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On the Role of Time-Frequency Analysis for Joint DOD-DOA
Estimation for Bistatic MIMO Radars
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Abstract—RAdio Detection And Ranging (RADAR) is an essential tool used extensively to detect
a target’s presence within the vicinity characterized by the range of the RADAR. In order to localize
the target, Direction of Departure (DOD) and Direction of Arrival (DOA) estimations are utilized. To
make it more convenient, a bistatic multiple input multiple output (MIMO) configuration is exploited
to deduce the position of a target through the triangulation method easily. Furthermore, due to the
maneuvering of targets in space, more robust direction finding solutions can be derived using time-
frequency (TF) representations. Thus, this paper aims to leverage the benefits of TF analysis to the
estimation of DOD and DOA jointly for a bistatic MIMO radar by using Spatial Time-Frequency
Distribution (STFD) matrices. The performance of the considered method is numerically evaluated
through root mean square error (RMSE) and is compared against the conventional algorithms that do
not use TF tools and as well compared against the Ćramer Rao Lower Bound (CRLB). The results show
that TF based approach may be a promising candidate in terms of its robustness against channel noise.
Also, the performance of the TF based DOD-DOA estimates is studied in terms of their consistency
and resolvability of targets which measures the performance in a multi-target environment. Finally, the
use-case of TF based estimation to solve the problem in the presence of coherent targets is analysed
through simulations and inferred.

1. INTRODUCTION

Radars form a vital communication tool today, especially in military applications for detecting the
presence of a target in space. In addition to its detection, its localisation is more beneficial. [1] gives
an insight into the aforementioned application by exploiting the techniques of DOD-DOA estimations
from target returns used in array signal processing scenarios. In doing so, the application of multistatic
radars such as bistatic radars (which have non-collocated transmitters and receivers) were mandated
in place of monostatic radars. Accordingly, the transmitting and receiving nodes of the radar are
individually configured as an antenna array, rendering the picture of a multiple-input multiple-output
(MIMO) model. For instance, when the radar transmitters and receivers are modelled as electromagnetic
vector sensors (EVSs), the work in [2] presents a solution for localization of mixed targets. Also, in this
context, the work in [3] presents an approach for angle estimation for arbitrary array manifolds. But the
limitation of the work lies in the convergence of iterative solution as they mention. Alternatively, one
can adopt subspace based direction finding techniques such as multiple signal classification (MUSIC)
and estimation of signal parameters via rotational invariance technique (ESPRIT) as per literature
in [4]. The work of Zheng and Chen [5] brings an algorithm by computing DOD and DOA jointly in
a multi-target environment by using 2-D ESPRIT. The significance of estimating them jointly is to
perform an automatic pairing between the DOD and DOA of a specific target. Marching on similar
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lines, Chen et al. [6] have worked on another solution by applying singular value decomposition (SVD) to
the cross correlation matrix obtained from signals received at two sub-arrays used in ESPRIT method.
They claim it to be a good approach to attack spatially coloured noise scenarios. On the other hand,
the work of Xie et al. in [7] demonstrates MUSIC’s application to perform direction estimations for
a bistatic MIMO radar in a joint fashion. Thus to include diversity of techniques for solving the
problem, yet making the algorithm optimally inexpensive, a combined ESPRIT and MUSIC for DOD
and DOA estimations, respectively, is adopted herein. In fact, although MUSIC incurs slightly heavy
computations, it is superior to ESPRIT as it attains the Ćramer Rao Lower Bound (CRLB) and hence
is efficient. It is clear that since all of the existing work as reported here employ subspace methods,
their performances at low signal to noise ratios (SNRs) tend to become inconsistent. On the other hand,
different approaches can be adopted to solve the considered problem using Time-Reversal (TR) based
processing as in [8–10], to overcome this shortcoming. However, a better real picture of the modelling
itself can be developed if the maneuvering nature of targets is included [11]. In such scenarios, by
virtue of the Doppler effect’s play, target returns tend to become more non-stationary, exhibiting a
time-varying spectral content. Exploiting this framework of non-stationary target returns, a more novel
method, and robust insight was rendered by Khan et al. [12] and Zhang et al. [13], by introducing the
Time-Frequency tool for solving this direction finding problem.

