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Digitally Controlled Steered Dual Beam Pattern Synthesis
of a Rectangular Planar Array Antenna in a Range
of Azimuth Plane Using Evolutionary Algorithms

Sanjay Kr. Dubey1 and Debasis Mandal2, *

Abstract—This paper presents a pattern synthesis method to generate dual-beam patterns of a
rectangular planar array of isotropic antennas in a particular scanning angle using Evolutionary
Algorithms. The dual-beam patterns are cosec2 pattern and pencil beam pattern, and both the patterns
are steered to an elevation angle of 20 degrees (θ = 20◦). Moreover, each pattern is synthesized in three
azimuth planes (φ = 0◦, 5◦, and 10◦). The isotropic elements are uniformly spaced, and nonuniform
excitations are applied to achieve the desired patterns. These patterns are obtained by applying the
optimum set of common elements amplitude and phases for the cosecant-squared pattern only. The
optimum 4-bit discrete amplitudes and 5-bit discrete phases are produced using Differential Evolutionary
(DE) Algorithm, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) Algorithm, and Firefly
Algorithm (FA). These discrete excitations are helpful to reduce the Dynamic Range Ratio (DRR) and
the design complexity of the feed networks. The excitations are also verified in a range of arbitrarily
chosen azimuth planes. The patterns are generated in the same steering angle with minor variations of
the desired parameters. The outcomes established the superiority of DE over PSO, GA, and FA and
the effectiveness of the proposed method.

1. INTRODUCTION

The array antenna having scanning capability is very useful in wireless communication, mainly in radar-
related applications. However, generating the cosec2 beam and pencil beam at a range of azimuth planes
along with an elevation angle faced a high sidelobe with an enormous ripple problem. Various approaches
reported in literature for generating array patterns and dual beam patterns are as follows [1–11].

Multiple beam patterns using simulated annealing algorithm [5] have been generated by Diaz et
al. Lei et al. proposed and developed a process for generating a cosecant-squared beam pattern of a
linear antenna array by incorporating optimum amplitudes and phases of the isotropic array elements
by applying the modified least square method [6]. Both uniform and Gaussian distributions of common
amplitudes are applied to generate shaped beam patterns (flattop and a cosecant-squared). Different sets
of phases are also used for different beam patterns. For finding these excitations, the Woodward-Lawson
technique [7] has been introduced by Durr et al. Chatterjee et al. proposed a method for generating dual
beams using optimum sets of radial amplitudes and phases of a concentric ring array antenna. These
excitations are achieved by using Gravitational Search Algorithm (GSA) [8]. Chatterjee et al. also
proposed a Firefly Algorithm (FA) technique for generating a dual-beam pattern of a concentric ring
antenna array. The applied elements are isotropic, and the excitations are used in the rings of the CCAA
instate of the elements. The expected patterns are generated by applying specific states or combinations
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of switches [9]. A dual radiation pattern of the rectangular planar array has been generated at different
azimuth planes with zero degrees elevation angle using the evolutionary algorithm by Mandal et al. [10].
A flattop and pencil beam is also generated using common amplitudes distribution and phases for
shaped beams at zero degrees elevation by Mandal et al. in 2015 [11]. Kenane et al. proposed a method
of synthesizing two different non-uniform antenna arrays Linear and Circular, using Dynamic Invasive
Weeds Optimization (IWO), which helps to get deep nulls in the directions of interferences with low
sidelobe levels [12].

In this paper, a cosec2 pattern and a pencil beam pattern from a planar array [1–4] of 90 isotropic
elements are obtained by finding out the optimum set of common elements amplitudes for both the
patterns and a group of phases for cosec2 shaped beam using Evolutionary Algorithms. Here 20◦

progressive phase has also been applied to scan the beam patterns on that elevation angle. The patterns
have been generated in three predefined azimuth planes using the excitations achieved by DE, GA, PSO,
and FA. This approach also verifies that the patterns retain their desired parameters within a range
of azimuth planes instead of a single φ plane. These are also proved by selecting some arbitrary φ
planes and obtained similar patterns by applying the same excitations for each Evolutionary Algorithm
with some minor variations. The received amplitudes (4-bit) and phases (5-bit) are both digitals for
providing a lower Dynamic Range Ratio (DRR). These discrete excitations are used to shorten the design
complexity of the feed network as DRR is less, so less number of attenuators and phase shifters are
required. The comparative performance of these four Evolutionary Algorithms, Differential Evolution
algorithms (DE), Genetic Algorithm, Particle Swarm optimization algorithms, and Firefly Algorithm
(FA) are also analyzed.

