =

N∑
j=1

I ′jpj(r) (32)

Then, projecting onto the {φ
i
} basis, we get

a1X
D − a2X

R

2a0
I ′ −

{
G+ b1X

D − b2X
R

2a0
+T

}
m−KI = bH (33)

with

XD
ij =

∫
Γ
φ
i
·
(
n× LDpj

)
= −

∫
Γ
∇t · pi∇t · pj

XR
ij =

∫
Γ
φ
i
·
(
n× LRpj

)
= −LD

ij ; bHi =

∫
Γ
φ
i
·H inc

(34)
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The last identity comes from Eq. (4). XD is evaluated via the curl2div transformation (see Eq. (B2)
in Appendix B)

XD = 9G̃tLDG̃ (35)

and (Eqs. 32) and (20) yield, with the div2curl transformation,

I ′ = −3G̃I

so that the MFIE reads{
3

2a0

(
9a1G̃

tLDG̃+ a2L
D
)
G̃+K

}
I +

{
1

2a0

(
G+ 9b1G̃

tLDG̃+ b2L
D
)
+T

}
m = −bH (36)

Finally, Eqs. (30) and (36) yield the system

(A+B)x = b; x = (I,m)t; b = (bE, bH)t

A =

⎛⎜⎝ a0G

2
+T K

K
G

2a0
+T

⎞⎟⎠

B =

⎛⎜⎜⎜⎝
a1L

D + 9a2G̃
tLDG̃

2

3(b1L
D + 9b2G̃

tLDG̃)G̃

2

3(9a1G̃
tLDG̃+ a2L

D)G̃

2a0

9b1G̃
tLDG̃+ b2L

D

2a0

⎞⎟⎟⎟⎠
(37)

(A is symmetric). It is demonstrated in Appendix C that Eq. (37) has a unique solution if the SUCs
are satisfied with the additional constraint

Re(a0) ≥ εδ > 0 (38)

Note that when a1 = a2 = b1 = b2 = 0 we recover the system Ax = b proposed in [14] for the IBC0
that has been proved to be well-posed if Re(a0) > 0.

4. NUMERICAL RESULTS

Unlike the IBCs obtained in [2–4] for a thin monolayer, the range of validity of the essentially heuristic
IBC3 must be numerically evaluated. Such an evaluation has already been performed in [7] by
considering the plane and the 2D circular cylinder. We have now another canonical geometry at our
disposal, the sphere considered in Section 2.2. Regarding the plane, we set here sM = 1.2 because the
contribution to the RCS of the far-field radiated by an evanescent surface wave (s > 1) is all the smallest
as s is larger than one [22]. First, following [7], we consider in Section 4.1 a monolayer that illustrates
some of the main problems encountered by the IBC3. Without loss of generality, we have set Zb = 0 in
all that follows (PEC backed coating), and h designates the average edge length h of a mesh of Γ. The
IBC3 coefficients are always obtained with the SUCs that degrade only slightly the IBC performances,
unlike the ones proposed in [11]. The errors made on the impedance (for the plane) and the RCS (for
a 3D object) are measured by

errZ = max
p=TM,TE

√√√√√√√
∫ sM

0

∣∣Zp
ex(s)− Zp

ibc(s)
∣∣2 ds∫ sM

0
|Zp

ex(s)|2 ds

errRCS(dB) = max
p=TM,TE

1

π

∫ π

0
|RCSp(θ)−RCSp

ex(θ)| dθ

(39)

The various coatings that are considered are listed in Table 1.
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Table 1. PEC backed coatings. ni = |√εiμi| is the material index in layer i (for a multilayer i = 1
designates the innermost layer).