The scope of this paper is to understand the role of time-frequency representations for joint DOD-
DOA estimations for bistatic MIMO radar. The primary contributions of this paper are enlisted as
follows. We intend to set up a framework that incorporates TF representations in a bistatic MIMO
radar model and subsequently solve the direction estimation problems. We show that the considered
approach is highly robust against noise and renders consistent estimates compared to its covariance
matrix based counterpart, specially at low SNRs. Further, we study the resolution power of the TF-
based algorithm and show that almost accurate pairing of DOD and DOA is established even at low
SNRs. This is particularly interesting because, in a multi-target environment, rendering an incorrect
DOD-DOA estimation can create a havoc! For example, this situation is highly intolerable in military
applications. Finally, we extend the setting to a much realistic scenario by considering coherent targets.
It will be justified that the approach with TF-based estimation virtually does smoothing over the target
returns (due to the inherent construction of STFD matrix via averaging) and hence renders acceptable
performance with coherent targets with larger probability. Additional insights on the superiority of this
paper over conventional methods are elaborately indicated in Section 4 of this paper. Also, we consider
the underlying channel noise as spatially white, for otherwise we can employ a pre-whitening filter using
techniques like Cholesky decomposition of data STFD matrix and turn coloured noise into white. Up
to the knowledge of authors, there is no work that exists in literature that has analysed the TF based
direction estimation for the considered application, as much as we present in this paper.

This paper is organized as: Section 2 introduces the signal model of the Bistatic MIMO radar.
Section 3 describes the theory of time-frequency analysis, its relevance in direction finding solutions and
organizes the overall algorithm along with notes on computational complexities and CRLB expressions.
Section 4 presents numerical results with discussions, and Section 5 marks the concluding remarks of
this paper.

The notations and symbols used in this paper are as follows: All bold-uppercase letters and bold-
lowercase letters denote matrices, e.g., A, and vectors, e.g., x; a∗ denotes the complex conjugate of a;
AH denotes the hermitian transpose of the matrix A; A−1 and A† denote the proper inverse and Moore-
Penrose pseudo-inverse of the matrix A, ⊗, ¯ and ∗ denote the matrix Kronecker, Hadamard (element-
wise product), and Khatri-Rao products, respectively; diag(A) and diag(a) denote that column vector
formed by diagonal elements of matrix A and diagonal matrix formed by diagonal values as elements
of vector a respectively; length(y) and length(Y) represent the number of elements in vector y and
the number of columns in matrix Y, respectively; E[·] denotes the statistical expectation of a random
variable sampled from a random process; IM denotes an identity matrix of order M; λ denotes the
wavelength of the incoming signal; ‖ · ‖ denotes the l2 norm; and b·c denotes the floor function. Finally,
Re(·) takes the real part of (·); ∂(·)

∂x /d(·)
dx take the partial/full derivative w.r.t x; and x ∼ CN (a,B)

denotes that x is a circular symmetric complex Gaussian random vector with mean a and covariance
matrix B.



Progress In Electromagnetics Research C, Vol. 114, 2021 235

2. BISTATIC MIMO RADAR — SIGNAL MODEL

The geometrical setup of a bistatic MIMO radar is portrayed in Figure 1 with the DOD and DOA for kth

target. As shown in the figure, let the transmitter and receiver be modeled as NT -element uniform linear
array (ULA) and NR-element ULA, respectively. We assume that the knowledge of source enumeration
is known a priori through target detections or similar techniques†. In fact, source enumeration of non-
stationary targets itself can be a separate problem. Let there be P number of targets present in far-field
distant space, each exhibiting constant oscillatory motion about a mean position. Further, both the
transmitting and receiving arrays are assumed to have uniform inter-elemental distances, d.

Figure 1. Bistatic MIMO Radar setup.

Also, each target is characterized by its reflection coefficient. However, owing to the assumption
made on the target to be in motion, the reflection coefficient is also assumed to vary in time because
of the play of doppler effect. From the foregoing analysis, it is clear that the reflected signals possess a
time varying spectral characteristic which encourages a time-frequency processing of these signals at the
receiving array. Let the reflection coefficient of lth target at time t be modelled as γl(t) = ρl(t)ej2πfd,l(t)t

where ρ denotes the magnitude of reflection coefficient (which describes the radar cross-section), and
fd(t) denotes the instantaneous doppler shift frequency at time t. Recollect the fact that, in radar
processing problems, series of pulses are transmitted once in every fixed interval, called as Pulse
Repetition Period (PRP). So, there are two types of variables defined in the domain of time, namely
the PRP and the sampling time of the pulses, which exists within the pulse. Hence for the sake of
distinction, as per [13], let the former be termed as the slow time domain indexes t and the latter as
fast time domain indexes, t

T , where T is the number of samples in a pulse. Hence, for every t units of
time, T snapshots are received.

