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Slots and Complementary Split Ring Resonators Loaded
Miniaturized Microstrip Antenna (S-CSRR-MHMSA)

with Reduced Cross Polarization

Uday A. Patil1, * and Anandrao B. Kakade2

Abstract—Cross polarization (X-pol) effect is the undesired radiation of an antenna which wastes
bandwidth(BW) and power of the communication system. Especially in the miniaturized microstrip
antenna (MSA) the X-pol level is more. The observed X-pol level of the classical MSA at the direction
of maximum radiation (ϕ = 0◦) is −49.72 dB, whereas X-pol level of miniaturized H shaped MSA
(MHMSA) is −39.96 dB. This paper presents miniaturized complementary split ring resonators loaded H
shaped microstrip antenna (CSRR-MHMSA) and slots and CSRRs loaded MHMSA (S-CSRR-MHMSA)
with reduced X-pol level. An array of CSRRs and slots are placed at the ground of the proposed
antenna. Due to slots, the antenna is miniaturized and the polarizability of the electric field along the
desired direction is increased by CSRRs. The CP-XP (Co-pol X-pol) isolation of CSRR-MHMSA and
S-CSRR-MHMSA at ϕ = 0◦ are measured. The measured E plane CP-XP isolation for CSRR-MHMSA
and S-CSRR-MHMSA is 29.00 dB and 26.73 dB, respectively. The measured CP-XP H plane isolation
for CSRR-MHMSA and S-CSRR-MHMSA is 27.00 dB and 24.5 dB, respectively. While maintaining
bandwidth (BW), gain G and radiation efficiency η are improved.

1. INTRODUCTION

Wireless communication system requires compact and handy devices for power saving. This gives
rise to the use of miniaturized microstrip patch antenna. It is a popular choice due to its ease of
design and conformability. However, it suffers from low gain, low bandwidth (BW), poor efficiency,
and a significant level of X-pol. The coaxial feed and microstrip line feed microstrip patch antennas
are inherently asymmetrical in structure, so they operate in multiple modes. Antennas operating in
multimode suffer from the effect of cross-polarization. In wireless communication system especially in
mobile handset low gain and narrow BW are acceptable. However, X-pol should be below the minimum
acceptable level for power saving.

There are three definitions of cross-polarization (X-pol) in the literature [1, 2]. They are:

(i) In a Cartesian coordinate system, one unit vector is taken as the Co-pol direction and one unit
vector as the X-pol direction.

(ii) In a spherical coordinate system, one unit vector is taken as the Co-pol direction, and one unit
vector is in the X-pol direction. Both orthogonal unit vectors are tangent to the spherical surface.

(iii) Co-pol and X-pol define what is measured when patterns are taken in the usual way.

According to IEEE standards, X-pol is defined as “The polarization orthogonal to the Co-polarization”.
However, there is no unanimously accepted definition of X-pol and Co-pol. One of the definitions can
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be used to measure the X-pol and Co-pol of an antenna. For the proposed work, a second definition of
Co-pol and X-pol has been adopted for antenna radiation pattern measurement.

A number of feeding methods for minimizing cross-polarization have been proposed in the literature.
An aperture coupled feed microstrip patch antenna reduces the cross-polarization effect [3, 4]. However,
it has a narrow bandwidth. The structure of this feeding technique is complex and generally cannot be
used in miniaturized devices. The corner feed technique for microstrip array is useful for reduction of
X-pol level [5]. Using this technique −35 dB X-pol level is achieved. Chin et al. [6] have proposed a
broad band antenna with low X-pol. The folded plate pair as a differential feeding scheme is applied to
the patch antenna for reduction of X-pol level. A meander line ring cavity structure is introduced by
Chen et al. [7] for the reduction of X-pol from −14.2 dB to −26.1 dB. Defected ground structure (DGS)
is another method for X-pol reduction. Kumar et al. [8] have achieved CP-XP isolation better than
30 dB.

