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Improved Binary Particle Swarm Optimization and Its Application
to Beamforming of Planar Antenna Arrays

Yan Lv, Fei Cao*, Xiaowei Feng, and Huiqin Li

Abstract—Beamforming can steer the mainlobe of the beam pattern towards the desired signal and
set several nulls in the directions of interference signals by adjusting the excitation weights of array
elements. These days, a range of meta-heuristic algorithms have been utilized for the beamforming of
antenna arrays. However, most of the methods are applied to linear arrays and rarely to planar arrays.
In this paper, a novel variant of binary particle swarm optimization (BPSO) is proposed at first, where
the global search ability and local optimization ability are both taken into account. Then, the fitness
function including the term of peak sidelobe level (PSLL) is constructed, and the improved BPSO is
applied to the beamforming of uniform planar array (UPA). Finally, simulation results demonstrate
that by setting the parameters reasonably, the proposed algorithm is not only able to suppress PSLL
effectively, but also able to form deeper nulls than that of linearly constrained minimum variance
(LCMV).

1. INTRODUCTION

Over a few decades, particle swarm optimization (PSO) has been increasingly used as a meta-heuristic
search algorithm since it is easy to implement compared with other techniques [1–4]. As a binary
version, the BPSO is also widely used by scholars in the fields of function optimization, production
scheduling, image processing machine learning, etc. [5–8]. The reason for using BPSO is that it
has several advantages over other techniques, such as its efficiency, better convergence, simplicity,
and robustness [9, 10]. Beamforming is a spatial filtering technique, which can control the optimal
excitation weights of array elements to point the mainlobe of the beam pattern towards the direction
of signal of interest (SOI) [11], and at the same time set several nulls in the direction of arrival
(DOA) [12] of interference signals. The directions mentioned above can be calculated by DOA estimation
algorithms [13, 14]. Beamforming techniques are applied in numerous areas such as radar, sonar, modern
communications, and medical imaging [15]. In recent years, more and more meta-heuristic algorithms
have been utilized and gradually developed into novel techniques suitable for the beamforming of antenna
arrays [16–18].

A hybrid algorithm of BPSO and convex optimization was proposed in [19] to suppress the PSLL
for multibeam imaging sonar arrays, which can guarantee the complete match of the global optimization
ability and local optimization ability. The work in [20] described a new beamforming method based on
PSO, which considers the PSLL, beamwidth between the first nulls (FNBW), and depth of the nulls as
beam controlling attributes. Reference [21] employed several meta-heuristic algorithms, such as PSO,
firefly algorithm (FA), and cuckoo search (CS) to optimize the weights of LCMV. Simulation results
showed that FA can obtain a better signal to interference plus noise ratio (SINR) results than the
others. However, the convergence speed of FA was found to be much slower than CS and PSO. In [22],
a novel invasive weed optimization (IWO) variant called adaptive dispersion invasive weed optimization
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(ADIWO) was utilized as a beamformer, which achieved lower PSLL than that of minimum variance
distortionless response (MVDR).

In this paper, a novel variant of BPSO called hybrid binary particle swarm optimization (HBPSO)
is proposed, where the global search ability and local optimization ability are both taken into account.
Then, HBPSO is applied to the beamforming of UPA. Simulations demonstrate that by setting the
parameters reasonably, the proposed algorithm can effectively suppress PSLL and form deeper nulls
than that of LCMV. The remaining portions of this paper are organized as follows. In Section 2,
the signal model of UPA and LCMV beamformer are briefly described. Section 3 provides a detailed
introduction to BPSO, HBPSO, and the definition of the fitness function. Results of the simulations
and analysis are provided in Section 4. Finally, our study is summarized in the last section.