Thus, the complex baseband received signal matrix X(t) ∈ CNR×T for a collection of T snapshots
at time t, at the receive array can be written as:

X(t) = ArΓ(t)At
HS + N(t) (1)

where At ∈ CNT×P and Ar ∈ CNR×P are the complex transmitting and receiving array steering
matrices, respectively. If the transmitting and receiving array steering vectors, denoted by at(θ) and
ar(φ), are given by:

at(θ) =
[
1, e−jω

dsin(θ)
c , . . . . . . , e−j(NT−1)ω

dsin(θ)
c

]T
(2)

† However, one naive approach for source enumeration is to count the dominant eigen values of STFD matrix after estimating noise
variance and hence estimate the number of sources. More efficient techniques can be included as in [22]. However, this approach may
not work when targets are coherent. In such cases, a more generalized and relevant approach is solved in [23].
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and
ar(φ) =

[
1, e−jω

dsin(φ)
c , . . . . . . , e−j(NR−1)ω

dsin(φ)
c

]T
, (3)

it can be written that At = [at(θ1), at(θ2), . . . ,at(θP )] and Ar = [ar(φ1), ar(φ2), . . . ,ar(φP )].
Further S ∈ CNT×T is an orthogonal matrix (SSH = I), representing the emission of T narrow band
snapshots from NT antennas. Finally, Γ(t) ∈ CP×P represents a complex diagonal matrix with elements
as the individual targets’ reflection coefficient at time t and is given by:

Γ(t) = diag(γ(t))

where γ(t) = [γ1(t), γ2(t), . . . , γP (t)]T . Subsequently, as in conventional radar detection, the received
signal is passed through a matched filter. This operation is accomplished by post multiplying Eq. (1)
by SH on both sides. By noticing SSH = I, the resultant equation turns out to be:

Y(t) = ArΓ(t)At
H + Z(t) (4)

where Y(t) = X(t)SH ∈ CNR×NT and Z(t) is the filtered noise. Vectorizing this obtained equation by
stacking all the column vectors one below the other,

y(t) = w(t) + z(t) = Aγ(t) + z(t) (5)

where z(t) ∼ CN (0, INRNT
) is the additive white Gaussian noise (AWGN), and A ∈ CNT NR×P is the

effective steering matrix and can be proved to be given by:

A = At ∗Ar = [at,1 ⊗ ar,1,at,2 ⊗ ar,2, . . . ,at,P ⊗ ar,P ] (6)

Here, at and ar are consistent with the definitions made earlier. It can be noted that, in Eq. (5), y can
be treated like a virtual snapshot for the virtual ULA with M , NT NR elements [5, 13].

3. TIME-FREQUENCY REPRESENTATIONS AND APPLICATION IN DOD-DOA
ESTIMATIONS

3.1. Time-Frequency Representations

Time-Frequency (TF) representations is a very popular tool used in the regime of non-stationary
signal processing. In this analysis, the spectral characteristics are studied repeatedly at different
distinct instants of time. An elementary procedural technique of such kind includes short-time Fourier
transforms. Although it is an effective tool for conceptualizing non-stationarity, it is a linear transform.
To improve the signal concentration while estimating the spectral components at the time instant of
interest, higher order TF representations are sought [14]. In doing so, the work done by Cohen [15]
gives a general representation of higher order TF Distributions (TFD). In this paper, we use a quadratic
— TFD, namely Wigner-Ville Distributions (WVD). More formally, the Cohen’s class of auto-term
quadratic TF Distributions (TFD) of a discrete signal x(t) is given by:

Dxx(t, f) =
u=∞∑

u=−∞

τ=∞∑
τ=−∞

g(u, τ)x(t + u + τ)x∗(t + u− τ)e−j4πfτ (7)

where g(u, τ) is a kernel function that decides the type of distribution considered. For WVD,
g(u, τ) = δ(u)w(τ) where w(τ) is a window function (e.g., rectangular window). Thus, WVD is
computed by:

Dxx(t, f) =
τ=∞∑

τ=−∞
x(t + τ)x∗(t− τ)e−j4πfτ (8)