i di(cm) εi μi ni
TEST1 1 5 4 1 2

TEST2 1 7.5 1 7.5 2.74

TEST3 1 5 1-i (1-i)/2 1

1 1 1-i (1-i)/2 1

TEST4 2 1 2-i 1/2 1.06

3 1 1/2 2-i 1.06

1 1 4-i 2-i/2 2.9

TEST5 2 1 4-i 2-i 3.04

3 1 2-i 4-i 3.04

4.1. Lossless Monolayer with Thickness d

In this Section f = 1GHz unless otherwise specified. The TEST1 coating considered in [7] is difficult
to model for two reasons: it supports surface waves (SWs) for s = sr > 1 and Zp

ex has an asymptote
for s = s∞. The numerically derived values of sr [22] are 1.06 in TE and 1.56 in TM that yield
|rpex(sr)| = ∞, as observed in Fig. 1 (sM = 2 in Figs. 1, 2). Also, we have [7, 8]

ZTM
ex =

i
√
εμ− s2

ε
tan
(
kd
√
εμ− s2

)
; ZTE

ex =
iμ√
εμ− s2

tan
(
kd
√
εμ− s2

)
(40)

that entails there exists q integer such that

s∞ =

√
εμ−

[
(2q + 1)π

2kd

]2
(41)

0 0.5 1 1.5 2

2

4

6

8

10

12

14

16

18

20

s

|r
|

Figure 1. TEST1, IBC3 with sM = 2, plane. Modulus of the reflection coefficient vs. s. Red (blue):
TM (TE). Solid line: |rpex|; circles: |rpibc| without SUCs; stars: |rpibc| with SUCs. The resonances at
sr = 1.06 (TE) and sr = 1.56 (TM) due to the SWs (|rpex(sr)| = ∞) are accurately accounted for by
the IBC3.
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0 0.5 1 1.5 2
-1

0

1

0 0.5 1 1.5 2
-20

0

20

s

Figure 2. TEST1, IBC3 with sM = 2, plane, Zp
ex, Z

p
ibc(s), p =TM (red) or TE (blue). Top (bottom):

Re(Z) (Im(Z) respectively). Solid line: Zp
ex; circles: Z

p
ibc without SUCs; stars: Zp

ibc with SUCs. The

IBC0 yields ZTM(s) = ZTE(s) = 0.0772 + 0.126i. The asymptote at s∞ = 1.32 is well reproduced by
the IBC3.

0 50 100 150

-25

-20

-15

-10

-5

θ

R
C

S
 (

dB
)

Figure 3. TEST1, sphere R = 5cm, IBC3. RCS vs. θ. Red (blue): TM (TE). Solid line: exact; circles:
LSA (Eq. 18); stars: LPA (Eq. 17). These plots highlight the improved accuracy achieved by the IBC3
when its coefficients take into account the curvature of the sphere (here 1/kR = 0.954).

and s∞(q = 0) = 1.32, as observed in Fig. 2. These plots demonstrate the high efficiency achieved by
the IBC3. In view of Eq. (10), the asymptote is reproduced by the IBC3 if b1 = b2 = 1/(ks∞)2 ∈ R

that is actually verified here: Eq. (17) yields b1 = b2 = 0.5703/k2 . Fig. 3 plots the RCS of a R = 5 cm
sphere computed with the LPA-IBC3 and LSA-IBC3: it confirms that the LPA is all the less satisfied
since the electric curvatures of the surface are large. For the same sphere, Figs. 4 and 5 illustrate
the superior results obtained for the scattered electric near-field when the LSA-IBC3 is employed in
lieu of the LSA-IBC0. Also, as expected, we have verified that the IBC0, IBC02 and IBC1 yield large
impedance errors (see the TEST1 results in Table 2). Finally, this example illustrates the inability of the
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Figure 4. SphereR = 5 cm, TEST1, θ = 0 incidence. Modulus of the scattered near-field Es(r, θ, φ = 0)
in V/m. Left: exact; right: IBC0 (LSA).
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Figure 5. SphereR = 5cm, TEST1, θ = 0 incidence. Modulus of the scattered near-field Es(r, θ, φ = 0)
in V/m. Left: exact; right: IBC3 (LSA).

EFIE+MFIE formulation (37) to model this lossless coating: because Eq. (40) implies Re(Zp
ex)(s) = 0

for s ≤ √
εμ ≤ 2 we get from Eq. (10) Re(a0) = Re(a1) = Re(a2) = 0, and constraint (38) is violated.

