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Abstract—The research goal of low-resolution radar aircraft target classification is to analyze the
category of the given low-resolution radar aircraft target echo. In existing solutions, the feature
extraction methods based on rotating modulation spectrum have good performance, such as the complex
cepstrum method, autocorrelation method, cycle diagram method, autoregressive model power spectrum
method, and singular value decomposition method. Most of these methods are more complicated in
calculations, and practical applications often require higher pulse frequencies and longer observation
times, which are greatly restricted. In this paper, a classification method based on ensemble empirical
mode decomposition and multifractal correlation (CMEEMDMFC) is proposed. The basic design
idea is to obtain the intrinsic mode functions (IMFs) by using the signal decomposition ability of
ensemble empirical mode decomposition (EEMD) and select some components which are beneficial
for improving the signal-to-noise ratio (SNR) for recombination. Then extract the corresponding
multifractal correlation (MFC) features from the new signals for recognition. For verifying the validity
of the model, a comparison model was selected to test on the same data set. Experimental results show
that the proposed model performs well in classification accuracy.

1. INTRODUCTION

Automatic radar target recognition has always been a hot topic in the related research field. At present,
scholars have done much research on target recognition of high-resolution radar and achieved many
results [1, 2]. However, these results do not apply to low-resolution radars [3]. Therefore, the research of
low-resolution radar target recognition has practical significance and application value. Active airborne
early warning radars are mostly traditional low-resolution systems. Due to system characteristics such
as low repetition frequency, narrow system frequency band, and short target irradiation time, it has
always been difficult to classify and identify targets on them. Aircraft has always been one of the crucial
targets of low-resolution radar. The classification and recognition technologies of low-resolution radar
targets are mainly embodied in the following two aspects: the target recognition technology based on the
characteristics of the rotating modulation spectrum and the target recognition technology based on the
doppler spectrum, among which the rotating modulation spectrum features are the most common [4, 5].
Most of the existing solutions require higher pulse repetition frequency and longer observation time,
which are greatly limited in practical application [6].

In recent years, fractal has been widely used in recognition fields, such as iris recognition [7] and
texture recognition [8]. The application of fractal to aircraft target recognition is also one of the
research directions. According to [9] conventional low-resolution radar’s classification and recognition
effect can be achieved through fractals under specific experimental conditions. However, under the
background of solid clutter, the function of the fractal is greatly affected. In [10, 11], the application of
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multifractal (MF) and multifractal correlation (MFC) in aircraft target classification and recognition of
low-resolution radar under a specific simulation environment is described. Zhang et al. [12] combined
MF with the fractional Fourier transform and used fractional Fourier transform to adjust the signal
to the domain with the largest SNR for analysis, thus obtaining a better classification and recognition
effect. In [13], the fractal dimension of the signal extracted from the frequency domain is taken as the
identification feature of the modulation of radar signal pulses. The recognition effect is good when the
SNR is high, and the recognition effect is not good when the SNR is low. Chen et al. [14] extracted the
fractal dimension of the signal from the bispectral transform domain of the signal as the classification
and recognition feature. Then the classifier is used to realize the classification and recognition of the
radar signal. However under the condition of a low SNR, the recognition effect is still not good. It can be
seen that to better play the role of fractal theory, we must first improve the SNR. In this paper, we use
the signal decomposition ability of ensemble empirical mode decomposition (EEMD) to get the IMFs
and screen out the components conducive to utilizing the SNR for recombination. The second step is
feature extraction, which extracts the corresponding MFC features from the new signal for recognition.
Compared with the existing fractal algorithm, the performance of the algorithm is analyzed.

2. THEORETICAL BASIS

2.1. Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) decomposes the fluctuations and trends of different scales in the
signal step by step to form a series of data sequences with different characteristic scales [15], namely
the intrinsic mode function (IMF) EEMD is obtained by improving the EMD method [16], which solves
the defect of EMD mode aliasing by adding evenly distributed white noise several times. The algorithm
steps are as follows [17]:

(1) Let the original signal be f(t), and set the amplitude of the added white noise as a and the
overall average number of times as m.

(2) Add a white noise sequence with an amplitude coefficient of a:

fm(t) = f(t) + a · nm(t) (1)

where xm(t) is the new signal obtained after adding the m′th white noise to the original signal data,
and nm(t) is the white noise.

(3) The signal with white noise was decomposed into a series of IMFs by the EMD method. The
component of the i′th component response and the residual component is obtained.