From the above expression it can be inferred that the term inside the summation is essentially the
evaluation of auto-correlation of x(t) but for the summation of values over the entire range of time.
Instead, an outer summation is performed over the entire range of τ ∈ (−∞,+∞) representing
different time lags. Hence, this correlation which is not summed over the entire running time index
t, rather summed up w.r.t τ , is a measure of localized correlation value at time instant t. This is
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the local auto correlation defined around the neighbourhood region around t of radius τ and given
as: R(t, τ) = x(t + τ)x∗(t − τ). Further, a more feasible term called Pseudo-WVD (PWVD) is rather
constructed consisting of finite H samples only. Thus the expression for computing PWVD boils down
to:

Dxx(t, f) =
τ=(H−1

2
)∑

τ=−(H−1
2

)

x(t + τ)x∗(t− τ)e−j4πfτ (9)

Alternatively, WVD (PWVD) is a way of visualizing how the Power Spectral density (PSD) (or energy
spectral density for deterministic energy signals) varies with time. Similarly one can define WVD
between two different signals. Eq. (9) deals with TFD for a single-channel signal, and an extension of it
can be made for a multi-channel signal. In such a case, application of Eq. (9) turns out to be a square
matrix, referred to as Spatial Time-Frequency Distribution (STFD) Matrix. Thus, we have,

Dxx(t, f) =
τ=(H−1

2
)∑

τ=−(H−1
2

)

x(t + τ)xH(t− τ)e−j4πfτ (10)

It should be noted that the construction of these matrices over appropriate (t, f) points would prove
to be beneficial by enhancing the SNR of the signal [17]. For instance, if the chirp signal of frequency
f1 arrives at the receiver sensor in time neighborhood of t = t1, then Dxx(t1, f1) would prove to be
beneficial in capturing the information of this chirp’s signature effectively. Reference [16] very clearly
lists down the merits of the application of STFD matrices, and an important artifact that arises out
of Eq. (10) is the generation of cross-terms, which describes the interaction of inter-channel signals.
Since such cross terms lead to misinterpretation of actual signals’ behavior, smoothing method such
as averaging the STFD matrices is carried out, which proves to diminish the cross terms due to their
oscillatory nature [13, 14].

3.2. Joint DOD-DOA Estimation Using TF-Analysis

This subsection deals with the application of STFDs in direction finding problems in radar applications.
Before proceeding any further, an intuition behind the proof of applicability of STFDs in direction
finding is discussed. By employing Eq. (5) in Eq. (10), it can be found that,

Dyy(t, f) = ADγγ(t, f)AH + ADγz(t, f) + Dzγ(t, f)AH + Dzz(t, f). (11)

In the above expression, the first term in RHS represents the contribution from target returns, while
second and third terms denote the interaction between the target returns and noise. The last term
is the auto-term of noise vector. It should be recalled that the STFD matrix has to be constructed
only in those (t, f) points which lie in the target returns’ Doppler signature following an instantaneous
frequency (IF) law. Under the assumptions that signal and noise vectors are independent with noise
being modeled as a zero-mean white vector, it can be deduced from Eq. (11) that,

E[Dyy(t, f)] = ADγγ(t, f)AH + σ2
nINT NR

. (12)

It should be simultaneously observed that if Eq. (5) is used for constructing the auto-correlation matrix
instead of an STFD matrix, a similar equation can be obtained as:

Ryy = ARγγAH + σ2
nINT NR

(13)

Thus, Eqs. (12) and (13) look very similar, and hence, it can be inferred that STFD matrix and auto-
correlation matrix are equivalent in a statistical sense.

As a consequence, subspace spanned by the principle eigenvectors of Dyy over the selected and
relevant (t, f) points will be the same as the space spanned by those column vectors of A whose
corresponding target returns were identified in the same selected (t, f) points. Thus, it can be concluded
that time-frequency representations by means of an STFD operator is very useful for direction finding
problems with in fact added advantages as discussed in [17]. Formally, delving into the algorithm, a
joint estimation of DOD and DOA is sketched using combined ESPRIT and MUSIC, respectively. In
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Figure 2. virtual sub-array configuration for TF-ESPRIT.

fact, a time-frequency based ESPRIT is foremostly performed to estimate the DOD of targets followed
by which DOAs of targets are estimated using time-frequency MUSIC with the estimated DOD of the
corresponding target as input. Hence, an automatic pairing between the DOD and DOA is established.

