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Eight Shape Electromagnetic Band Gap Structure for Bandwidth
Improvement of Wearable Antenna

Vidya R. Keshwani1, Pramod P. Bhavarthe2, and Surendra S. Rathod1, *

Abstract—In this paper, a rectangular eight shaped Electromagnetic Band Gap (EBG) structure at
5.8GHz Industrial, Scientific and Medical (ISM) band for wearable application is proposed with intent
to improve the impedance bandwidth of antenna. The unit cell of an EBG structure is formed using
eight shape on outer ring with inner square patches. The simulation of the eight shape EBG unit cell is
carried out using eigen mode solution of Ansys High Frequency Structure Simulator (HFSS). Simulated
results are validated by experimental results. The application of proposed EBG for an inverse E-shape
monopole antenna at 5.8GHz is also demonstrated. Band stop property of EBG structure reduces
surface waves, and therefore, the back lobe of a wearable antenna is reduced. The frequency detuning
of antenna takes place due to high losses in human body. Suitably designed EBG structure reduces
this undesirable effect and also improves front to back ratio. The proposed compact antenna with
designed EBG has observed the impedance bandwidth of 5.60GHz to 6.15GHz which covers 5.8GHz
ISM band. Evaluation of antenna performance under bending condition and on-body condition is carried
out. Effectiveness of EBG array structure for Specific Absorption Rate (SAR) reduction on three layer
body model is demonstrated by simulations. Calculated values of SAR for tissue in 1 g and 10 g are
both less than the limitations. In conclusion, it is appropriate to use the proposed antenna in wearable
applications.

1. INTRODUCTION

A wearable antenna is an antenna that is specially designed to function while being worn on the body.
These antennas can be integrated into clothing. Wearable antennas for in and on Body Area Networks
(BAN) are designed by textile materials. It can communicate with other antennas on body surface
or with an external antenna. These antennas are used in Wireless Body Area Networks (WBAN) for
applications like health care, military, sports, etc. [1]. Due to such a wide application scope, in recent
past new antenna topologies for wearable application including multiband, compact and wide band
antennas have been rapidly evolving.

The general performance requirements for wearable antennas are low mutual influence between
antenna and human body for high antenna efficiency, low SAR, small size, low profile, and Improved
bandwidth [2]. Large bandwidth of textile antennas is needed as it makes them less sensitive to
detuning arising from the adverse environmental influences. There are many methods to increase the
bandwidth of textile antennas. SAR is a parameter used to evaluate power absorption in human tissue.
Electromagnetic power absorbed by the body may pose potential health risks. Hence, the evaluation
of SAR is also an important consideration in wearable antenna design. SAR should be well below
standard acceptable limit. Many organizations including IEEE, ICNIRP, FCC have recommended limits
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on radiation emitted by these devices to protect public from overexposure to EM fields. According to
the guidelines by FCC and ICNIRP, the SAR must be less than 2W/kg averaged over 10 g and less
than 1.6W/kg averaged over 1 g of human tissue [3–5].

Some approaches that can be applied to improve the bandwidth as reported by various authors
are briefly described below. Limitations and advantages of these approaches have to be considered
in textile antenna designs: Increasing the substrate thickness of antenna increases its bandwidth.
However, thick substrate configuration increases profile of the antenna. Low dielectric constant of textile
material increases antenna bandwidth and reduces losses due to surface wave. However, this lowers
radiation efficiency. Bandwidth can be improved by introducing parasitic elements. Feed networks
in coplanar/stacked configuration are used. However, the feed network makes the antenna structure
complicated and increases its size [6] Incorporation of slots in an antenna also improves its bandwidth.
This approach also maintains a single-layer radiating structure to preserve the antenna’s thin profile
characteristic [7]. However, with this method, consistent broadside gain radiation patterns cannot
be obtained throughout the matching bandwidth. Another limitation is that in order to maintain
acceptable F/B ratio, a larger size ground plane has to be used. The ground plane makes a shield
for human body, so the radiation does not transmit towards human body. It affects matching due to
coupling. A high front to back ratio of radiation is desired to reduce this coupling. However, a large size
ground plane results in the increase of the size which makes the design uncomfortable to the user. The
presence of full ground plane results in a resonant semi-open cavity which narrows antenna bandwidth.
Bandwidth can be improved by suitably designed EBG/AMC based antenna [8]. With uniplanar EBG
increased bandwidth can be obtained in addition to adequate surface wave suppression [9].