(4) The series of IMFs obtained this time were calculated on average to get the final IMF. The
calculation formula is as follows:

IMFi =

N∑
m=1

IMFi,m

N
(2)

wherein IMFi is the i′th component finally obtained, N the number of white noise sequences, and
IMFi,m the i′th component after adding the m′th white noise processing.

2.2. Multifractal Correlation

The MF spectrum which is used to reflect the macroscopic properties of the object is obtained by
statistical analysis of the singularity intensity observed at any point on the branch set [18]. The MFC
spectrum is obtained by statistical analysis of the probability of two given singularity intensities observed
at two different D apart to reflect more information of the object [19]. MFC theory is based on MF
theory, so its theoretical reasoning is closely related.

When calculating the MF spectrum, we first define the probability distribution of measure µ in a
certain region as Pi(ε):

Pi(ε) ∝ εα (3)

Besides, the fractal dimension of the graph defined from the measuring point of view is D0:

D0 = − lnNε

ln ε
(ε → 0) (4)
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Then
Nε ∝ ε−f(α) (5)

Combined with formula (3) and formula (4), the following formula is obtained:

Pε(α) =
Nε(α)

Nε
∝ εD0−f(α) (6)

wherein f(α) is an MF singular spectrum.

Similarly, the MFC spectrum f̃ meets the following formula:

Pε(α1, α2, d) ∝ εD0−f̃(α1,α2,w) (7)

Herein, α1 and α2 are two given singularity intensities, and Pε is the probability of two given singularity
intensities observed at different positions of d apart. The formula of w is as follows:

w = ln d/ ln ε (8)

Based on the discontinuous measure generated by the random multiplication process, and according
to the inference about MFC spectrum in literature it can be obtained as follows:

f̃(α1, α2, w) =

{
wf [α(Q1 +Q2)] + (1− w) {f [α(Q1)] + f [α(Q2)]− D0} , ϕ(q1, q2) < 1

f [α(Q1)] + f [α(Q2)]−D0 − w, ϕ(q1, q2) > 1
(9)

Among them, the intermediate function:

ϕ(q1, q2) = min {ϕ(q1, q2), 1} = min {τ(q1, q2)− τ(q1)− τ(q2)−D0, 1} (10)

3. MULTIFRACTAL CORRELATION FEATURES

3.1. System Structure

The structural diagram of the aircraft classification system in this experiment is shown in Fig. 1.
The specific process is as follows:

(1) Conduct EEMD analysis on aircraft radar echo signals to obtain multiple IMFs.

(2) Select appropriate IMFs for reconstruction to get new signals.

(3) MFC analysis was carried out on the new signals, and appropriate features were selected.

(4) The feature data set is divided into the training set and test set in a ratio of 1 : 4.

(5) Do some statistical analysis of data.

3.2. Selection of IMFs

Based on the empirical values of EEMD, set the two parameters (a and m) mentioned in Section 2.1 as
0.2 and 100, respectively [20]. In this paper, radar echo data can be decomposed into ten components.
In the process of component screening, the concept of waveform entropy [21] is introduced in this paper.
For signal s, the waveform entropy is defined as:

Entropy (s) = −
N∑
i=1

pi log2 pi (11)

Therein,

Pi = |si|

/
N∑
i=1

|si| (12)

s is the signal with N values, and si is the ith value of the signal.
The waveform entropy can be used to evaluate the intensity of the waveform, and the waveform

entropy can better distinguish the IMFs decomposed by EEMD [22]. Taking certain data as an example,
the waveform entropy of each IMF obtained by EEMD decomposition is calculated, and the normalized
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Figure 1. Schematic diagram of the aircraft classification system structure.

waveform entropy is 0.26, 1, 0.83, 0.53, 0.53, 0.44, 0.23, 0.35, 0.08, 0.16, respectively. In [23], the
authors select the appropriate threshold value for selecting IMFs and get a good result. The method
chosen in this paper is the same as described above, and the appropriate threshold value is selected for
reconstruction. In the simulation experiment, the threshold values in different ranges were repeatedly
set for solving. We observed that classification recognition effect was the best when the threshold value
was in the interval [0.22, 0.85]. The signal was reconstructed according to the following IMFs (IMF3,
IMF5, IMF4, IMF6, IMF8, IMF1, and IMF7).