Thus, for a case of P target returns over the selected region of (t, f) points, ESPRIT is performed
by partitioning the virtual ULA into two sub-arrays. Taking insights from [17], let the sub-array setup
be configured as shown in Figure 2, i.e., while first (NT − 1)NR antennas constitute the 1st sub-array-
with steering matrix, A1 , A′

t ∗Ar; the last (NT − 1)NR antennas constitute the 2nd sub-array-with
steering matrix, A2 , A′′

t ∗Ar where A′
t and A′′

t are matrices obtained by retaining first and last NT −1
rows of At respectively. Accordingly, let the final expression which governs the angle estimation via
ESPRIT be formulated as:

ΨT = TΩ (14)
with

Ψ = (US,1
HUS,1)

−1
US,1

HUS,2 (15)
and

Ω = diag({exp(−j2πd sin(θk)/λ)}k=P
k=1 ) (16)

where US,1 and US,2 are signal sub-space bases for the two sub-arrays respectively with Q being an
arbitrary linear transform. Further, since Eq. (14) instantiates the fact that non-zero elements of Ω are
the eigen values of Ψ, a further simplification can be obtained as:

ΛΨ = diag({exp(−j2πd sin(θk)/λ)}k=P
k=1 ) (17)

where ΛΨ is the diagonal matrix with elements as eigen values of Ψ.
Thus, DOD of P targets can be computed conveniently using Eq. (17). In order to compute the

DOA of P targets, the TF-MUSIC spectrum is derived for kth target (∀k ∈ {1, 2, . . . , P}) as follows.

P(φ) =
1

ar
H(φ)[at(θk)⊗ INR

]HUNUN
H [at(θk)⊗ INR

]ar(φ)
(18)

=
1

||{[at(θk)⊗ INR
]ar(φ)}HUN||2

(19)

where [at(θk) ⊗ INR
]ar(φ) = kthcol. At ∗Ar|θ=D̂OD(k)

, UN is the corresponding noise-subspace and φ

running from −π
2 to π

2 . The argument of this function, which renders a peak, is obtained as the DOA
of kth target. Thus, the overall algorithm can be formulated as shown in Algorithm 1 .

3.2.1. Computational Complexity Analysis

Following notations are additionally introduced to make the description succinct. Let the number of
frames and frame length used in computing STFD matrices be NSF and NF , respectively. Let the
precision requirement in computation of instantaneous frequency and direction estimation in the grid
search of MUSIC algorithm be PI and PDE , respectively. Table 1 gives the computational complexity
compendiously, in terms of the number of multiplications and additions to evaluate Algorithm 1 .‡

‡ This algorithm was executed on MATLAB 2020a version. Hence, the computational complexities are described according to
MATLAB documentation of certain inbuilt functions. For example, the complexity of eigen decomposition is described based on QR
iterative algorithms. We also assume trigonometric, exponential/log functions to be evaluated using AM-GM mean iterations.
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Algorithm 1: Joint DOD-DOA estimation of P targets using Time-Frequency ESPRIT &
MUSIC for bistatic MIMO Radar

Input: Array snapshots:Y = [y1, . . . ,yT]; Transmit & Receive array steering matrices: At,Ar

Output: DOD and DOA of P targets
Initialize the t− f point resolution, tf res ← 150 samples; overlapping ratio, ovlp rat ← 0.5.1

Let eff frm len = tf res × ovlp rat.2

/* Module 1: Construction of STFD matrices */

Set sample len ← b length(Y)
eff frm len c − 1.3

for i ← 1 to length(Y) in steps of eff frm len do4

l ← i to i+ tf res5

if y(l) is real then6

x ← y(l) + jỹ(l); ỹ = Hilbert transform{y}7

else8

x ← y(l)9

Compute instantaneous frequency, fi ← 1
2π

dφx

dt ; φx , phase of x.10

STFDiter(i) ←
∑k=i+0.5∗tf res

k=i−0.5∗tf res x(i− k)xH(i + k)e−j4πfik
11

ŜTFD = 1
sample len

∑sample len
i=1 STFDiter(i) ; // Averaging12

/* Module 2: Eigen Decomposition of STFD */

Perform Eigen decomposition of ŜTFD : (Λ,U).13

Select the P dominant eigen vectors to form a basis for signal sub-space, US.14

Select the rest M − P eigen vectors to form a basis for noise sub-space, UN.15

Initialize the DOD and DOA estimates : D̂OD ← [ ], D̂OA ← [ ].16

Initialize MUSIC step resolution, angleres.17

Compute the effective array steering matrix, A ← At ∗Ar, as per (6).18

/* Module 3: DOD (θ) Estimation using TF ESPRIT */
Compute the transformation matrix, Q ← A†US.19