As a result, we have found that the numerical solution of Eq. (37) is erroneous even with a dense mesh
of Γ since the condition number of matrix (A+B) increases when h decreases. Also, we have observed
that (i) increasing εδ reduces drastically the IBC3 efficiency and (ii) the same behaviour is obtained
with the unconstrained IBC3 that yields Re(a0) = −6.10−5.

As d is increased, more SWs appear: d = 10 cm yields three SWs (sTM
r = 1.023 and 1.875;

sTE
r = 1.636) and the impedance is infinite for s∞ = 1.86. Since only the first TM wave contributes
to the RCS, sM = 1.2 is sufficient that yields errZ(sM = 1.2) = 0.84%. If, as in [7], sM is larger, the
error increases (errZ(sM = 1.8) = 21%). This is due to the fact that additional coefficients are needed
to model accurately the exact impedance. A way to introduce these extra coefficients is to add in the
HOIBC powers of the LD and LR operators as it has been done in, e.g., [27] with the drawback of
increasing the number of unknowns in the final system for discretization purposes.

We consider now the TEST2 coating tested on a 2D cylinder in [7] where it is shown that the
LPA-IBC3 cannot model a resonant circumferential wave on the cylinder. We put this coating on a
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R = 30 cm sphere with d = 7.5 cm = λ0/4. For f = 1.053GHz, a whispering gallery wave (WGW)
propagates on the inside of Γ. A WGW corresponds with a very sharp electromagnetic resonance inside
the coating and is responsible for strong echos of long duration in time that may alter considerably the
RCS of a stealth object [25, 26]. Following [26], we have numerically obtained fr = 1.053 + i2.5 10−4

(in GHz) for the complex frequency that yields the strongest resonance, i.e., the smallest Im(fr), and
the WGW propagates along a meridian of the sphere with a phase velocity vφ = 0.66c larger than
c/
√
εμ = 0.365c as expected [26]. Since WGWs propagate on curved surfaces only, they are taken into

account by the IBC3 when the coefficients are calculated on the spherical coating only, as demonstrated
in Fig. 6 where errRCS(sM = 1.2) = 0.01 dB for the LSA-IBC3 while errRCS(sM = 1.2) = 3.8 dB for
the LPA-IBC3.
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Figure 6. TEST2, sphere R = 30cm, f = 1.053GHz, IBC3. RCS vs. θ. Red (blue): TM (TE). Solid
line: exact; circles: LSA (Eq. 18); stars: LPA (Eq. 17). f is close to the complex resonance frequency
fr = 1.053 + i2.5 10−4 of a WGW that cannot be accounted for by the LPA-IBC3.

In view of these results, which can be extended to a multilayer coating, we propose the following
rules relative to the use of the IBC3 in lieu of a more expensive numerical approach. First, measure the
IBC3 performances on the planar coating for s ∈ [0, sM ], as indicated in Section 2.2.1, with sM 	 1.2;
a larger value of sM (say sM = 1.5) might be required for a stealth object, as explained in [22]. A
sphere whose radius is one of the local radii of curvature of the 3D object upon which the IBC3 is to
be implemented can serve to evaluate the pertinence of the LPA (see Section 2.2.2). Then, if at least
one layer has very small losses (|Im(ε)/ε|, |Im(μ)/μ| 
 1, strong resonances may exist (SW, WGW)
and caution is required. If a SW is involved, the previous procedure can be applied; however, εδ in
constraint (38) may be close to zero, and the EFIE+MFIE formulation might be numerically ill-posed.
If a WGW exists there is no effective solution since the corresponding resonance cannot be reproduced
on a planar coating; the sphere might help but a WGW resonance is shape dependent.