3.3. Feature Selection

Feature selection has always been a difficulty in customizing features. In this paper, after combining
with relevant literature, the following features are predetermined as classification features [24]:

(1) Spectral barycenter

S0 =

∫∫
σ′ ∣∣f(σ′, σ′′, w)

∣∣2 dσ′dσ′′∫∫ ∣∣f(σ′, σ′′, w)
∣∣2 dσ′dσ′′

(13)

Since the MFC spectrum is symmetric concerning the plane σ′ = σ′′, the integral in the above
expression can also be obtained to σ′, and the result is the same. The points (σ′, σ′′) describe the
distributed barycenter of the MFC spectrum in the plane of σ′ = σ′′.

(2) The maximum singularity index of the MFC spectrum

σ′
max = max(σ′) (14)

(3) The minimum singularity index of the MFC spectrum

σ′
min = min(σ′) (15)

(4) Spectral correlation width
σ′
width = σ′

max − σ′
min (16)
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(5) MFC spectrum distribution width ratio

Rf =
∆σLY
∆σRY

(17)

In the formula,

∆σLY = f (σ0, σ0, w)− f
(
σ′
min, σ

′
min, w

)
(18)

∆σRY = f (σ0, σ0, w)− f
(
σ′
max, σ

′
max, w

)
(19)

(6) MFC spectral asymmetry index

Rσ =
∆σL −∆σR
∆σL +∆σR

(20)

In the above formula,

∆σL = σ0 − σmin (21)

∆σR = σmax − σ0 (22)

wherein σ is the singularity index corresponding to the maximum value of the MFC spectrum. σmin is
the minimum value of the singularity exponent. σmax is the maximum of the singularity exponent.

From the slice of the MFC spectrum on the plane, we can see the method to obtain the feature, as
shown in Fig. 2.

Figure 2. Slice of f (σ′, σ′′, w) in the σ′ = σ′′ plane.

Figure 2 shows the slice of the MFC spectrum of a specific aircraft signal in the σ′ = σ′′ plane. In
the figure, we indicate the essential data needed to calculate the above six features, among which the
critical data are (σmin, f (σmin, σmin, w)), (σmax, f (σmax, σmax, w)) and (σ0, max(f(σ′, σ′′, w))). From
the figure, we can see the characteristics of the signal from the distribution of σ and f (σ′, σ′′, w).

3.4. Validity of Features

According to the six features defined above, we give the probability density distribution curve of echo
MFC spectrum feature description parameters under the flight attitude of the back station.
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As shown in Fig. 3, it is not easy to distinguish the three types of aircraft based on anyone feature.
Figs. 3(a), (b), (d), (e), and (f) can easily distinguish the sixth type of aircraft targets. The figure
most likely to distinguish between category four and category five is Fig. 3(c). Intuitively, although
many MFC features overlap within a specific range, it is still possible to obtain better performance by
comprehensively utilizing these features.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Probability density distribution curves of three MFC characteristic parameters. (a) Spectral
barycenter. (b) The maximum singularity index. (c) The minimum singularity index. (d) Spectral
correlation width. (e) Distribution width ratio. (f) Asymmetric index.
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According to the purpose of classification, choosing the most stable characteristics of the
classification object as the basis, and the basis of classification is the key to ensure the stability of the
resulting classification results. It can be found that not all can effectively classify target characteristics.
After a series of screening, we believe that using the maximum singularity index of MFC spectrum, the
minimum singularity index of the MFC spectrum associated with MFC spectrum distribution width
ratio can be obtained with the best effect. The following figures show the scatter distribution of three
features at two angles.

Figure 4 shows the scatter distribution of these three MFC features. From perspective 1, it can be
seen that the fifth and sixth classes are challenging to distinguish. However, from perspective 2, it can
be found that there is still an obvious dividing line between the fifth class and sixth class.Therefore,
aircraft targets can be classified effectively based on these three MFC features.

(a) (b)

Figure 4. Scattering distribution of MFC spectrum characteristics under the flight attitude of the back
station. (a) Perspective 1. (b) Perspective 2.

4. EXPERIMENT AND ANALYSIS

4.1. Experimental Data and Evaluation Indexes

The experimental data are the measured radar echo data of prominent civil aircraft, small civil aircraft
and fighter aircraft. The first three types of data are aircraft flying towards the station, and the last
three types of data are aircraft flying at the back station. The experimental data set consists of 7680
groups. Table 1 presents the statistical information of training and test samples, in which the order of
training and test sets is randomly scrambled.

Table 1. Statistical information of training set and test set.