Periodic arrangements of conductors and dielectric materials are commonly used to implement EBG
structures. A properly designed EBG structure for an antenna provides many other advantages. The
surface wave band gap property of EBG helps to increase gain, minimize backward wave radiation, and
reduce SAR in human tissues. EBG surface limits the propagation of surface waves within a particular
frequency band. Surface waves reduce the gain and efficiency of an antenna. EBG acts as an LC circuit
and blocks propagation of surface waves, thus decreasing the level of undesired radiation towards the
human body. Any EM wave in the stopband area is known to be reflected back by EBG structures.
EBG plays a role of ground plane due to its in-phase reflection property.

When the antenna moves closer to human body, all the antenna parameters like resonant frequency,
radiation pattern, bandwidth, and efficiency may change radically. Thus, it is difficult to miniaturize a
wearable antenna while maintaining its high performance. When an antenna is used, it may be stretched
and crumpled, causing deformation hence degrading its performance. In recent past, EBG/AMC based
antenna designs have been reported to have better performance than other designs. An artificial
magnetic structure (AMC) in combination with EBG is known to eliminate frequency detuning effect
and thus improve radiator performance. Change in resonance frequency of antenna is termed as its
frequency detuning. It is caused by bending (structural deformation), operation in close proximity
of human body tissue, and moisture effects [10]. As human body has very high dielectric constant
and wearable antenna is close to it, antenna frequency detunes [3]. EM coupling of human body to
wearable antenna needs to be studied to asses the value of antenna frequency detuning. Reduction
of EM coupling to human body should be studied as it may influence antenna performance frequency
detuning and radiation degradation [11]. The EBG structure reduces SAR value, and it is widely used
in wearable antenna design [12].

In recent years, several EBG structures have been investigated and reported for wearable textile
antennas. Uniplanar compact and mushroom EBGs are the most common types of EBG configurations
identified in the literature. Uniplanar compact EBG is most ideal for wearable applications due to
no vias, low cost, compatibility with planar circuit technology, etc. In literature related to the design
of EBG structures for wearable textile antenna the objective of robust, compact, low profile antenna
design is accomplished by various methods [1, 3, 4, 13, 14]. In [1], a dual band coplanar patch antenna
integrated with double concentric square EBG is designed. EBG unit cell patch size is 0.327λc1, and it
operates at 2.45GHz and 5GHz where λc1 is the antenna operating frequency. This design reduces the
radiations into the body as reported by authors. A fractal based dual band antenna integrated with a
square slotted EBG with a unit cell size of 0.30λc1 for wearable application is reported [3]. The antenna
is backed with a 3× 3 array of dimensions 150mm× 150mm. This design resulted into SAR reduction
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and enhanced Front to Back Ratio (FBR). A dual band textile antenna loaded with artificial magnetic
conductor plane of size 100mm×100mm is proposed in [13] for wireless application. It is realized using
flexible textile material, but vias affect the comfortness. A 3 × 3 rectangular ring shape array of unit
cell size 0.216λc1 of dimensions 81mm× 81mm is designed, and equivalent circuit model of EBG unit
cells were investigated [14]. A compact wearable textile antenna using denim material integrated with
2 × 2 EBG array with unit cell size of 0.1λc1 and overall dimension of 46mm × 46mm at 2.4GHz for
medical application [4] is investigated. However, these structures are too thick for Medical Body Area
Network (MBAN) applications [1, 3, 13–17]. In [18, 19], authors use semi-flexible materials for wearable
application. However, they are not sufficiently deformable and are uncomfortable for users, or suffer
from low FBR [19–24]. A different approach in [25] uses a single-band multilayer wearable antenna
EBG structure thus improving bandwidth. However, the fabrication of such a structure is complicated.