2. PROBLEM FORMULATIONS

A planar array of 90 isotropic elements is considered. The far-field pattern of the array shown in Figure 1
can be written as [1–4]:

AF (θ, φ) =
M∑

m=1

N∑
n=1

Imne
j[kmdx(sin θ cosφ−sin θo cosφo)+kndy(sin θ sinφ−sin θo sinφo)+αmn] (1)

Here,
Imn is the excitation amplitude of mn-th element;
αmn denotes the phase excitation of mn-th element;
M and N denote the number of isotropic elements in X and Y directions, respectively;
dx and dy = 0.5λ represent the inter element spacing along with X and Y directions;
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Figure 1. Geometry of a planar array of 90 isotropic elements.
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θ and φ are polar and azimuth angle;
θo and φo are beam pointing angle;
k = 2π

λ is the wavenumber.

The fitness function for the dual-beam pattern (cosec2 and Pencil Beam) is defined as:

F (ρ) = k1

{
peakSLLd1 − max

θ∈S1

{
AF ρ

dB(θ, φ)
}}2

+k2×△+k3

{
peakSLLd2 − max

θ∈S2

(
AF ρ

dB (θ, φ)
)}2

(2)

where ∆ is defined as:

∆ =
∑

θripple∈{0◦+θ0−30◦+θ0}

∣∣AF ρ
dB(θripple, φ)−D(θripple, φ)

∣∣ (3)

In Equations (2) and (3) φ ∈ (0◦–10◦) plane.
ρ is the unknown parameter set responsible for the desired beam patterns for this approach. ρ is

defined as follows:
ρ = {Imn, αmn} ; 1 ≤ m ≤ M & 1 ≤ n ≤ N (4)

peakSLLd1 and peakSLLd2 are the desired values of peak SLL for cosec2 and pencil beam patterns.
S1 and S2 are sidelobe regions for both patterns. DdB(θ, ϕ) is the desired pattern shown in Figure 2
at (θo = 20◦, φ = 0◦), (θo = 20◦, φ = 5◦), and (θo = 20◦, φ = 10◦) planes. The range of θripple
for this approach is 20◦ to 50◦. k1, k2, and k3 are the weighting factors. This fitness function has
to be minimized by finding out the optimum set of 4-bit amplitudes and 5-bit phases using Different
Evolutionary Algorithms like Differential Evolution algorithm (DE), Genetic Algorithm (GA), Particle
Swarm Optimization Algorithm (PSO), and Firefly Algorithm (FA).

θ in Degree

-90 -60 -30 0 20 50 70 90

|D
 (

θ
, 

ϕ
)|

-25

-20

-15

-10

-5

0
ϕ 0

ο
10  ), θ  = 20

ο ο

Desired cosec
2
Pattern

∈( − ο

d
B

Figure 2. Desired cosec2 pattern for predefined planes φ ∈ (0◦–10◦) and θo = 20◦.

3. EVOLUTION ALGORITHM (EA)

3.1. An Overview of Differential Evolution Algorithm (DE)

Based on the natural evolution of several species, an Evolutionary Algorithm (EA) is proposed and used
to solve various optimization problems in a large field of applications, where the appropriate encoding
schemes, evolutionary operators, and suitable parameter setting are necessary. In 1997, Differential
Evolution (DE) Algorithm, the best population-based Evolutionary Algorithm (EA), was introduced
by Storn and Price. The most common Evolutionary Algorithms (EA) are Genetic Algorithms (GA),
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Figure 3. Flow chart of Differential Evolution Algorithm (DE).