Determine the sub-steering matrices: A1 ← A′
t ∗Ar and A2 ← A′′

t ∗Ar.20

Compute the sub-space bases: US,1 ← A′
tQ, US,2 ← A′′

tQ.21

Obtain Ψ ← US,1
†US,2.22

Compute the eigen values of Ψ as ξ1, ξ2, ξ3, . . . , ξP .23

for k ← 1 to P do24

ξk ← e−j2π
d sin θk

λ .25

D̂OD(k) ← θk = sin−1(| log(ξk)λ
−j2πd |).26

/* Module 4: DOA (φ) Estimation using TF MUSIC */
for k ← 1 to P do27

for φ ← −π
2 to π

2 in steps of angleres do28

a ← kth col. At ∗Ar

∣∣∣
θ=D̂OD(k)

= [at(θk)⊗ INR
]ar(φ).

29

Pspec(k, φ) ← 1

ar
H(φ)[at(θk)⊗INR

]HUNUN
H [at(θk)⊗INR

]ar(φ)
= 1

||{[at(θk)⊗INR
]ar(φ)}HUN||230

D̂OA(k) ← argmax
φ

Pspec(k)
31

D̂OD & D̂OA form the pairwise ordered estimations.32
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Table 1. Computational complexity.

Steps Complexity
Module 1: Construction of STFD matrix
Computation of instantaneous frequency O(N2

F PI log PI)
STFD matrix construction O(M + NSF M2 + M2)
Module 2: Eigen analysis of STFD matrix
Eigen value decomposition O(M3)
Module 3: TF-ESPRIT
Computation of A,Q O(2MP + 3MP 2)
Computation of A1, A2 O(2(M −NR)P )
Computation of US,1, US,2 O(4(M −NR)P 2)
Computation of Ψ O((M −NR)(P 2 + 2(M −NR − P )P ))
Eigen value decomposition O(P 3)
DOD estimation O(P 2

2 + P
2 )

Module 4: TF-MUSIC
Computation of UNUH

N O(2(M − P )M2)
Computation of MUSIC spectrum O(M2 + M + 2MNR)
Computation of P peaks (DOA estimation) O(4PPDE)

Thus, the overall complexity can be obtained by taking the sum of all individual complexities. We
also compare the algorithm considered in this work against conventional covariance matrix approaches in
terms of the underlying complexity of implementation. The difference lies in the module of constructing
STFD matrices over covariance matrices. While the former requires O(N2

F PI log PI +M+NSF M2+M2)
computations, the latter requires O(TM2 + M2). In practice, we have NSF < T and NF ¿ T . This is
because in order to estimate the instantaneous frequency, frame length is kept much smaller than the
total number of samples. Overall, the complexity of TF based solution can be made comparable with
that of existing conventional solutions, yet deriving numerous robustness over existing solutions as will
be shown numerically in next section.

3.2.2. Discussion of the Ćramer Rao Lower Bound (CRLB)

In this subsection, the Ćramer Rao Lower Bound (CRLB) for DOD-DOA estimates is computed, which
will be useful in the next section, to obtain a benchmark against which we evaluate the performance
of TF-based estimates. To this end, using Eq.‘(B.6.32) of Appendix B in [18], it is straightforward to
show that, for Θ , [θ1, φ1, θ2, φ2, . . . , θP , φP ]T ∈ R2P×1,

CRLB(Θ) =
σ2

2N

{
Re

[
DHΠ⊥

AD¯ (R̂T ⊗ I2)
]}−1

where {θi}P
i=1 and {φi}P

i=1 denote the DOD and DOA of P targets, respectively; N is the number of
pulses transmitted (across slow time indices), D = [d (θ1) ,d (φ1) , . . . ,d (θP ) ,d (φP )] ∈ CNtNr×2P such
that d (θi) = ∂(at(θi) ⊗ar(φi))

∂(θi)
and d (φi) = ∂(at(θi)⊗ar(φi))