Experiments Classes Total sample Training set Test set

Towards the radar station

The first class 1280 1024 256

The second class 1280 1024 256

The third class 1280 1024 256

Off the radar station

The fourth class 1280 1024 256

The fifth class 1280 1024 256

The sixth class 1280 1024 256
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There are four indicators in the classification task, namely: true positive (TP), false positive (FP),
false negative (FN), and true negative (TN) [25].

(1) The probability that P (Precision) is a positive sample among all the predicted positive samples
which is expressed as follows:

P =
TP

TP + FP
(23)

(2) ACC (Accuracy) can measure the prediction accuracy of the classifier and is expressed in
Eq. (24):

ACC =
TP + TN

TP + FP + FN + TN
(24)

(3) ROC (receiver operating characteristic) curve can reflect the comprehensive index of sensitivity
and specificity continuous variables [26]. Each point on the ROC curve reflects the sensitivity to the
same signal stimulus. The horizontal and vertical coordinates of the ROC curve are FPR and TPR,
respectively:

TPR = TP/(TP + FN) (25)

FPR = FP/(FP + TN) (26)

In addition, AUC (Area Under Curve) is defined as the area enclosed by the ROC Curve and the
coordinate axis [27], which can be used to judge the ability of a classifier to identify samples at a certain
threshold. The closer the AUC is to 1.0, the higher the authenticity of the detection method is.

4.2. Comparison Model

To evaluate the performance of the experimental method in this paper, tests will be conducted on the
above data set and compared with the following methods:

(1) The classification method is based on multifractal (CMMF). From the perspective of MF,
Liu and Zhang calculated the MF spectrum and realized the classification of rock mass quality [28].

(2) The classification method is based on EEMD and multifractal (CMEEMDMF). Hu et al. used
EEMD to denoise radar echoes and then combined with MF to recognize civil aircraft and fighter
aircraft [29].

(3) The classification method is based on multifractal correlation (CMMFC). Guan et al. introduced
the MFC theory to analyze the characteristics of sea clutter time series and detect weak targets in the
background of sea clutter [19].

(4) The classification method is based on fractional Fourier transform and multifractal correlation
(CMFRFTMFC). Zhang and Li adjusted the signal-to-noise ratio of radar echo signals to the maximum
by using fractional-order Fourier transform and classified aircraft echoes in this domain using the MFC
theory [30].

4.3. Comparative Analysis of Experimental Results

Table 2 and Table 3 present the classification accuracy results based on ensemble empirical mode
decomposition and multifractal correlation (CMEEMDMFC) and correlation comparison model on the
unified data set. For the feature extraction process of various methods, the features in the original
paper are preferred, and some features are modified according to the corresponding knowledge at the
necessary time to optimize the practical effect. In the final classification, the support vector machine is
used as the classification method. In Table 2 and Table 3, each row represents the prediction accuracy
of each category under the corresponding model experiment conditions, and the item with the highest
score in each row is marked in bold to indicate the best performance.

As shown in Table 1 and Table 2, for the first three types of aircraft, the accuracy and AUC of
CMEEMDMFC are higher than or close to other algorithms, and it can obtain better classification
performance. For the fourth class aircraft, the accuracy after CMEEMDMFC treatment is lower than
that of CMEEMDMF, but the AUC is higher than or close to that of other algorithms. The accuracy
and AUC of CMEEMDMFC are higher than or close to other algorithms for the fifth class aircraft.
For the sixth class aircraft, the accuracy of CMEEMDMFC is slightly lower than that of CMMF and
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Table 2. Classification accuracy of aircraft flying towards station attitude of each model.

CMMF CMEEMDMF CMMFC CMEEMDMFC CMFRFTMFC

Pone 91.41% 98.44% 86.72% 98.44% 94.92%

Ptwo 96.48% 88.67% 91.80% 97.27% 97.66%

Pthree 88.67% 90.63% 96.48% 97.40% 92.19%

ACC 92.18% 92.58% 91.67% 96.88% 94.92%

AUCone 0.97 1.00 0.97 1.00 0.99

AUCtwo 0.99 0.98 0.98 0.99 1.00

AUCthree 0.96 0.98 0.98 1.00 0.98

Table 3. Classification accuracy of aircraft flying off station attitude of each model.