2. FORMULATION

2.1. Signal Model

Consider a UPA [23] with W rows and N columns as shown in Figure 1, and the total array elements
are Q = W × N , where the elements uniformly distribute along x-axis and y-axis with spacing
dx = dy = λ/2(λ is the wavelength of signal) [24, 25]. Each element is considered to be an isotropic
source. L narrowband far-field uncorrelated sources sl(k), l = 0, . . . , L − 1, k = 1, . . . ,K, where s0(k)
and s1,...,L−1(k) denote the SOI and interference signals, respectively, and parameter k denotes the k-th
snapshot, arrive at the UPA from DOA (θl, ϕl), l = 0, . . . , L− 1. Here, the azimuth angle and elevation
angle are defined as θ and ϕ, respectively. The measurement yq(k), q = 1, . . . , Q of UPA includes
additive white Gaussian noise (AWGN) n(k) with mean zero and variance σ2

n. Thus, y(k) is modelled
as:

y(k) = a(θ0, ϕ0)s0(k) + [a(θ1, ϕ1)a(θ2, ϕ2) . . .a(θL−1, ϕL−1)]

 s1(k)
...

sL−1(k)

+ n(k)

= a(θ0, ϕ0)s0(k) +As(k) + n(k) = S(k) + I(k) (1)

y

z

x

dx

dy

p(r,  , )
r

φ

θ

θ φ

Figure 1. Element arrangement of UPA.
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where

y(k) = [y1(k) y2(k) . . . yQ(k)]
T (2)

a(θl, ϕl) =
[
ej2π/λ(X1µl+Y1υl)ej2π/λ(X2µl+Y2υl) . . . ej2π/λ(XQµl+YQυl)

]T
(3)

µl = sin(θl) cos(ϕl), νl = sin(θl) sin(ϕl) (4)

A = [a(θ1, ϕ1) a(θ2, ϕ2) . . . a(θL−1, ϕL−1)] (5)

s(k) = [s1(k) s2(k) . . . sL−1(k)] (6)

are, respectively, the array output, the steering vector of the l-th source, the steering matrix of
interferences, and the interference signals. Xq and Yq are the q-th sensor positions in the x-axis and
y-axis, respectively. The vector S(k) = a(θ0, ϕ0)s0(k) represents the desired signal, while the vector
I(k) = As(k)+n(k) denotes the interference plus noise signals. Then, the output of UPA can be written
as:

Y (k) = wHy(k) = wHS(k) +wHI(k) (7)

where w = [w1 w2 . . . wQ]
T is the excitation weight vector. The power for the desired signal can be

calculated as follows:

σ2
S = E

[∣∣wHS(k)
∣∣2] = E

[∣∣wHa(θ0, ϕ0)s0(k)
∣∣2] = Rssw

Ha(θ0, ϕ0)a
H(θ0, ϕ0)w (8)

where Rss = E[s0(k)s
∗
0(k)] is the mean power of the desired signal. Similarly, the output power for the

interference plus noise signals can be written in the following form:

σ2
I = E

[∣∣wHI(k)
∣∣2] = E

[∣∣wH [As(k) + n(k)]
∣∣2]

= wHARiiA
Hw +wHRnnw (9)

where the matrix Rii = E[s(k) sH(k)] represents the correlation of interference signals, and the
matrix Rnn = E[n(k)nH(k)] is the correlation of AWGN, which results Rnn = σ2

nI. Supposing that

the interference signals are uncorrelated with each other, to simplify Eqs. (8)–(9), Rss = 10SNR/10,

Rii = 10INR/10I, and σ2
n = 1 are set, where SNR and INR represent signal to noise ratio and interference

to noise ratio, respectively. Then, the parameter σSINR is given below:

σSINR =
σ2
S

σ2
I

=
Rssw

Ha(θ0, ϕ0)a
H(θ0, ϕ0)w

wHARiiAHw + σ2
nw

Hw
(10)

Finally, σSINR can be expressed in logarithmic units (dB):

σSINR = αSINR dB (11)

2.2. LCMV Beamformer

LCMV beamformer [15] is an adaptive beamforming method that minimizes the output power of Y (k)
meanwhile satisfying one or more linear equality constraints. Thus, the optimal excitation weight vector
w can be obtained by solving the equation:

w = argmin
w

wHRyyw s.t. CHw = f (12)

where Ryy = E[y(k)yH(k)] is the correlation matrix of y(k); C is a Q × L dimensional constrained
matrix; and f is the gain vector corresponding to C. The optimization problem can be solved by the
Lagrange method of multipliers, and the solution is:

wLCMV = R−1
yy C

(
CHR−1

yy C
)−1

f (13)
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3. PROPOSED ALGORITHM