In addition to the above methods, a metamaterial inspired structure can also be used for the
reduction of X-pol level. Split ring resonator is one of the versatile structures that can be used to
get desired Co-pol and to reduce X-pol levels [9]. Manikandan and Jawahar proposed an array of
microstrip antennas with a pure axial ratio [10]. Axial ratio purity is obtained by reducing X-pol, which
is achieved by placing split ring resonators between adjacent microstrip antennas. In the proposed
work, metamaterial inspired complementary split ring resonators and an array of slots are used to
reduce the X-pol of the miniaturized microstrip patch antenna. In Section-2, a miniaturized H shaped
microstrip patch antenna (MHMSA) is discussed. In Section-3 and Section-4, the design of CSRR-
MHMSA and S-CSRR-MHMSA is discussed. In Section-5 and Section-6, results and conclusion are
discussed respectively.

2. DESIGN OF MHMSA

Initially, a microstrip line fed MSA has been designed at a frequency of 2.4GHz using the transmission
line model. The top view of the MSA is shown in Fig. 1(a). The substrate material selected for MSA
design is fiber glass FR4 with dielectric constant εr = 4.4, loss tangent tan δ = 0.001, and substrate
height h = 1.6mm. The problem of impedance mismatch is minimized using a quarter wave transformer

(a) (b)

(c)

Figure 1. Antenna top view. (a) MSA. (b) MHMSA, CSRR-MHMSA, S-CSRR-MHMSA. (c) Fringing
electrical field distribution on MHMSA patch.
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(QWT). Dimensions of the MSA are Wsub = 66mm, Lsub = 127mm, L = 29.07mm, W = 37.57mm,
WML = 3mm, LQWT = 17.749mm, and WQWT = 0.723mm. Then the slot-loading MSA technique is
used to reduce the size by increasing the path length of the surface current. The path length of the
surface current has been increased by cutting the rectangular slot equally at both non-radiating edges,
as shown in Fig. 1(b). Dimensions of the rectangular slot are ls = 20mm and ws = 5mm. The shape of
the miniaturized MSA is ‘H’, so it is called a miniaturized H-shaped MSA (MHMSA). The resonance
frequency of the MHMSA for given dimensions is calculated using Eq. (1).

f =
c

2(Le + 2ws)
(1)

where ws is the width of the slot cut, Le the effective length of the MSA, and c the phase velocity of
the wave. The problem found in the miniaturized slotted MSA for a TM01 mode of operation is the
increased X-pol effect [11, 12]. The fringing field distribution along the periphery of the MHMSA is as
shown in Fig. 1(c).

3. DESIGN OF CSRR-MHMSA

From Fig. 1(c), it is observed that undesired fringing electric field Ex is oriented along x-axis causing
an increased X-pol effect. This problem is minimized by increasing the polarizability of the fringing
electric field at both radiating edges along y-axis. As shown in Fig. 2(a), the polarizability of electric
and magnetic fields is increased by using CSRR arrays placed at the ground below radiating edges of
the patch.

3.1. Design of CSRR

Fig. 2(a) shows the structure of CSRR. As discussed above, the CSRR increases both electric and
magnetic polarizabilities at the resonance frequency. The resonance frequency of the CSRR is given by
Eq. (2) [13],

f0 =
2

2πlCpulL
(2)

where l is the average length (perimeter) of the resonator, Cpul per unit length capacitance, and L is
the inductance of the resonator. CSRR is available in circular and rectangular shapes, but to obtain
the polarization of the electric field in y-direction, rectangular CSRR is selected. CSRRs are located on
ground plane at distance d = 0.64mm from the radiating edges of patch. CSRRs are excited by fringing
electric field, where d ≤ ∆L = h/

√
εr. Perimeter of the CSRR is less than λ/2. Under this assumption,

the current at region B (gap) is maximum, whereas the current is minimum at region A (opposite to the
gap). So the electric field is maximum at region B and directed along y axis. In region C of CSRR, lines

(a) (b)

Figure 2. Complementary split ring resonator (CSRR) and single slot. (a) Electrical field distribution
on CSRR. (b) Single slot of S-CSRR-MHMSA.
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of the electric field are opposite to each other and hence cancel. For single edge segment of rectangular
CSRR, the polarizability in y-direction is given by Eq. (3),

py = αee
yyE

0
y + αem

yz B
0
z (3)

where py is the electric dipole along y axis, E0
y the electric field along y axis, and αee

yy the polarizability
constant which depends on y directed electric field. Also, CSRR exhibits some non-resonant electric
polarizability in y and z directions. The electric dipole generated at non-resonant frequencies due to
magnetic field B0

z and polarizability αem
yz are neglected at the resonance frequency.