Particle Swarm Optimization (PSO), and DE. This Optimization Algorithm DE [13–19] can find out true
global minima with fewer control parameters and achieve convergence quickly for nonlinear problems.
DE is an efficient and effective global optimizer that is population-based. DE algorithm has used a
very powerful stochastic search technique. In DE, three major parameters like population size, scaling
factor, and crossover rate are crucially responsible for algorithm’s performance. The flowchart of DE is
shown in Figure 3. To minimize a function f(X), where,

X = [x1, x2, x3, x4, . . . , xD] (5)

where D is the search space dimension or number variables. If the population size is considered as N ,
the population matrix can be expressed as

xgn,i =
[
xgn,1, x

g
n,2, x

g
n,3, x

g
n,4, . . . , x

g
n,D

]
(6)

Here g is the generation and n = 1, 2, 3, . . . , N . Initial population is generated randomly between upper
bound (xUi ) and lower bound (xUi ). After random initialization and generation in D dimensional search
space, the three main steps involved in the DE Algorithm are Mutation, Recombination, and Selection.

In the Mutation process, three different vectors xgr1n, xgr2n, and xgr3n are selected from each

parameter vector. Donor vector vg+1
n can be written as follows.

vg+1
n = xgr1n + F (xgr2n − xgr3n) (7)

F is called Scale Factor, and the value is between 0 and 1.
During the Recombination operation the trial vector ug+1

n,i is generated using target vector xgn,i and

donor vector vg+1
n,i . Finally, in the Selection process, the objective function values are compared with

each target vector xgn,i and trial vector ug+1
n,i . Those who produce the lowest function value, i.e., the

best fitness function, are selected for the next generation. These steps are repeated until it reaches the
predefined value of generation. The result, i.e., the best solution of the objective function in the current
population, is expressed as Xbest,G.
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For solving this optimization problem, the population size is considered as 50, the scale factor (F )
taken as 0.8, and the crossover rate (CR) of DE chosen as 0.2, whereas the scheme used in this nonlinear
problem is DE/best/1/bin with maximum iteration number of 2000 [13–19].

3.2. An Overview of Particle Swarm Optimization Algorithm (PSO)

With the inspiration of social behavior of birds flock, fish school, etc., a population-based stochastic
optimization technique is developed by Kennedy and Eberhart in 1995. The name of this optimization
algorithm is Particle Swarm Optimization. It utilizes a population of potential solutions to probe the
search space concurrently. The individuals are called the particles, and the population is called the
swarm in PSO. In the search space, each particle is associated with a position and velocity. As the
swarm is a set of N particles, it can be expressed as: s = {x1, x2, . . . , xn}, and the position and velocity
of a particle in n-dimensional problem is defined as [20–25]

xi = (xi1, xi2, . . . , xin)
T ∈ A. where, i = 1, 2, 3, . . . , N and A is the search space (8)

vi = (vi1, vi2, . . . , vin)
T where, i = 1, 2, 3, . . . , N (9)

The velocity and positions of the particles are swaps according to the iterations, and these swaps
are controlled by the execution of the particles itself and that of the other particles. The algorithm can
be summarized as follows:

Step 1: Initialization
The position and velocity of N number of particles are initialized randomly at iteration t using the
following equations:

xij(t) = xmin + rand (xmax − xmin) for i = 1, 2, 3, . . . , N and j = 1, 2, 3, . . . , n (10)

vij(t) =

(
−xmax − xmin

2
+ rand (xmax − xmin)

)
for i = 1, 2, 3, . . . , N and j = 1, 2, 3, . . . , n (11)

where xmin and xmax are the lower and upper bounds of the problem. Within the range [0, 1] rand is
an uniform random variable.

Step 2: Fitness evolution at the current iteration
Compute the fitness at the current generation for each particle in the swarm, i.e., evaluate f(xi) for
i = 1, 2, . . . , N .

Step 3: Compute pbesti and gbest
At current iteration, pbesti is the best previous position of the i-th particle, and gbest is the global best
position among all the particles present in the swarm using the following equations [20–27]

pbesti(t) = argmin fi(t)
t (12)

gbest(t) = argmin f(pbesti(t))
i (13)

Step 4: Update particles position and velocity
Update the velocity and position at iteration t of the particles using the following equations

vij(t+ 1) = wvij(t) + c1rand1 (pbestij(t)− xij(t)) + c2rand2 (gbestj(t)− xij(t)) (14)

xij(t+ 1) = xij(t) + vij(t+ 1) (15)

for i = 1, 2, . . . , N and j = 1, 2, . . . , n. Two uniformly distributed random variables rand1 and rand2
have a range in between [0, 1]. c1 and c2 weighting factors are called cognitive and social parameter. w
is known as the inertia weight. It is expressed as:

w = wmax −
(
wmax − wmin

T

)
t (16)