4.2. Bodies of Revolution (BORs)

A BOR hybrid finite element-integral equation numerical code [23] serves as a reference. The solution
of Eq. (37) is obtained with a direct solver (standard Gaussian elimination) and

Q = max
p

{
Re

∫
Γ
Jp∗(r) ·Ep(r) dr

}
(42)

is computed numerically that has always been found non negative, in accordance with Eq. (15). The
performances of the various IBCs are indicated in Table 2 for the TEST3, TEST4, TEST5 coatings



138 Stupfel, Payen, and Lafitte

Figure 7. Cylinder (length 2m) with hemispherical caps (radius 25 cm).
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Figure 8. EFIE+MFIE. Monostatic RCS of the cylinder in Fig. 7, 200MHz, 7240 triangles (h = λ0/23),
TEST3 coating. Top (bottom): TM (TE). Black: reference; red: IBC3; blue: IBC0. Reference and
LPA-IBC3 RCSs are superimposed.

Figure 9. Cone-sphere with rounded tip. Total length of the PEC surface 48.55 cm, tip radius 4 cm,
sphere radius 10 cm.

considered here. First, the RCS of the cylinder in Fig. 7 with the low index TEST3 monolayer is plotted
for f = 200MHz in Fig. 8. Then, the RCS of the cone-sphere in Fig. 9 is computed for the low index
TEST4 (Fig. 10) and the larger index TEST5 (Fig. 11) coatings with the IBC0 and the IBC3 with
the LPA coefficients (i) on the whole surface and (ii) everywhere except on the back sphere where they
are replaced by the LSA coefficients calculated on the sphere with the same 10 cm radius. All these
plots demonstrate the superiority of the IBC3 over the IBC0 when the coating index is small. Also, the
LSA-IBC3 on the back sphere increases but slightly the IBC3 performances (see Table 3) because the
LPA-IBC3 is already fairly accurate. Note that errRCS obtained on the TEST5 sphere in Table 3 with
the LSA is larger than with the LPA. This may happen with the SUCs in Eq. (16) since χ in Eq. (18)
spans a smaller parameter space: actually errRCS = 0.0073 when χ is unconstrained.
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Figure 10. EFIE+MFIE. Monostatic RCS of the cone-sphere in Fig. 9, 1GHz, 3472 triangles
(h = λ0/19), TEST4 coating. Top (bottom): TM (TE). Black: reference; blue: IBC0; red: LPA-
IBC3; green: LSA-IBC3 on the back sphere and LPA-IBC3 elsewhere.
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Figure 11. EFIE+MFIE. Monostatic RCS of the cone-sphere in Fig. 9, TEST5 coating. Same captions
as in Fig. 10.

Table 2. LPA with sM = 1.2. Discrepancy errZ (in percent), as defined in Eq. (39), between the exact
and approximate impedances.

IBC0
IBC02

wo. SUC SUC

IBC1

wo. SUC SUC

IBC3

wo. SUC SUC

TEST1 66.3 22.6 22.6 45.2 45.2 0.48 0.48

TEST3 44.3 2.8 11.6 48.7 66.5 0.08 3.6

TEST4 73.1 1.2 1.9 71.7 98 0.02 1.5

TEST5 9.3 0.4 4.8 44 35.6 0.008 0.3
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Table 3. Discrepancy errRCS (in dB), as defined in Eq. (39), between the exact and approximate RCSs
for the cone-sphere and the sphere with the same radius as the back sphere.

cone-sphere sphere R = 10 cm

IBC0
LPA-IBC3

everywhere

LSA-IBC3

on the back sphere
LPA-IBC3 LSA-IBC3

TEST4 4.34 1.05 0.84 0.48 0.035

TEST5 1.17 0.82 0.81 0.26 0.49

5. CONCLUSIONS

The numerical examples that have been presented demonstrate that the IBC3, even constrained by
the new SUCs presented in Section 2.3, is superior to the Leontovich IBC0, especially when the
material index is small. However, it remains an approximation whose efficiency can be straightforwardly
estimated a priori from the reflection coefficient calculated either on a plane (LPA) or on a sphere (LSA).
Its range of validity has been discussed, and it has been shown that resonant circumferential waves,
such as WGWs, can be accounted for if the IBC3 coefficients are calculated on a curved surface only,
as it has been done for the sphere in Section 2.2. The numerical implementation of the IBC3 in the
EFIE+MFIE formulation has been facilitated by the div2curl and curl2div transformations. It has
been shown that this particular EFIE+MFIE formulation is well posed if the SUC in Eq. (38) is added.
This SUC is specific to this formulation and is not required if the IBC3 is implemented in, e.g., a finite
element method to model heterogeneous structures layed over a multilayer. Finally, it is noteworthy
that the IBC3 can be applied to more complex structures, such as metamaterials (as it has been done
for the FSSs in [27, 28]), provided that their exact reflection coefficient is known.