3.1. Binary Particle Swarm Optimization

The search space in BPSO is thought of as a hypercube in which a particle can be moved to a closer or
farther corner of the hypercube by flipping a different number of bits [26]. The steps of BPSO are as
follows:

Step 1. Randomly generate initial matrix Xm and Vm of each particle:

Xm = (xm1, xm2, . . . , xmn), m = 1, 2, . . . ,M (14)

Vm = (vm1, vm2, . . . , vmn), m = 1, 2, . . . ,M (15)

where Xm is the position of each particle by binary values; m represents the number of particles;
and xmn ∈ {0, 1} is set. Vm is the velocities of each particle defined in terms of the probabilities of
corresponding elements in Xm taking value 1. In addition, the velocities of a particle are confined within
vmn ∈ [vmin, vmax]. If vmn is higher than vmax, it is set to vmax automatically. Similarly, if vmn is less
than vmin, vmn is set to vmin. Generally, vmax = 6 and vmin = −vmax are set.

Step 2. Calculate fitness values according to the fitness function.
Step 3. Pb

best
and Gbest can be determined according to the following equations:

Pb
best = (xb1, xb2, . . . , xbn) (16)

Gbest = (xg1, xg2, . . . , xgn) (17)

where Pb
best represents the vector indicating the best position experienced thus far by the b-th particle,

and Gbest is the best fitness value particle obtained so far in the whole swarm.
Step 4. The velocities and positions of particles can be updated using the following formulas:

vt+1
mn = w × vtmn + c1 × rand1 ×

(
xtbn − xtmn

)
+ c2 × rand2 ×

(
xtgn − xtmn

)
(18)

xt+1
mn =

{
1 rand3<Strans

(
vt+1
mn

)
0 otherwise

(19)

where t and t + 1, respectively, represent the current number of iterations and the next iteration; w
denotes the inertia weight parameter; and c1 and c2 are two nonnegative constants called cognitive and
social coefficients, respectively. Generally, w ∈ (0, 1) and c1, c2 ∈ (0, 2) are defined. The parameters
rand1, rand2, and rand3 denote three random values that are uniformly distributed between 0 and 1.
Besides, Strans(v

t+1
mn ) represents the Sigmoid transformation function given by:

Strans(v
t+1
mn ) =

1

1 + e−vt+1
mn

(20)

Step 5. Steps 2–4 are repeated until t reaches the maximum number of iterations.

3.2. Procedure of HBPSO

The original BPSO algorithm converts different velocities into the probabilities that the codes of current
position take 0 or 1 by the Sigmoid (S-shaped) transformation function. When the velocity is positive,
it means xbn > xmn or xgn > xmn. At this time, the probability that each position in Xm takes value 1
increases. On the contrary, if the velocity is negative, it means xbn < xmn or xgn < xmn. In this case,
the probability of each position being value 0 increases. It is worth emphasizing that when the velocities
all become zero, the position xmn will still be changed, and the probability that takes the value 0 or 1
is 0.5. The above property makes BPSO have strong global search ability, and it is not easy to fall into
the local optimum. However, this will affect the local optimization capability and cause the algorithm
not to converge well.

A V-shaped transformation function (see Figure 2) based BPSO algorithm is proposed in [27],
which can overcome the shortcoming that the position will still be changed with a large probability
when the speed becomes zero, so it can improve the local optimization ability and the convergence
property of the algorithm.
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Figure 2. Curves of the transformation function. (a) S-shaped. (b) V-shaped.

Based on the two kinds of transformation functions, the paper proposes a hybrid optimization
method called HBPSO. In the initial stage of iterations, the S-shaped function is used to improve the
global search ability and avoid falling into the local optimum. In the later stage, the V-shaped function
is adopted to improve the local optimization ability. Steps 1, 2, 3, and 5 of HBPSO are the same as the
original BPSO, and step 4 is modified as follows:

Step 4. If the current number of iterations t ≤ ηItermax, the positions are updated by using Eq. (19)
and Eq. (20). When ηItermax < t ≤ Itermax, Eq. (21) and Eq. (22) are used to update the positions:

xt+1
mn =

{ ∼xtmn rand3<Vtrans

(
vt+1
mn

)
xtmn otherwise

(21)

Vtrans

(
vt+1
mn

)
=

∣∣∣∣ 2π arctan
(π
2
vt+1
mn

)∣∣∣∣ (22)

where the parameters η and Itermax are defined as the iteration coefficient and the maximum number
of iterations, respectively. ∼xtmn is the complement of xtmn, and it means that if xtmn = 1 or 0, then
∼xtmn = 0 or 1.