where wmin and wmax are set to 0.4 and 0.9, and T is the maximum iteration, which restrict the velocity
of the particles such that |vij(t + 1)| ≤ vmax, for i = 1, 2, . . . , N and j = 1, 2, . . . , n. This is termed as
velocity clamping and is accomplished using the equation given bellow:

vij(t+ 1) =

{
vmax if vij(t+ 1) > vmax

−vmax if vij(t+ 1) < −vmax

}
(17)
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Step 5
Repeat steps 2–5 until iterations reach their maximum limit. Retain the values of gbest as the final
result. The swarm size of PSO is taken as 50 with the randomly chosen initial population. The values
of C1 and C2 are considered as 2 [20–27]. The time-varying inertia weight (w) is chosen in the way
where the merits are decreased linearly from 0.9 to 0.4. For every particle on the dth dimension the
maximum admissible velocity is considered as 0.9rd, where rd is the deflection between the maximum
and minimum possible utility of the decision variables on this dth dimension. At a maximum iteration
of 2000, the termination condition is considered.

3.3. Parametric Setup of Genetic Algorithm (GA) and Firefly Algorithm (FA)

In GA, the Population size is considered 50, and the two-point crossover schemes are selected. The
probabilities of Crossover and mutation are chosen as 0.08 and 0.01. In the Selection process, the

Table 1. Desired and obtained values of design parameters.

Evolutionary
φ in degree

Design cosec2 Pattern Pencil beam Pattern

Algorithm Parameters Desired Obtained Desired Obtained

DE

φ = 0◦
Peak SLL (dB) −20.00 −19.4309 −20.00 −19.1101

△ (dB) 0.00 17.4573 – –

φ = 5◦
Peak SLL (dB) −20.00 −19.2812 −20.00 −19.5790

△ (dB) 0.00 17.0585 – –

φ = 10◦
Peak SLL (dB) −20.00 −19.3472 −20.00 −19.2337

△ (dB) 0.00 16.3329 – –

GA

φ = 0◦
Peak SLL (dB) −20.00 −19.5038 −20.00 −19.7556

△ (dB) 0.00 15.5072 – –

φ = 5◦
Peak SLL (dB) −20.00 −20.1736 −20.00 −20.5462

△ (dB) 0.00 19.2830 – –

φ = 10◦
Peak SLL (dB) −20.00 −20.5360 −20.00 −19.3472

△ (dB) 0.00 23.6347 – –

PSO

φ = 0◦
Peak SLL (dB) −20.00 −16.4613 −20.00 −16.3823

△ (dB) 0.00 19.1394 – –

φ = 5◦
Peak SLL (dB) −20.00 −16.8319 −20.00 −16.3430

△ (dB) 0.00 25.4990 – –

φ = 10◦
Peak SLL (dB) −20.00 −18.4748 −20.00 −18.2034

△ (dB) 0.00 34.7733 – –

FA

φ = 0◦
Peak SLL (dB) −20.00 −15.1632 −20.00 −14.6180

△ (dB) 0.00 23.3948 – –

φ = 5◦
Peak SLL (dB) −20.00 −14.6955 −20.00 −17.7100

△ (dB) 0.00 28.1375 – –

φ = 10◦
Peak SLL (dB) −20.00 −15.9527 −20.00 −16.6202

△ (dB) 0.00 16.3810 – –
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Roulette Wheel scheme is thought about for this proposed problem, and the termination condition is
chosen as a maximum iteration of 2000. Other parametric setups of the Genetic Algorithm are selected
from the recommendation given in [28–32]. In FA number of fireflies 50 is taken, β0 = 0.20, γ = 0.25,
α = 1, and Search space dimension and Choice of initial population are considered as 48 and random,
at a maximum iteration of 2000 [9].

4. RESULTS

A planar array of 90 uniformly placed isotropic elements has been considered. M number of elements
are uniformly placed along X direction, and N number of elements are placed along Y direction. where
M = 10 and N = 5 have been chosen. The inter element spacing is considered as 0.5λ, i.e., dx = 0.5λ
and dy = 0.5λ shown in Figure 1.