APPENDIX A. DERIVATION OF THE SUCS IN (16)

If Re(a0) ≥ 0, Re(a1) ≤ 0, Re(a2) ≤ 0, operators a0 + a1LD, a0 − a2LR and LJ are injective on account
of the well-known identities∫

Γ
V ∗

t · LDV t = −
∫
Γ
|∇t · V t|2;

∫
Γ
V ∗

t · LRV t =

∫
Γ
|n · curltV t|2 (A1)

Then Eq. (15) yields

X =

∫
Γ
E∗ · J =

∫
Γ

[
L−1
J + b1L

−1
J LD − b2L

−1
J LR

]
E · E∗

Because LD = (a0 + a1LD − a0)/a1 and LR = −(a0 − a2LR − a0)/a2 we get

X =

∫
Γ

[(
1− b1a0

a1
− b2a0

a2

)
L−1
J +

b1
a1
L−1
J (a0 + a1LD) +

b2
a2
L−1
J (a0 − a2LR)

]
E · E∗

We set D = L−1
J E (=⇒ E = LJD) and identities L−1

J (a0 + a1LD) = [1 − a2(a0 + a1LD)
−1LR]

−1,

L−1
J (a0 − a2LR) = [1 + a1(a0 − a2LR)

−1LD]
−1 yield

X =

∫
Γ

[(
1− b1a0

a1
− b2a0

a2

)
D0 +

b1
a1
E∗ ·D1 +

b2
a2
E∗ ·D2

]
D0 = D · (LJD)∗; D1 =

[
1− a2(a0 + a1LD)

−1LR

]−1
E

D2 =
[
1 + a1(a0 − a2LR)

−1LD

]−1
E

(A2)



Progress In Electromagnetics Research B, Vol. 94, 2021 141

Substituting [1− a2(a0 + a1LD)
−1LR]D1 and [1 + a1(a0 − a2LR)

−1LD]D2 to E in the above expression
of X gives

X =

∫
Γ

{(
1− b1a0

a1
− b2a0

a2

)
D0 +

b1
a1
D1 ·

[
1− a∗2(a

∗
0 + a∗1LD)

−1LR

]
D∗

1

+
b2
a2
D2 · [1 + a∗1(a

∗
0 − a∗2LR)

−1LD]D
∗
2

}
=

∫
Γ

{[(
1− b1a0

a1
− b2a0

a2

)
D0 +

b1
a1

|D1|2 +
b2
a2

|D2|2 −
b1a

∗
2

a1
D1 ·D3 +

b2a
∗
1

a2
D2 ·D4

}
(A3)

where
D3 = (a∗0 + a∗1LD)

−1 LRD
∗
1; D4 = (a∗0 − a∗2LR)

−1 LDD
∗
2 (A4)

Eq. (A4) yields LRD
∗
1 = (a∗0 + a∗1LD)D3 and, from LDLR = LRLD = 0, (a∗0 + a∗1LD)LDD3 = 0 that

implies, because a∗0 + a∗1LD is injective, LDD3 = 0 and hence LRD
∗
1 = a∗0D3, so that D1 · D3 =

D1 · LRD
∗
1

a∗0
. Following along the same lines we get D2 ·D4 =

D2 · LDD
∗
2

a∗0
, and Eq. (A3) finally reads

X =

∫
Γ

{(
1− b1a0

a1
− b2a0

a2

)
D0 +

b1
a1

|D1|2 +
b2
a2

|D2|2 −
b1a

∗
2

a1a
∗
0

D1 · LRD
∗
1 +

b2a
∗
1

a2a
∗
0

D2 · LDD
∗
2

}
(A5)

with, from the definition of D0 in Eq. (A2), D0 = a∗0|D|2 + a∗1D · LDD
∗ − a∗2D · LRD

∗. The SUCs are
then easily deduced from Eq. (A5) on account of Eq. (A1).