∂(φi)
, Π⊥

A = I −ΠA with ΠA = A
(
AHA

)−1
AH

and finally R̂ = 1
N

∑N
k=1 γ(k)γH(k) ∈ CP×P . Thus when all DODs and DOAs are totally independent,

CRLB (DOD) =
P∑

i=1

[CRLB(Θ)]2i−1,2i−1 (20)
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and

CRLB (DOA) =
P∑

i=1

[CRLB(Θ)]2i,2i (21)

4. NUMERICAL RESULTS AND DISCUSSIONS

The following initializations have been adopted in this paper for evaluating the numerical results. Let
P = 2, and Walsh-Hadamard codes are used as radar transmitting waveforms. Transmitting and
receiving ULAs are assumed to have 4 and 5 antennas each with identical inter elemental spacing,
d = dt = dr = λ

2 . Further, the target properties are summarized in Table 2.

Table 2. Target properties.

Properties
Target # DOD (deg) DOA (deg) Doppler shift (Hz) |γ(t)|
Target 1 10 60 0.05-0.35 0.75
Target 2 65 20 0.15-0.45 0.5

Furthermore, we assume N = 1000 pulse transmission with 1024 samples per pulse.
Figures 3 and 4 depict the non-stationary instantaneous spectral content of target returns (at

SNR = 20 dB) using short time Fourier transform and pseudo Wigner-Ville distributions, respectively.
Thus, it is clear that higher order TFDs such as PWVD gives better spectral concentration than linear
transforms. However, the limitation of the latter is the generation of cross terms as seen in Figure 4.
However, its contribution is less intense due to the averaging step during the construction of STFD
matrices. Figure 5 shows the Joint DOD-DOA estimation in a paired manner at SNR = 0 dB after
averaging over 100 Monte-Carlo simulations. As seen, estimated value and theoretical values match very
well up to experimental requirements. Thus, even at lower SNRs, TF-based DOD & DOA estimations
are performing better.
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Figure 3. STFT of target returns.
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Figure 4. PWVD of target returns.

In Figures 6 and 7, the performance of the TF based DOD and DOA estimates in terms of RMSE is
analysed against the conventional non TF based estimates and the CRLB after performing 100 Monte-
Carlo simulations. It is evident that the RMSE of non TF based estimates are uniformly lower bounded
by the TF based estimates, over a range of SNRs. Also, TF based DOA estimate attains the CRLB
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Figure 5. DOD-DOA estimates.
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Figure 6. RMSE: DOD estimate vs SNR.

-10 -5 0 5 10

SNR in dB

-60

-50

-40

-30

-20

-10

0
R

M
S

E
 i
n

 D
O

A
 e

s
ti
m

a
ti
o

n
 (

d
B

)

CRLB

TF MUSIC

Non - TF MUSIC

Figure 7. RMSE: DOA estimate vs SNR.

very quickly compared to that of non TF based DOA estimate, thus becoming efficient quickly. This
illustrates the usefulness of TF tools for direction finding of signals with non-stationary signatures.
However, it is observed that TF based DOD estimator does not attain CRLB although the RMSE of
non TF based DOD estimate is lower bounded by its TF based counterpart. This is because of the
underlying method of ESPRIT which hardly becomes efficient at lower SNRs [19].

In Figures 8 and 9, the consistency of the TF based DOA estimates of 2 targets are studied at
low SNR. For an experiment operating at SNR = −20 dB with 15 Monte Carlo (MC) runs, the spatial
pseudo spectrum of TF MUSIC is plotted and overlayed in the figures. It is observed that even for SNR
as low as −20 dB, estimates in all the MC runs cluster to around the true angle, without any ambiguity
in pairing. Thus, the estimates are found to be consistent.

In Figures 10 and 11, the resolving capability of the estimates is investigated, i.e., the extent, to
which the TF based estimates are able to resolve the two targets distinctly even when they are in
close vicinity, is analysed. This aspect is worth studying because of its ability to closely dictate the
accuracy of DOD-DOA pairing when multiple targets are present within the range of the radar. For the
purpose of illustration, the difference in theoretical DOAs is gradually increased from 0.1◦ to 10◦, and
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Figure 8. MUSIC spectrum: Target-1.
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Figure 9. MUSIC spectrum: Target-2.
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Figure 10. Resolvability; SNR = −10 dB.
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Figure 11. Resolvability; SNR = 0 dB.

the estimated difference between the DOAs is tracked and analysed. As depicted, the linear regression
line obtained with finite set of measurements converges to the theoretical reference as SNR increases.
Even at lower SNRs say, at −10 dB, the performance is appreciable, which corroborates the RMSE plots
obtained in Figures 7 and 6.