The design parameters of the steered dual-beam patterns along with their corresponding obtained
results are shown in Table 1. From Table 1, it has been seen that by applying DE the obtained values of
the peak side lobe level for the cosec2 beam pattern in three different predefined planes are −19.4309 dB,
−19.2812 dB, and −19.3472 dB corresponding to their desired value of −20.00 dB. The parameter ripple
(∆) is incorporated to measure the total deviation between the obtained (shown in Figure 4) and
desired patterns (shown in Figure 2) within the angular region (θ = 20◦–50◦). The values of ripple (∆)
are 17.4573 dB, 17.0585 dB, and 16.3329 dB for φ = 0◦, φ = 5◦, and φ = 10◦, respectively, whereas
for steered pencil beam pattern the obtained values of peak SLL are −19.1101 dB, −19.5790 dB, and
−19.2337 dB respectively for the same azimuth planes.

Similarly, Table 1 shows the obtained and desired values of peak SLL and ripple ∆ using Genetic
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Table 2. Obtained results for arbitrary φ planes.

Evolutionary φ in Design cosec2 Pencil beam

Algorithm Degree Parameters Pattern Pattern

DE

φ = 2.7◦
Peak SLL (dB) −20.0710 −20.3024

△ (dB) 17.0777 –

φ = 7.8◦
Peak SLL (dB) −20.0614 −19.4633

△ (dB) 16.0619 –

φ = 12.1◦
Peak SLL (dB) −17.8563 −16.6528

△ (dB) 20.7389 –

GA

φ = 2.7◦
Peak SLL (dB) −20.5479 −21.0475

△ (dB) 18.9636 –

φ = 7.8◦
Peak SLL (dB) −20.2494 −19.8361

△ (dB) 19.7764 –

φ = 12.1◦
Peak SLL (dB) −20.6196 −16.1608

△ (dB) 34.1074 –

PSO

φ = 2.7◦
Peak SLL (dB) −16.2464 −15.2728

△ (dB) 22.8719 –

φ = 7.8◦
Peak SLL (dB) −17.5902 −17.5627

△ (dB) 27.9257 –

φ = 12.1◦
Peak SLL (dB) −14.9866 −11.7208

△ (dB) 46.5058 –

FA

φ = 2.7◦
Peak SLL (dB) −14.6836 −16.4585

△ (dB) 49.5750 –

φ = 7.8◦
Peak SLL (dB) −15.5592 −17.8772

△ (dB) 43.4963 –

φ = 12.1◦
Peak SLL (dB) −15.8034 −14.1420

△ (dB) 44.7144 –

Algorithm, Particle Swarm Optimization algorithm, and Firefly Algorithm. Using GA the obtained peak
SLLs for the cosec2 patterns in three azimuth planes 0◦, 5◦, and 10◦ are −19.5038 dB, −20.1736 dB, and
−20.5360 dB corresponding to their ripple values 15.5072 dB, 19.2830 dB, and 23.6347 dB, respectively.
The obtained values for both DE and GA meet the expected values of design specifications with some
ripple. For the case of PSO and FA, the obtained values of both peak SLL and ripple for both patterns
have larger deviation than DE and GA. Figure 4, Figure 5, Figure 6, and Figure 7 depict the obtained
steered dual-beam patterns using DE, GA, PSO, and FA, respectively.

The element wise amplitudes and phases of the array elements obtained using DE for generating
the beam patterns are shown in Figure 8, and their corresponding values of normalized amplitudes and
phases are written in Table 3. These normalized amplitudes have 24, i.e., 16 different levels between
0.625 and 1. Similarly, the phases have 25, i.e., 32 different levels between −180◦ and +180◦. Figure 9
and Figure 10 show the 4-bit discrete amplitudes and 5-bit discrete phases using GA and PSO. The
exact value of discrete 4-bit amplitudes and 5-bit phases are given in Table 4 and Table 5.
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Table 3. Element wise excitations using Differential Evolution Algorithm (DE).