APPENDIX B. OVERVIEW OF THE div2curl AND curl2div
TRANSFORMATIONS [10, 11, 17]

For r(ξ1, ξ2) in triangle T with (ξ1, ξ2) ∈ [0, 1] × [0, 1], the RWG functions are defined as

φ
i
(r) = [ψi1(ξ1, ξ2)e1 + ψi2(ξ1, ξ2)e2]/s; s = |e1 × e2|
ψ11 = ξ1; ψ12 = ξ2 − 1

ψ21 = ξ1; ψ22 = ξ2
ψ31 = ξ1 − 1; ψ32 = ξ2

1 ≤ i ≤ 3 is the local edge number (see Fig. B1). Also, let {q
i
} be the basis introduced in [14]:

q
1
= (2ξ2 − 1)e1/s; q

2
= (1− 2(ξ1 + ξ2))(e2 − e1)/s

q
3
= (1− 2ξ1)e2/s

(note that ∇.q
i
= 0). Regarding the div2curl transformation, let ci be the unknown components of φ

i
in the {p

j
= −n× φ

j
} H(curl) basis

φ
i
=

N∑
j=1

dijφj 	
N∑
j=1

cijpj ; dij = δij (B1)

(δij is the Kronecker symbol). We force the projection of Eq. (B1) onto {q
i
} to be equal, i.e.,∑N

j=1 d
i
j

∫
Γ qi · φj =

∑N
j=1 c

i
j

∫
Γ qi · pj , to obtain

ci = −Ĝ−1G̃di = −3G̃di (B2)

with

G̃ij = −
∫
Γ
q
i
· φ

j
; Ĝij =

∫
Γ
q
i
· p

j
(B3)
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Ĝ is diagonal, Ĝ−1 = 3Id (Id is the identity) and the elementary matrix corresponding to the triangle
in Fig. B1 is

G̃ =
1

6s

⎛⎜⎝ |e1|2/2− e1.e2 |e1|2/2 −|e1|2/2
−|e1 − e2|2/2 (|e1|2 − |e2|2)/2 |e1 − e2|2/2

|e2|2/2 −|e2|2/2 −|e2|2/2 + e1.e2

⎞⎟⎠
(G̃ is singular). Substituting

∑N
k=1 c

i
kpk to φ

i
and

∑N
k′=1 c

j
k′pk′ to φj in the expression of LR in Eq. (3.1)

yields Eq. (27). For the curl2div transformation we have

p
i
=

N∑
j=1

cijpj 	
N∑
j=1

dijφj ; cij = δij (B4)

Again, we force the projection of Eq. (B4) onto {n× q
i
} to be equal to obtain

di = 3G̃ci (B5)

Now, LR
ij in Eq. (3.1) reads LR

ij =
∫
Γ∇t ·pi∇t ·pj = −

∑
kk′ d

i
kd

j
k′L

D
kk′ with, on account of Eq. (B5),

dik = 3G̃ki and d
j
k′ = 3G̃jk′ , and Eq. (27) is obtained.

M
3

M
2M

1

3

1

2

Figure B1. T = (M1,M2,M3): e1 = M1M2, e2 = M1M3, n = e1 × e2. Figures inside squares are the
local edge numbers.