Finally, we also study the scope of TF based direction estimation when targets are coherent. In
such scenarios, it is known that conventional subspace methods cannot be directly employed to solve the
problem due to inherent rank deficiency of source covariance matrix. In order to study the performance
using TF methods numerically, several trials of TF-MUSIC spectrums for a degree of coherence of 0.9
between the targets are obtained and overlayed on the same plots for each target at varying SNRs.
The relevant plots are shown in Figures 12(a) abd 12(b) at 0 dB SNR and in Figures 12(c) and 12(d)
at 20 dB SNR. It is seen that the peaks are not very sharp even at high SNRs, hence the algorithm
may not be successful for very closely spaced coherent targets. However, for reasonably widely spaced
targets, an approximate estimate of DOA can be determined. However, it is interesting to see that,
even at an SNR as low as 0 dB, the angle estimation is optimal up to an order of permutation of
approximate DOA values of the two targets. This is a straightforward consequence of the underlying
targets to be coherent: where although the likelihood of the algorithm to miss the true DOA is small, it
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(a) MUSIC spectrum: target-1 at 0 dB
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(b) MUSIC spectrum: target-2 at 0 dB
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(c) MUSIC spectrum: target-1 at 20 dB
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(d) MUSIC spectrum: target-2 at 20 dB
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Figure 12. Performance of TF based direction estimation for Coherent targets.

is non-trivial! Thus, the algorithm does not report any spurious angles as opposed to what conventional
non-TF based algorithms would render. The rationale behind this observation can be justified by the
following. Constructing STFD matrices at different TF points may be looked as a way of performing
spatial smoothing [20] (or Polarization Difference Smoothing when Bistatic MIMO Radar is configured
with EVSs [21]): for example we may obtain different independent snapshots, when they are measured
at different independent points in TF grid, which when being collected as a whole and combined, may
potentially improve the rank, a direct analogy to the measurement of samples at different points in space
in spatial smoothing [20]. Thus, the TF based solution can render as good solutions as performing spatial
smoothing to an approach involving covariance matrix constructions, without really performing spatial
smoothing. Again, note from [20] that although spatial smoothing solves the problem with coherent
targets, it limits the performance in terms of identifiability of the number of sources, by making it worse
than what an un-smoothed array works with non-coherent signals. Contrarily, the TF-based approach
does not face such a bottleneck, yet achieves similar performance to that of spatial-smoothed results.
This directly highlights the superiority of the work of this paper over conventional approaches. To study
better about how well pairing of DOD-DOA is achieved with coherent targets, ‘Detection Probability’ is
evaluated which gives an measure of how good the estimate can predict the actual, but an approximate
DOA (up to an accuracy of ±2◦) of a target. It is given by,

Detection Probability =
Number of trials in which true DOA is detected

Total number trials
.

The detection probability plot is given in Figure 12(e) after averaging over 15 MC runs with SNR,
separately for 2 targets along with the mean probability curve. Thus, even at considerably low SNRs,
the achieved detection probability seems to be well within experimental requirements.
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5. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, a more detailed attempt to integrate time-frequency analysis and direction finding
algorithms has been made in the context of bistatic MIMO radars. Time Frequency based approach
turns out to be a promising candidate for DOD-DOA estimation for bistatic MIMO radars, and specially
it outperforms conventional approaches at lower SNRs. Furthermore, the TF based estimates attain the
CRLB quickly at lower SNR regime. The TF based DOD-DOA estimates are consistent with very good
resolution performance. On the other hand, it was also shown that TF integrated direction finding
could potentially work better for a scenario with coherent targets, with enhanced performance with
signals whose stationarity profile varies rapidly, which enhances the data independency. Some of the
potential future research directions in this field include: 1) to recast the problem with coherent targets
into one of a sparse recovery problem along with STFD construction, which can potentially render
highly robust solutions with coherent targets, 2) to employ sparse arrays at transmitter/receiver with
number of antennas less than that of targets and leverage TF representations. The intuition behind
the latter point is to realize that at any given time instant, the instantaneous frequency laws are richly
concentrated only for a subset of the total number of targets present. One other potential direction is
to leverage the information from STFD matrices and build efficient adaptive algorithms (kalman filters)
for tracking the targets, which are most prevalent in the discipline of radar signal processing.
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