Excitations X→1 2 3 4 5 6 7 8 9 10 Y↓

Amplitude 0.5000 1.0000 0.7500 0.0625 0.0625 0.0625 0.1875 0.3125 0.1875 0.6250
1

Phase 56.25 −45.00 112.50 −157.50 −11.25 180.00 −22.50 157.50 0 112.50

Amplitude 0.7500 1.0000 0.8125 1.0000 1.0000 0.7500 0.8750 0.8750 0.4375 1.0000
2

Phase 90.00 168.75 157.50 157.50 123.75 67.50 180.00 168.75 180.00 −180.00

Amplitude 0.4375 1.0000 0.8125 0.4375 0.9375 0.4375 0.3750 0.3125 0.5000 1.0000
3

Phase −180.00 −168.75 180.00 −180.00 −90.00 −180.00 −157.50 180.00 −123.75 −146.25

Amplitude 0.1875 0.0625 0.3125 0.0625 0.2500 0.0625 0.1875 0.7500 0.1250 0.0625
4

Phase -168.75 −180.0 90.00 180.00 146.25 135.00 180.00 180.00 −180.00 168.75

Amplitude 0.0625 0.0625 1.0000 0.9375 0.8125 0.1250 0.0625 0.1875 0.8750 0.3750
5

Phase 180.00 −78.75 −67.50 11.250 −78.75 −22.50 −101.25 180.00 180.00 −112.50

Amplitude 0.5625 0.3125 0.0625 0.3750 0.1250 1.0000 1.0000 1.0000 0.3125 0.0625
6

Phase −78.75 157.50 −112.50 −112.50 −146.25 −180.00 −11.25 180.00 −180.00 180.00

Amplitude 0.8750 0.7500 0.5625 1.0000 0.6250 0.7500 0.8750 0.9375 1.0000 0.7500
7

Phase −180.00 −90.00 157.50 180.00 −180.00 112.50 −180.00 180.00 123.75 123.75

Amplitude 0.0625 0.4375 0.0625 1.0000 1.0000 1.0000 0.8750 0.6250 0.7500 0.4375
8

Phase −157.50 11.25 −135.00 −180.00 −180.00 180.00 180.00 78.75 −180.00 −123.75

Amplitude 0.1875 0.8750 0.7500 1.0000 0.9375 0.7500 0.4375 0.4375 0.4375 0.3750
9

Phase 180.00 67.500 146.25 −180.00 −157.50 −123.75 −135.00 180.00 168.75 180.00

Table 4. Element wise excitations using Genetic Algorithm (GA).

Excitations X→1 2 3 4 5 5 7 8 9 10 Y↓

Amplitude 0.4375 0.6250 0.9375 0.8750 0.8125 0.8750 0.7500 0.4375 0.3750 0.3125
1

Phase 180.00 78.750 157.50 −168.75 112.50 −78.75 −45.00 −123.75 146.25 90.000

Amplitude 0.0625 0.5625 0.6250 0.5625 1.000 0.9375 1.0000 0.6875 0.4375 0.8750
2

Phase −157.50 −78.75 112.50 −78.75 −135.00 146.25 146.25 −45.00 −45.00 33.750

Amplitude 0.4375 0.8125 0.9375 0.8125 0.7500 0.8125 0.5625 0.1250 0.3750 0.5000
3

Phase 157.50 −22.50 56.25 −168.75 56.25 −45.00 112.50 −22.50 −112.50 67.500

Amplitude 0.3750 0.0625 0.3750 0.6875 0.3125 0.1875 0.2500 0.5000 0.4375 0.8125
4

Phase −168.75 −22.50 −146.25 146.25 −123.75 −56.25 −56.25 −90.00 11.25 45.00

Amplitude 0.0625 0.3125 0 0.6250 0.5000 0 0.2500 0.3750 0.0625 0.0625
5

Phase −135.00−146.25 −11.25 11.25 −56.25 −78.75 −123.75 33.75 101.25 −56.25

Amplitude 0.2500 0.5625 0.7500 0.0625 0.3125 0.6875 0.3125 0.4375 0.3125 0.3750
6

Phase 101.25 135.00 −157.50 180.00 −123.75 22.50 90.00 135.00 −67.50 −112.50

Amplitude 0.8750 0.6250 0.7500 0.1875 0.6250 0.8125 0.6250 0.3750 0.0625 0.5000
7

Phase 101.25 157.50 0 −157.50 157.50 11.25 −146.25 −67.50 −67.50 135.00

Amplitude 0.9375 0.3125 0.3125 0.5000 0.7500 0.8750 0.8750 0.8125 0.4375 0.0625
8

Phase 112.50 33.75 123.75 157.50 −56.25 −101.25 168.75 135.00 0 −67.50

Amplitude 0.0625 0.3125 0.1875 0.4375 0.0625 0.3750 0.1250 0.8750 0.9375 0.5625
9

Phase 0 −56.25 135.00 135.00 −135.00 −78.75 −146.25 −78.75 67.50 123.75
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Figure 5. Obtained dual beam patterns at 20◦ elevation angle using GA for φ = 0◦, φ = 5◦, and
φ = 10◦ plane.