Most EBG designs reported in [1, 3, 13, 17–19, 21–24, 26, 27] have narrow bandwidth causing
frequency shifts that are sensitive in the vicinity of the human body and during deformation [28].
In most of the reported literature, overall antenna size is large due to large periodic size of EBG
structure. Reduction of textile antenna size is a challenge. This reduction has been attempted in this
work as an original contribution. Apart from this, when textile antenna is used in wearable application,
frequency detuning may take place due to human body loading and structure deformation effect. Larger
antenna bandwidth is required to make it less sensitive to frequency detuning. In this work, bandwidth
enhancement compared to reported wearable textile antennas [26, 29–31] is attempted.

Considering the above issues and requirements in this work, the design and analysis of a planar
EBG structure with improved bandwidth is carried out. Section 2 presents a proposed EBG, its design
and simulation results for refection phase, equivalent circuits, dispersion diagram, etc. Simulated
transmission coefficient response using suspended microstrip line (SML) method is compared with
measured results. Section 3 presents requirements of antenna from design perspective. Simulated and
experimental results for reflection coefficient and radiation pattern for antenna with EBG are examined.
The antenna integrated with designed EBG structure, reflection coefficient comparison (simulated and
measured), and effect of antenna bending are described. In Section 4, simulations to asses the effect of
EBG on SAR values using three layer body model are briefly described. The comparison of proposed
structure with reported structures at 5.8GHz is tabulated in terms of volume, bandwidth, and SAR
values. Section 5 mentions conclusions drawn from this work.

2. PROPOSED EBG DESIGN, REFLECTION PHASE AND DISPERSION DIAGRAM

In this section, an EBG structure is modeled using Ansys HFSS simulation software which is useful for
simulations of antenna structures. Useful outcomes from these simulations are reflection phase plot for
assumed EBG unit cell dimensions.

2.1. EBG Unit Cell, Equivalent Circuit Model and Simulation Results

Dimensions of the EBG unit cell considered are shown in Figure 1. The operating frequency of 5.8GHz
is usually used in wireless local area network (WLAN) communication and wireless body area network
(WBAN) [1, 32]. The choice of various dimensions in an EBG unit cell helps to achieve desired reflection
phase at specified frequency. This EBG is to be used along with antenna at operating frequency, hence
various dimensions of EBG are chosen accordingly. Here, a is the width of the outer slot, b the gap
between inner square patch and outer slot, c the width of inner square patch, w the width of outer patch,
u the length of outer patch, x the substrate width, and y the length of the substrate. Substrate material
selected is denim. Parameters for the proposed EBG are taken as substrate dielectric constant ϵr = 1.7,
loss tangent = 0.02, substrate height h = 0.7mm, height of inner square patch and outer slot = 0.17mm,
w = 7mm, u = 14mm, a = 1mm, b = 1mm, c = 3mm, x = 8mm, and y = 15mm. The choice of these
dimensions helped to achieve the specified/desired operating frequency as per equations in [33]. In order
to implement EBG as a 2 × 2 array, 4 EBG unit cells are placed as shown in Figure 1. Here, g is the
gap between two EBG cells. EBG unit cells are also analyzed using equivalent circuit model [14, 33–35].
Such a model gives equivalent L and C of a cell from which operating frequency may be determined.
An approach similar to the one adapted in [36] was applied to the EBG unit cell shown in Figure 1.
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(a) (b) (c) (d)

Figure 1. Evolution of EBG array, (a) EBG substrate, (b) outer patch, (c) inner patches, (d) 2 × 2
EBG array.

(a) (b)

Figure 2. Equivalent circuit of EBG unit cell in (a) X direction, (b) Y direction.
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Figure 3. Simulated reflection phase response of proposed EBG unit cell.

The equivalent circuit obtained for EBG unit cell in X direction and Y direction is shown in Figure 2.
Here, Ck, Cb are capacitance formed due to slots. Ch is the coupling capacitance between patch and
substrate. La is the inductance due to outer slot while Lc is the inductance due to inner patch. From
various dimensions of EBG structure, inductance and capacitance are calculated. Using Equations (1)
and (2). Here, w is the width of each EBG patch.