CMMF CMEEMDMF CMMFC CMEEMDMFC CMFRFTMFC

Pfour 91.41% 97.27% 83.98% 94.14% 95.31%

Pfive 82.03% 89.45% 95.31% 99.22% 91.02%

Psix 99.22% 87.50% 99.22% 97.66% 92.58%

ACC 90.89% 91.41% 89.32% 97.01% 92.97%

AUCfour 0.97 0.99 0.96 0.99 0.98

AUCfive 0.97 0.97 0.97 1.00 0.98

AUCsix 1.00 0.98 1.00 1.00 0.98

CMEEMDMF. The AUC of CMEEMDMFC is higher than or close to that of other algorithms. For
CMEEMDMFC, ACC was around 97% for both attitude flight conditions. The ACC of other methods
was around 92%. In general, the CMEEMDMFC model proposed in this paper is superior to the relevant
models in the two groups of experiments. The results obtained in the two groups of experiments are
close to the optimal model. The results show that the CMEEMDMFC model can effectively handle the
aircraft classification task.

EEMD can decompose signals. In this paper, the waveform entropy is used to screen noise and
improve the SNR of aircraft echo, which is helpful for aircraft classification. As can be seen from the first,
third, fifth, and sixth classes, EEMD certainly works. Nevertheless for the second class and the sixth
class EEMD is counterproductive. Therefore, this paper believes that there is a better screening method
than waveform entropy, making all kinds of aircraft more easily identified. It is generally accepted that
the results of MFC-based methods are better than MF-based methods. The MF spectrum is determined
by statistical analysis of the singularity index on the support points of the fractal geometry observed.
The MFC spectrum improves the single-point statistical feature of the MF spectrum into a two-point
statistical feature. Therefore, it can better describe the physical structure difference of different types
of aircraft targets. However, according to the experimental results, the accuracy of the first, second,
fourth, and sixth classes, the MF is higher than or equal to MFC, possibly because noise has a more
significant impact on the multi-fractal correlation characteristics.

Compared with CMEEMDMFC and CMFRFTMFC, both methods are experiments based on
improving the SNR. However, CMEEMDMFC achieves its goal by removing the corresponding noise,
while CMFRFTMFC achieves its goal by changing the performance of signals in different frequency
domains. Whether from the experimental results or the theoretical perspective, it can be shown that
the effect of CMEEMDMFC is better than or equal to CMFRFTMFC. However, when the model
performance is judged in terms of time-consuming, the approach in this paper is not satisfactory.
EEMD is a long process. MFC is also a time-consuming process. The experiment in this paper, takes
about 3.6646 seconds to carry out EEMD for a set of data, about 6.5554 seconds to calculate MFC,
and about 0.7230 seconds to search for the optimal phase fractional Fourier transform. The algorithm
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in this paper is a model that takes the most time, which is also its shortcoming.
The confusion matrices obtained by the CMEEMDMFC experimental method are shown in Table 4

and Table 5.

Table 4. CMEEMDMFC confusion matrix for flying towards station attitude experiment.

Class one Class two Class three

Class one 252 4 0

Class two 0 249 7

Class three 0 9 247

Table 5. CMEEMDMFC confusion matrix for flying off station attitude experiment.

Class four Class five Class six

Class four 241 8 7

Class five 2 254 0

Class six 6 0 250

Finally, it must be mentioned that the EEMD parameter values used in this article are all suggested
values given by the original author and are not necessarily suitable for this data set. If more appropriate
parameters than the current experiment are selected, more accurate conclusions may be obtained. This
paper also uses empirical values to screen the waveform entropy threshold. Better experimental results
may be obtained if a more appropriate threshold is used. The features selected in this article are
generally used and understood by the public. If the features are more profound than currently defined,
the results may be better.

5. CONCLUSION

In this paper, an aircraft target classification and recognition model is proposed based on EEMD and
MFC. By introducing EEMD and defining new features, this model can effectively improve the accuracy
of aircraft target classification. The experimental results show that the classification algorithm can
improve the SNR with the help of EEMD and help to highlight the characteristics of MFC; MFC
characteristics can further emphasize that by selecting appropriate IMF recombination and waveform
entropy threshold; the custom features can effectively express the characteristics of MFC, and then
achieve feature extraction of aircraft targets. The experimental results show that the performance of
the proposed model based on EEMDMFC on this data set is not entirely better than other current
models, but the overall performance is better than the existing related work.

This article takes a long time to set thresholds and customize features. To reduce the consumption
of time and improve the robustness of the model, in future work, we will focus on how depth research
in the field of study can be incorporated into the current model. The features of fractal analysis are
further extracted by deep learning to improve classification accuracy.
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