In Figures 11, 12, 13, and 14, the beam patterns are generated in three arbitrarily chosen azimuth
planes for the same excitations with some minor variation. In each figure, the first arbitrary azimuth
angle is chosen as 2.7 degrees (0◦ < 2.7◦ < 5◦ in between the predefined φ plane); the second is 7.8
degrees (within the predefined φ plane 5◦ and 10◦); and the third is 12.1 degrees (> 10◦ beyond the
predefined azimuth plane). Figure 4 shows the array pattern in predefined azimuth planes whereas
Figure 11 shows the pattern in arbitrarily chosen azimuth plane, and in both the cases, the optimum
excitations are generated using DE. The obtained cosec2 beam patterns follow the desired beam pattern
shown in Figure 2 within the coverage range of elevation angle (20◦ to 50◦).

Similarly, (Figure 5, Figure 12 ), (Figure 6, Figure 13 ) and (Figure 7, Figure 14 ) have nearly equal
values of the design parameters obtained by using the optimum excitations produced by GA, PSO, and
FA for predefined azimuth angle and arbitrary plane.

In Table 2, the values of design parameters are mentioned for the arbitrary angles for all four EAs.
The obtained values of design parameters for arbitrarily selected φ planes and predefined φ planes
are comparable. So for this array synthesis method, it is not essential to consider all the azimuth
planes rather some predefined azimuth planes which ensure a range where the pattern retains the
desired characteristic. Figure 15 shows the convergence curves of DE, GA, PSO, and FA. From these
convergence curves it is clearly observed that DE is superior to GA, PSO, and FA as fitness value of
DE is less than the others. The Computations have been done in MATLAB 2015a with core 2 duo
processor, 3GHz, 4GB RAM.

Table 6 below compares DE, GA, PSO, and FA performances to design issues. The lowest average
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Figure 6. Obtained dual beam patterns at 20◦ elevation angle using PSO for φ = 0◦, φ = 5◦, and
φ = 10◦ plane.
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Figure 7. Obtained dual beam patterns at 20◦ elevation angle using FA for φ = 0◦, φ = 5◦, and
φ = 10◦ plane.
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Figure 8. Excitations using DE.

Figure 9. Excitations using GA.

Figure 10. Excitations using PSO.
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Table 5. Element wise excitations using Particle Swarm Optimization Algorithm (PSO).

Excitations X→ 1 2 3 4 5 5 7 8 9 10 Y ↓

Amplitude 0.5000 0.9375 0.4375 0.6250 0.4375 0.5000 0.8125 0.6250 0.4375 0.7500
1

Phase −56.25 67.50 −67.50 −33.75 123.75 101.25 33.75 123.75 −11.25 45.00

Amplitude 0.5625 0.3750 0.3125 0.5625 0.6875 0.4375 0.7500 0.6250 0.2500 0.5625
2

Phase 22.50 22.50 56.25 0 168.75 −112.50 180.00 −90.00 45.00 −45.00

Amplitude 0.6250 0.9375 0.9375 0.3750 0.5625 0.5000 0.3750 0.3750 0.5000 0.5000
3

Phase −90.00 −11.25 −123.75 −11.25 67.50 22.50 −11.25 0 45.00 −67.50

Amplitude 0.7500 0.2500 0.6875 0.6875 0.5625 0.5625 0.6875 0.7500 0.5000 0.2500
4

Phase −45.00 11.25 78.75 −11.25 22.50 −146.25 78.75 90.00 −135.00 45.00

Amplitude 0.1250 0.3750 0.3750 0.7500 0.4375 0.3750 0.5000 0.6250 0.6250 0.7500
5

Phase −56.25 11.250 135.00 56.250 78.750 45.000 78.750 −33.75 56.250 −78.75

Amplitude 0.3750 0.4375 0.3125 0.5000 0.3125 0.5000 0.4375 0.5000 0.3750 0.5000
6

Phase −33.75 −90.00 11.250 90.000 67.500 −78.75 0 146.25 78.750 −33.750

Amplitude 0.4375 0.5625 0.5625 0.3750 0.4375 0.6875 0.6875 1.0000 0.8125 0.6875
7