L = µ0h (1)

C =
wϵ0(ϵr + 1)

π
cosh−1 2w + g

g
(2)

EBG structure is analyzed in X polarization and Y polarization by two master/slave boundaries on
the sides of unit cell. By deembedding the wave port impedance up to the top of cell, the phase of the
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Figure 4. Dispersion diagram of the proposed EBG structure.

Figure 5. Simulation result of surface current distribution on EBG cell.

reflection coefficient is obtained. Figure 3 shows simulation result for reflection phase. It is observed
from the figure that the proposed EBG structure reflects a normally incident wave with a 0 degree
phase at frequencies shown in Figure 3. It shows perfect magnetic conductor (PMC) like characteristics
whereas PMC characteristic is not observed in nature. EBG surface reflection phase varies from −180
degrees to +180 degrees with increasing frequency. Frequency region between +90 degrees and −90
degrees coincides with EBG.

The verification of a band gap property of a proposed EBG unit cell is carried out by the simulation
of unit cell in Ansys HFSS [37]. The dispersion analysis of EBG unit cell is carried out with a rectangular
symmetry (irreducible) Brillouin zone plot as shown in Figure 4. From the dispersion diagram shown
in this figure, the band gap of 5.9–6.7GHz in X direction and that of 5.64–6.3GHz in Y direction are
observed between mode 1 and mode 2 of the proposed EBG unit cell.

Figure 5 shows the surface current distribution obtained by simulations. It has been done on
the metal layer of a unit cell from the EBG structure with a perpendicular incident electromagnetic
wave. The incident wave frequency is 5.8GHz, which is also the frequency point of zero reflection phase
of the incident wave. It is observed from the figure that the surface current mainly concentrates on
the outer slot. The distribution turns out to be symmetric about the vertical line across the central
point. The current reaches the minimum at centers of upper side edge, middle edge, and down side
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edges, and reaches the maximum at both centers of the left and right edges which forms the resonance
characteristic of the first zero-phase point. The induced current also reaches maximum on both the
inner square patches of EBG.

2.2. EBG Array, Simulation and Measured Results

From the EBG unit cell shown in Figure 1, a 5 × 5 array is formed. This array along with SML is
simulated along Y direction [38]. Simulated S21 parameters are shown in Figure 6. In an SML structure,
when current is supplied to the input transmission line, it performs charging and discharging of the
current in the L and C components (Figure 2) from input transmission line till output transmission
line. Within certain frequency range, where the LC circuit of the EBG has resonance, the current
is looped regularly in the LC part of EBG structure and is suppressed from propagating [39]. Thus,
transmission lines over EBG structures perform the band stop filter [3] operation. For frequencies within
the band gap region, this structure blocks power transmitted along the strip line. This arrangement
may be used to test transmission response of EM waves. SML with the entire EBG acts as a band reject
filter at 5.94GHz. Here, frequency range with attenuation losses of less than −10 dB is considered as the
band gap. A 5× 5 EBG array is made from copper tape (with dimensions as used in simulations) and
is placed on a denim material with overall dimensions of 62× 97× 0.7mm3. Photographs of fabricated
EBG with SML mounted in Y direction are shown in Figure 6. The distance between microstrip line
and EBG surface is 1mm with 0.2mm air gap. Transmission coefficient S21 is measured by VNA. VNA
used was Agilent technologies model no N9923A which can be used up to RF frequencies of 6GHz. The
measured S21 is found in close agreement with the simulated value.
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Figure 6. Comparison of simulated and measured EBG characteristics based on SML method.