APPENDIX C. SYSTEM (30) AND (36) HAS A UNIQUE SOLUTION IF THE SUCS
ARE SATISFIED AND Re(a0) �= 0

Let J = n×H and M = n× E be the solutions of Eq. (19) with Einc = H inc = 0 and r ∈ Γ

Et(r)/2 = −T J(r) +KM (r) ; Ht(r)/2 = TM(r) +KJ(r) (C1)

Et and Ht satisfy the IBC3, viz Eqs. (21) and (31). We look for sufficient conditions on the IBC3
coefficients that imply J =M = 0. Let T and K be the operators defined for r ∈ R

3 by

TJ(r) =
i

k
∇
∫
Γ
g(r, r′)∇′ · J(r′) dr′ + ik

∫
Γ
g(r, r′)J(r′) dr′

KM(r) =

∫
Γ
∇g(r, r′)×M(r′) dr′

(C2)

and Ê, Ĥ the fields defined for r ∈ R
3 by

Ê(r) = −TJ(r) +KM(r); Ĥ(r) = TM(r) +KJ(r) (C3)

The well-known jump identity

KtM
(
r±
)
= KM (r)∓ n×M/2; KtJ

(
r±
)
= KJ (r)∓ n× J/2 (C4)
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with r± = lim
ε→0

r ± εn(r) for r ∈ Γ, the continuity of TtJ = T J , TtM = TM on Γ and Eq. (C1) yield

Êt(r
−) = −T J +KM + n×M/2 = (Et(r) + n×M)/2

Ĥt(r
−) = +TM +KJ + n× J/2 = (Ht(r) + n× J)/2

(C5)

that, from Eqs. (21) and (31), yield

Êt(r
−) =

LJJ − (b1LD − b2LR)Et + n×M

2

Ĥt(r
−) =

n× {LJJ − (b1LD − b2LR)Et} −M

2a0

(C6)

that entails
Êt(r

−) = −a0n× Ĥ(r−) (C7)

Now, because Ê and Ĥ satisfy the source free Maxwell’s equations in the free-space domain V − inside
Γ and because of Eq. (C7),∫

V −

(∣∣∣∇× Ê
∣∣∣2 − k2

∣∣∣Ê∣∣∣2) = −ik
∫
Γ
Ê ·
(
n× Ĥ

∗)
= ika0

∫
Γ

∣∣∣n× Ĥ
∣∣∣2

that implies Êt(r
−) = Ĥt(r

−) = 0 if Re(a0) �= 0 and, because of Eqs. (C3) and (C4),

Êt

(
r+
)
= −n×M ; Ĥt

(
r+
)
= −n× J (C8)

Finally, since Ê and Ĥ satisfy the source free Maxwell’s equations in domain V + outside of Γ, the IBC3

on Γ and the Silver-Müller radiation condition, we get Ê(r) = Ĥ(r) = 0 ∀r ∈ V + if the SUCs are
satisfied, and Eq. (C8) implies J =M = 0.
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13. Soudais, P., “3D MoM computations with high order impedance boundary conditions in
some integral equation formulations,” Int. Conf. in Electromagnetics and Applications, Verona,
September 2017.

14. Bendali, A., M’B. Fares, and J. Gay, “A boundary element solution of the Leontovich problem,”
IEEE Trans. Antennas Propagat., Vol. 47, No. 10, 1597–1605, 1999.

15. Yan, S. and J. M. Jin, “Self-dual integral equations for electromagnetic scattering from IBC
objects,” IEEE Trans. Antennas Propagat., Vol. 61, No. 11, 5533–5546, 2013.

16. Li, W. D., W. Hong, H. X. Zhou, and Z. Song, “Novel Buffa-Christianssen function for improving
CFIE with impedance boundary conditions,” IEEE Trans. Antennas Propagat., Vol. 60, No. 8,
3763–3771, 2012.

17. Stupfel, B. and M. Chanaud, “High-order transmission conditions in a domain decomposition
method for the time-harmonic Maxwell’s equations in inhomogeneous media,” J. Comp. Phys.,
Vol. 372, 385–405, 2018.

18. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, 1986.

19. Stupfel, B., “Homogenization of a multilayer coating. Application to model-order reduction,” IEEE
Trans. Antennas Propagat., Vol. 69, No. 3, 1528–1534, 2021.

20. Stupfel, B. and M. Mognot, “Implementation and derivation of conformal absorbing boundary
conditions for the vector wave equation,” J. Electromag. Waves and Appl., Vol. 12, No. 12, 1653–
1677, 1998.
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