3.3. Definition of Fitness Function

The fitness function F in beamforming can be defined as the inverse of αSINR [28]. The smaller F
becomes, the larger αSINR is, which also means that the mainlobe is steered towards SOI, and the
DOAs of interference signals are set nulls. Besides, we try to reduce the PSLL of the beam pattern in
the process of optimization. In this case, F can be redefined as:

F =
1

αSINR
+ ξ

∣∣∣∣ 1

PSLL

∣∣∣∣ (23)

where PSLL is the value of PSLL, i.e., PSLL= PSLL dB, and ξ denotes the adjustment coefficient used
to balance the minimization of the two terms given in Eq. (23).

4. SIMULATION RESULTS

4.1. Simulation of HBPSO

In order to show the capability of the HBPSO algorithm, 6 benchmark functions [27] are employed (see
Table 1), where n that equals Dim is the dimension of the function; Range indicates the boundary of
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Table 1. Six benchmark functions used in the paper.

Function’s name Test Function Dim Range fopt

Rastrigin f1(x) =
n∑

i=1

[
x2i − 10 cos(2πxi) + 10

]
5 [−5.12, 5.12] 0

Rosenbrock f2(x) =
n−1∑
i=1

[
100(xi+1 − xi)

2 + (xi − 1)2
]

5 [−30, 30] 0

Schaffer f3(x) =
sin2

√
n∑

i=1
x2
i−0.5[

1+0.001
n∑

i=1
x2
i

]2 − 0.5 5 [−100, 100] −1

Schwefel f4(x) =
n∑

i=1
|xi|+

n∏
i=1

|xi| 5 [−10, 10] 0

Ackley
f5(x) = −20 exp

(
−0.2

√
n∑

i=1
x2i /n

)
+20 + e− exp

(
n∑

i=1
cos(2πxi)/n

) 5 [−32, 32] 0

Step f6(x) =
n∑

i=1
(xi + 0.5)2 5 [−100, 100] 0

search space; and fopt is the optimal value of the function. BPSO, VBPSO, and HBPSO are all used
to find the global minimum of the functions in Table 1. The 2-D versions of these benchmark functions
are illustrated in Figure 3. To represent each continuous variable in binary, a string length of 15 bits
for each dimension is used, so the dimension of each particle is 75.

For all BPSO algorithms, the number of particles is set to 30; w decreases linearly from 0.9 to
0.4; the maximum number of iterations is 500; η = 0.4 is set; and vmax is equal to 6. In Eq. (18),
rand1 × (xtbn − xtmn) and rand2 × (xtgn − xtmn) are in the range of [−2, 2]. When c1 = 1.5 and c2 = 1.5

are set, assuming that vtmn is not considered, it is possible to make the result of Eq. (18) vary within the
range of maximum velocity, i.e., vt+1

mn ∈ [−6, 6]. The fitness value of each run is recorded and averaged
over 50 independent runs. To observe the convergence properties more intuitively, the convergence
characteristics in finding the best fitness values of the benchmark functions are shown in Figure 4.
Table 2 shows the best results and average values of 50 independent tests, where ave and best denote
the average values and the best results, respectively.

Table 2. Comparison of BPSO, VBPSO and HBPSO on six benchmark functions over 50 independent
runs, where ave denotes the average values, and best stands for the best results.

Algorithms f1 f2 f3 f4 f5 f6

BPSO
ave 8.4848 484.9910 −0.8899 0.8847 4.7783 32.4144

best 3.5554 57.9217 −0.9589 0.3566 3.2004 8.0425

VBPSO
ave 1.7341 8.3002 −0.9779 0.0067 0.2433 0.8622

best 2.4219e-5 3.7581 −0.9903 0.0018 0.0040 0.5125

HBPSO
ave 1.4939 6.1877 −0.9811 0.0044 0.1407 0.6451

best 2.4219e-5 2.2867 −0.9903 0.0018 0.0040 4.6109e-4

Based on the simulation results shown in Figure 4 and Table 2, the following can be summarized:
(1) If the number of iterations t ≤ ηItermax, the convergence speed of BPSO and HBPSO is faster

than that of VBPSO, so the fitness values are also smaller than VBPSO.
(2) When t reaches the maximum number of iterations, the average fitness values of HBPSO are
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(a) (b)