3. APPLICATION OF PROPOSED EBG TO INVERSE E-SHAPE MONOPOLE
ANTENNA

3.1. Inverse E-Shape Monopole Antenna Design

As mentioned in [40] a textile inverse E shaped microstrip monopole antenna is chosen to satisfy above
mentioned desired features. However, this design needs to be modified for operating frequency of
5.8GHz. As antenna is to be used in wearable application, a textile material needs to be used for
substrate. Conducting material used is copper tape. The proposed textile inverse E shaped microstrip
monopole antenna used has operating frequency of 5.8GHz. The substrate used has length (L1): 30mm,
width (w1): 20mm, material: denim, relative permittivity: ϵr = 1.7, loss tangent: tan(δ) = 0.02,
thickness (h) = 0.8mm. The width of a 50 ohm microstrip feed line is 2.6mm. Conducting sheet used
is a copper tape with the thickness of 0.17mm and conductivity of 5.8× 107 S/m. Other parameters of
inverse E shape microstrip monopole antenna are radiator patch length of 19.2mm, radiator patch width
of 12.2mm, and ground plane length of 17.6mm. With these specifications, the antenna is designed in
Ansys HFSS. The model may be seen in Figure 7.

Figure 8 shows simulated and measured reflection coefficients of the fabricated antenna in free
space. They are found in close agreement. S11 is found to be −14.39 dB at 5.87GHz. The band range
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Figure 7. Inverse E-shaped monopole antenna configuration.
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Figure 8. Comparison of simulated and measured S11 of antenna.

of the antenna is from 5.80GHz to 6.05GHz with bandwidth of 250MHz. Simulated radiation patterns
of the antenna in Y -Z plane (E-plane) and X-Z plane (H-plane) at the frequency of 5.94GHz are
shown in Figure 11. It is also observed that omnidirectional pattern in H plane and bidirectional in E
plane are exhibited by the antenna. The radiation pattern in the E-plane exhibits maximum radiation
in Z-direction whereas null appears in Y -direction.

3.2. Antenna with EBG

The antenna and EBG structure proposed above are placed together as shown in Figure 9. A 1-mm air
gap spacing S1 is used in model. The simulated radiation patterns of the antenna in E and H planes
with and without EBG are as shown in Figure 11. As seen in the figure, the unidirectional radiation
patterns appear in both E and H planes. It is also observed that backward radiation decreases thus
improving FBR by 20 dB. Figure 11 also shows experimentally measured radiation patterns in E and H
planes obtained using the setup shown in Figure 10. The measured results are found in close agreement
with simulated ones. The simulated reflection coefficient of the antenna with EBG in free space is as
shown in Figure 12. The band range of the antenna with EBG is from 5.60GHz to 6.15GHz with
the bandwidth of 550MHz. Thus, it is concluded that the EBG structure enhances bandwidth from
250MHz to 550MHz. Figure 13 shows the comparison of simulated and measured reflection coefficients
of the antenna with EBG. They are found in close agreement. The difference may be attributed to
unavoidable errors in manual fabrication and assembly procedure for antenna and EBG.
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Figure 9. Inverse E-shape monopole antenna
with EBG.

Figure 10. Experimental set up for radiation
pattern measurement of antenna with EBG.
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Figure 11. Simulated and measured radiation patterns of antenna in (a) E plane and (b) H plane.

3.3. Effect of Antenna Bending

To analyze the effect of bending experimentally, three foam cylinders with varying diameters were
fabricated as shown in Figure 14. Diameters of the cylinder were 80mm, 100mm, and 120mm which
correspond to approximate human arm and leg diameters. The comparisons of measured reflection
coefficient characteristics of antenna with EBG in free space with those on cylinders of different bending
diameters in X and Y directions are shown in Figure 15. It is observed from Figure 15 that although
the diameter of foam cylinder is varied, resonance frequency and operating frequency band are slightly
shifted. The frequency of operation is sustained, and reflection coefficient S11 still maintains the
bandwidth under bending condition.