4. DESIGN OF SLOTS AND CSRR LOADED MHMSA (S-CSRR-MHMSA)

Due to the conductor dielectric boundary condition, electric fields at non-radiating edges of the MHMSA
are oriented along x-direction as shown in Fig. 1(c). This increases the cross-polarization effect of the
miniaturized antenna. The undesired electric field in the x-direction is suppressed by cutting an array
of slots at both non-radiating edges, as shown in Fig. 3(b). This slot array is perpendicular to the non-
radiating edges. As shown in Fig. 2(b), the length of each slot in the array is in between λ/10 < lsl < λ/2,
and width wsl is less than λ/10 so that maximum electric field in y-direction is obtained at center of
the slot. Slots in an array are excited by the fringing field. This develops magnetic surface current M̄
in slots along the x-axis and is given by Eq. (4).

M̄ = Eyāy × āz = Eyāx (4)

The slot length lsl = 6mm and slot width wsl = 1mm are selected for this design, where electric field
Ey = E0 cos(πx/lsl). The slot array placed in the ground also helps to increase the inductance by
increasing the length of the current path. So, the inductance of the parallel RLC resonant antenna
circuit model is increased, and the resonant frequency of the circuit model is decreased. Thus, the
microstrip antenna is further miniaturized [12, 14, 15].

(a) (b)

Figure 3. Antenna bottom view. (a) CSRR-MHMSA. (b) S-CSRR-MHMSA.

5. RESULTS AND DISCUSSIONS

In this section, results of MSA and MHMSA are compared. Further MHMSA is compared with CSRR-
MHMSA and S-CSRR-MHMSA. All antennas are simulated using ANSYS HFSS. These antennas
are fabricated and tested using VNA ZVL13 make R & Sr in Antenna and Wave Propagation
lab, Rajarambapu Institute of Technology, Sakharale, Sangli, Maharashtra, India. Fig. 4 shows the
photographs of fabricated antennas. The radiation pattern measurement has been carried out in open
space by ensuring that there is no reflection from other objects. A photograph depicting experimental
setup for |S11| measurement and VSWR measurement is shown in Fig. 5.
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(a) (b)

(c) (d)

Figure 4. Fabricated antennas. (a) MHMSA, CSRR-MHMSA, S-CSRR-MHMSA top view. (b)
MHMSA bottom view. (c) CSRR-MHMSA bottom view. (d) S-CSRR-MHMSA bottom view.

Figure 5. Experimental setup. Setup for |S11| plot, VSWR and Z measurement.

5.1. Comparison of MSA and MHMSA

Simulated frequency versus |S11| graph is shown in Fig. 6. The MSA is operating at 2.375GHz, whereas
MHMSA is operating at 2.13GHz. Comparison of MSA and MHMSA with respect to simulated antenna
parameters such as resonant frequency fr, antenna length L, percentage miniaturization (% Mini.),
reflection coefficient |S11|, voltage standing wave ratio VSWR and X-pol are shown in Table 1. The
frequency of MHMSA is shifted to left. Thus, the size of the MHMSA is reduced by 12%. From Fig. 7(a)
it is clear that though the size of MHMSA is reduced, the X-pol level of the MHMSA is increased as
compared to the X-pol level of MSA. The X-pol of MHMSA and MSA at direction of maximum radiation
(ϕ = 00) is −39.96 dB and −49.72 dB, respectively. The X-pol level of the miniaturized MHMSA is
increased by 9.76 dB, which is significantly large.
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Figure 6. Simulated and Measured |S11| plots.