Phase 101.25 112.50 67.500 11.250 33.750 123.75 −11.25 90.000 −11.250 −56.250

Amplitude 0.7500 0.6875 0.1875 0.5000 0.5625 0.4375 0.5000 0.5000 0.5000 0.5000
8

Phase 112.50 168.75 67.500 −123.75 −45.00 −33.750 −90.00 −11.25 56.250 135.00

Amplitude 0.3125 0.5000 0.5000 0.4375 0.3750 0.6250 0.5625 0.1250 0.5000 0.5625
9

Phase −56.25 −146.25 45.000 −33.75 −101.25 −67.50 45.000 135.00 −11.25 33.750

Table 6. Comparative performance of DE, GA, PSO, and FA.

Algorithm Best Fitness (out of 20) Worse Mean Standard Deviation

DE 56.8813 69.9611 58.9263 3.1810

GA 62.4274 80.5135 66.6496 4.2382

PSO 136.4251 156.456 142.3127 4.9859

FA 190.5110 215.2467 196.5113 5.2668

fitness value of DE relative to GA, PSO, and FA indicates that DE is the best performing algorithm
for the problem presented. Table 7 shows the values obtained by the Wilcoxon rank sum test between
the DE/GA, DE/PSO, and DE/FA pairs for these design considerations. Any obtained values which
are less than 0.05 (5% significance level) are the strongest evidence for the null hypothesis that the best
final fitness value obtained by the best algorithm is statistically significant.

Table 7. P-value for Wilcoxon’s two sided rank sum test.

Comparison Pair P-value

DE/GA 4.8063e-05

DE/PSO 3.3918e-06

DE/FA 6.2498e-07
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Figure 11. Dual beam patterns at θo = 20◦ for three arbitrarily chosen φ planes using the same
excitations obtained from DE.
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Figure 12. Dual beam patterns at θo = 20◦ for three arbitrarily chosen φ planes using the same
excitations obtained from GA.

θ in Degree
-90 -60 -30 0 30 60 90

|A
F

| d
B

-25

-20

-15

-10

-5

θ in Degree
-90 -60 -30 0 30 60 90

|A
F

| d
B

-25

-20

-15

-10

-5

0

θ in Degree
-90 -60 -30 0 30 60 90

|A
F

| d
B

-25

-20

-15

-10

-5

0

cosec2 Beam Pattern

Pencil Beam Pattern

0
  ϕ = 2.7

ο and θ   = 20
ο

ο ϕ = 7.8
ο and θ   = 20

ο
ο

ϕ = 12.1
ο and θ   = 20

ο
ο

Figure 13. Dual beam patterns at θo = 20◦ for three arbitrarily chosen φ planes using the same
excitations obtained from PSO.
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Figure 14. Dual beam patterns at θo = 20◦ for three arbitrarily chosen φ planes using the same
excitations obtained from FA.
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Figure 15. Convergence curve of Differential Evolution Algorithm (DE), Genetic Algorithm(GA),
Particle Swarm Optimization Algorithm (PSO) and Firefly Algorithm (FA).
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5. CONCLUSION

A steered dual-beam planar array antenna has been synthesized in three different azimuth angles. Two
different beam patterns (cosec2 and a pencil beam) are scanned to a particular elevation angle and
again synthesized in three predefined azimuth planes using three well known Evolutionary Algorithms.
Each Evolutionary Algorithm generates optimum 4-bit discrete amplitudes and 5-bit discrete phases
to achieve the desired parameters of the patterns. After selecting and achieving the similar pattern in
arbitrary planes, the presented method shows its capability to produce the same beam pattern not only
in the predefined azimuth planes rather a range of azimuth planes. The design parameters like peak
side lobe level (peak SLL) and ripple ∆ are reduced by finding the optimum set of array excitations
using DE, GA, and PSO Algorithm. The Dynamic Range Ratio (DRR) is also reduced by using these
digital excitations, which results in the smaller number of attenuators and phase shifters in the feed
network. This pattern synthesis method also ensures that the desired patterns retain their desired
specifications with some minor variations in a range of azimuth plane on the scanning angle also rather
in a particular predefined φ plane with zero elevation angle. An acceptable concurrence between the
desired and obtained outcomes validated the proposal, and the introduced method can also be used to
synthesize other array geometries.
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