Progress In Electromagnetics Research C, Vol. 116, 2021 45

-10

0

Frequency (GHz)

S
  
  
(d

B
)

1
1

-20

4 4.5 5 5.5 6 6.5

without EBG

with EBG

Figure 12. Comparison of simulated results of reflection coefficient of antenna with and without EBG.
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Figure 14. Fabricated foam cylinders of various diameters.
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4. ANALYSIS OF SAR WITH PROPOSED EBG AND ANTENNA

When human body is exposed to EM field, a measure of energy absorption rate by a human body is
termed as SAR [3]. The SAR level in human body due to antenna with and without EBG structure
needs to be analyzed at design stage. This ensures that regulatory safety limits are obeyed. To analyze
the SAR level in human body due to wearable antenna without and with EBG structure, a three layer
human rectangular body model is used. It consists of three layers representing skin, fat, and muscle.
Properties and dimensions of various layers are as mentioned in Table 1 [41]. The input power applied to
the antenna to calculate SAR is selected as 1W (rms). The separation of antenna with EBG from skin
in model is assumed as 1mm. The calculation of SAR is based on the IEEE C95.1 standard prototype
provided in Ansys HFSS. SAR values computed on three layer body model with only antenna are shown
in Figure 16(a). It is computed to be in range of 0 to 25W/Kg. Figure 16(b) shows computed SAR
values in body model when the antenna along with EBG is incorporated. Table 2 shows the comparison
of SAR values of the antenna with and without EBG structure over 1 g and 10 g tissue. It is observed
that averaged values are lower for the antenna with EBG structure than those without EBG, thus
showing the effectiveness of EBG. SAR values of the antenna with EBG structure obey the required
limits as mentioned in various standards. Great disparity of SAR values between the case of only
antenna and case of antenna with EBG has strongly proved that the adoption of an EBG structure has
the effect of reducing the SAR values drastically. The antenna with EBG was tested in free space and
on body for S11. Comparison is shown in Figure 17. Results are found in close agreement. Table 3
shows the comparison of proposed EBG structure with those reported in literature at 5.8GHz. The
comparison is carried out in terms of volume, bandwidth, and SAR values. It is concluded from Table 3
that the antenna integrated with proposed EBG structure has small volume compared to other reported
structures. Bandwidth improvement has been obtained as compared to those reported in [26, 29–31].

Table 1. Properties of various layers in multilayer human model.

Layer Thickness mm ϵr Conductivity σ (S/m) Density kg/m3

Skin 2 35 3.8 1001

Fat 5 4.95 0.3 900

Muscle 20 48.4 5.12 1006

Table 2. SAR values with and without EBG.

Averaged value SAR without EBG (W/kg) SAR with EBG (W/kg)

1 g 25 0.6

10 g 10.12 0.056

Table 3. Comparison of proposed structure with exiting structures at 5.8GHz.

Ref. Volume (mm3) Bandwidth (%) SAR (W/kg)

[29] 0.77λ0 × 0.77λ0 × 0.135λ0 6.35 0.1 (1 g), 0.271 (10 g)

[30] 1.45λ0 × 1.45λ0 × 0.019λ0 3.96 NA

[26] π × (0.97λ0)
2 × 0.05λ0 8.10 0.312 (1 g), 1.21 (10 g)

[31] 0.79λ0 × 0.92λ0 × 0.019λ0 4.83 1.5 (1 g), NA

P.W. 1.19λ0 × 1.77λ0 × 0.04λ0 9.48 0.6 (1 g), 0.056 (10 g)
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(a) (b)

Figure 16. Simulated SAR values in three layer body model without EBG and with EBG, (a) without
EBG, (b) with EBG.
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Figure 17. Comparison of measured reflection coefficient of antenna with EBG in free space and on
body.

5. CONCLUSION

Design, analysis, simulations, and important experimental measurement of a rectangular eight shaped
EBG structure has been attempted in this work. Antenna design at 5.8GHz has been carried out in
HFSS, and the proposed EBG structure is integrated with it. Experimental measurements related to
antenna with and without EBG have been found in close agreement with designed values. Measured
S11 shows that the antenna with EBG has good impedance matching at 5.8GHz in the ISM band.
Designed EBG with antenna has smaller volume and wider bandwidth than those already reported in
literature. Besides, bending analysis and on-body measurements have been done, and it is observed
that results are stable. The antenna has been placed on a three layer body model, and SAR values
have been studied without and with an EBG structure. SAR in body model with the proposed EBG
structure is acceptable as per international standards. Hence, the proposed EBG structure forms a
suitable candidate for wearable applications.
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