Table 1. Antenna comparison with respect to simulated-resonance frequency fr, antenna length L,
reflection coefficient S11, percentage miniaturization% Mini., VSWR and X-pol.

Antenna fr [GHz] L % Mini S11 [dB] VSWR X-Pol [dB]

MSA 2.375 λ/2 0 −17.438 1.35 −49.72

MHMSA 2.13 λ/2.29 12 −26.40 1.10 −39.96

CSRR-MHMSA 2.13 λ/2.29 12 −29.28 1.07 −55.40

S-CSRR-MHMSA 2.04 λ/2.32 15 −22.9130 1.15 −44.97

Table 2. Antenna comparison with respect to simulated and measured directivity D, gain G, and %η.

Antenna D[dB] G[dB] %η

Sim. Meas. Sim. Meas. Sim. Meas.

MHMSA 4.44 4.44 3.99 3.40 89.83 78.70

CSRR-MHMSA 4.46 4.63 4.06 3.70 91.03 80.72

S-CSRR-MHMSA 4.33 4.40 3.96 4.00 91.46 91.20

5.2. Comparison of MHMSA, CSRR-MHMSA, S-CSRR-MHMSA

The X-pol levels of MHMSA, CSRR-MHMSA, and S-CSRR-MHMSA are compared in Fig. 7(b). The X-
pol level of the CSRR-MHMSA is −55.40 dB. The X-pol level of the S-CSRR-MHMSA is comparatively
greater than that of the CSRR-MHMSA, because S-CSRR-MHMSA is miniaturized by 15%. The
antenna comparison with respect to percentage miniaturization is illustrated in Table 1. The X-pol
level of the S-CSRR-MHMSA is −44.97 dB, which is still less than that of the MHMSA. Simulated and
measured directivitiesD, gains G, and percentage radiation efficiencies %η are compared in Table 2. It is
observed that X-Pol is decreased without degradation of directivity D, radiation efficiency η, and gain G
of CSRR-MHMSA and S-CSRR-MHMSA. Fig. 8 shows simulated and measured frequencies versus |S11|
for MHMSA, CSRR-MHMSA, and S-CSRR-MHMSA, whereas Fig. 9 shows simulated and measured
frequencies versus VSWR for MHMSA, CSRR-MHMSA, and S-CSRR-MHMSA. A good agreement
between simulated and measured results is observed. Simulated and Measured BWs, |S11|, and VSWRs
of these antennas are shown in Table 3. Low VSWR and |S11| at operating frequency indicate that
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Figure 7. Simulated E plane X-pol [dB]. (a) MSA and MHMSA. (b) MHMSA, CSRR-MHMSA and
S-CSRR-MHMSA.

these modified antennas do not have the problem of impedance mismatch, even though the ground
is defected by cutting slots and CSRR placement. In Table 4, the CP-XP isolations in E-plane and
H-plane of proposed antennas are compared. The CP-XP isolation in dB is calculated by subtracting
X-pol level [dB] from Co-pol level [dB] at an angle of maximum radiations (ϕ = 0◦). Simulated and
measured CP-XP isolations of the CSRR-MHMSA and S-CSRR-MHMSA are greater than that of the
MHMSA. The CP-XP isolation for CSRR-MHMSA and S-CSRR-MHMSA is above the acceptable level
of 20 dB. The array of slots and CSRR at the ground increase the polarizability of the electric field Ey

in y-direction, and therefore CP-XP isolation level is increased.

Table 3. Simulated and Measured fr, BW, S11, and VSWR of MHMSA, CSRR-MHMSA and S-CSRR-
MHMSA.

Antenna fr [GHz] BW [MHz] S11 [dB] VSWR

Sim. Meas. Sim. Meas. Sim. Meas. Sim. Meas.

MHMSA 2.13 2.13 40.4 40 −26.40 −20.23 1.10 1.18

CSRR-MHMSA 2.13 2.13 42.5 35 −29.28 −14.37 1.07 1.147

S-CSRR-MHMSA 2.04 2.04 39 40 −22.91 −20.36 1.15 1.126

Table 4. Simulated and measured Zin and CP-XP isolation of MHMSA, CSRR-MHMSA and S-CSRR-
MHMSA.

Antenna Zin [Ω] CP-XP isolation [dB]

E-Plane H-Plane

Sim. Meas. Sim. Meas. Sim. Meas.

MHMSA 51.85+j4.51 57.86+j4.038 39.96 21.7 44.96 23

CSRR-MHMSA 52.47+j2.5 71.97+j7.98 55.40 29 55.40 27

S-CSRR-MHMSA 52.11+j7.01 52.93+ j8.99 44.97 26.73 45.97 24.5
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Figure 8. Simulated and measured |S11| plots. (a) MHMSA |S11| plot. (b) CSRR-MHMSA |S11| plot.
(c) S-CSRR-MHMSA |S11| plot.

5.2.1. Normalized Radiation Pattern

The two antenna method is used to draw the normalized radiation patterns of the proposed antennas.
The half wavelength dipole antenna of gain 2.1 dB as a reference antenna is connected at the generator
port (port 1), while the antenna under test (AUT) is connected to port 2 of the VNA. At the desired
frequency, the forward transmission coefficient S21 dBm is measured in the E plane by rotating AUT
about z-axis from ϕ = 0◦ to 360◦ with step angle 5◦. Both E plane Co-polarization (Co-pol) and
Cross-polarization (X-pol) levels are measured. The setup for the E plane Co-pol and X-pol pattern
measurement is shown in Fig. 10. The measured S21 is normalized and compared with the simulated
normalized E plane field pattern. The polar plots of the normalized radiation E-plane and H-plane
field patterns in dB scale are shown in Fig. 11 and Fig. 12, respectively. The radiation patterns for
CSRR-MHMSA and S-CSRR-MHMSA are stable, which means that the shapes of radiation patterns of
these antennas are same as that of the MHMSA. Simulated and Measured normalized levels of CP-XP
isolation for MHMSA, CSRR-MHMSA, and S-CSRR-MHMSA are given in Table 4.
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Figure 9. Simulated and measured VSWR plots. (a) MHMSA VSWR plot. (b) CSRR-MHMSA
VSWR plot. (c) S-CSRR-MHMSA VSWR plot.
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E plane Co-Pol

E plane X-Pol

Figure 10. Setup prototype for measurement of E plane Co-pol and X-pol.
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Figure 11. Simulated and measured normalized E plane radiation field pattern [dB]. (a) MHMSA,
fr = 2.13GHz. (b) CSRR-MHMSA, fr = 2.13GHz. (c) S-CSRR-MHMSA, fr = 2.04GHz.
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Figure 12. Simulated and measured normalized H plane radiation field pattern [dB]. (a) MHMSA,
fr = 2.13GHz. (b) CSRR-MHMSA, fr = 2.13GHz. (c) S-CSRR-MHMSA, fr = 2.04GHz.

6. CONCLUSION

From observations, it has been concluded that the X-pol level of the miniature MHMSA is increased by
9.76 dB compared to the conventional MSA. To reduce the X-pol level, conductor-dielectric boundary
condition (electric field is always normal to the conductor boundary) is used. Therefore, CSRRs and
slots are designed and positioned in such a way that the lines of the electric field are oriented in desired
direction (y-direction) due to increased polarizability. Compared to MHMSA, the measured X-pol levels
of CSRR-MHMSA and S-CSRR-MHMSA are decreased by 7.3 dB and 5.04 dB, respectively. Miniature
MHMSA, CSRR-MHMSA, and miniaturized S-CSRR-MHMSA have been designed, fabricated, and
tested. A comparative study of these antennas has been carried out with respect to measured and
simulated |S11|, BWs, VSWRs, impedances, and normalized radiation patterns. The measured CP-
XP isolation levels of the CSRR-MHMSA and S-CSRR-MHMSA in E-plane are 29 dB and 26.73 dB,
respectively, and in H-plane are 27 dB and 24.5 dB, respectively, which are above the acceptable level
of 20 dB. Good agreement between measured and simulated results has been observed.
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