(c) (d)

(e) (f)

Figure 3. 2-D versions of benchmark functions. (a) Rastrigin. (b) Rosenbrock. (c) Schaffer. (d)
Schwefel. (e) Ackley. (f) Step.
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Figure 4. Convergence characteristics of BPSO, VBPSO and HBPSO algorithms over 50 independent
runs. (a) Rastrigin. (b) Rosenbrock. (c) Schaffer. (d) Schwefel. (e) Ackley. (f) Step.
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smaller than that of BPSO and VBPSO, which demonstrates that the results of HBPSO are closer to
the optimal values of the functions

(3) If the benchmark functions are f1, f3, f4, and f5, the best searched by VBPSO and HBPSO are
consistent. However, the ave of VBPSO over 50 independent tests is higher than that of HBPSO, which
indicates that the optimization performance of HBPSO is more stable. It is worth drawing attention
that the best of HBPSO of f6 is 4.6109× 10−4, which is much closer to the optimal value than that of
VBPSO and BPSO.

4.2. Simulation of Beamforming

The HBPSO algorithm is applied to a UPA with 8 rows and 8 columns, and the total number of array
elements is 64. The parameters used by the algorithm are: the frequency of the narrowband far-field
signals is 6.8GHz, SNR = 10dB, INR = 30 dB, ξ = 0.1, and the rest of the parameters are set as in
Section 4.1. The real part and imaginary part of the excitation weights are encoded respectively, so the
length of the encoded sequence is 1920 bits. The UPA receives an SOI arriving from (θ0, ϕ0) = (0◦, 10◦)
and 16 interference signals arriving from different directions (see Table 3). In the case studied here, an
Intel Core i7 computer with 16GB RAM is used, and the time taken for each execution is measured
around 0.021 seconds. However, this problem can be overcome by using graphics processing units
(GPUs), which can make the algorithm execution 10–100 times faster [29].

Table 3. DOAs of 16 interference signals.

interferences (θi, ϕi) (
◦)

1–4 (−20,−35) (−20,−10) (−20, 16) (−20, 25)

5–8 (0, 30) (−50,−20) (−5,−10) (20, 8)

9–12 (10,−40) (10,−10) (10, 40) (25,−20)

13–16 (40,−45) (40,−30) (40,−15) (30, 40)

The results of HBPSO are compared with the LCMV technique. Initially, the optimal excitation
weights of the two methods are given in Table 4 and Table 5. Meanwhile, the pattern synthesis and
contour plots are shown in Figure 5 and Figure 6, respectively. Both techniques succeed to steer the
peaks towards SOI and at the same time form nulls in the DOA of interference signals. However, the
excitation weights of HBPSO are completely different from that of LCMV, which will essentially affect
the depth of nulls and PSLL of them.

(a) (b)

Figure 5. Comparison of pattern synthesis between LCMV and HBPSO. (a) LCMV. (b) HBPSO.
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Figure 6. Comparison of contour plots between LCMV and HBPSO. (a) LCMV. (b) HBPSO.

Table 4. Optimal excitation weights of LCMV beamformer.

Q wLCMV

1–4 0.0218 + j0.0049 0.0284 + j0.0025 0.0406− j0.0008 0.0459− j0.0061

5–8 0.0391− j0.0059 0.0232− j0.0005 0.0152 + j0.0003 0.0285− j0.0017

9–12 0.0178 + j0.0066 0.0226 + j0.0104 0.0386 + j0.0220 0.0457 + j0.0281

13–16 0.0387 + j0.0233 0.0242 + j0.0153 0.0150 + j0.0113 0.0231 + j0.0157

17–20 0.0167 + j0.0289 0.0167 + j0.0314 0.0238 + j0.0439 0.0270 + j0.0548

21–24 0.0234 + j0.0526 0.0181 + j0.0413 0.0169 + j0.0324 0.0260 + j0.0341

25–28 −0.0028 + j0.0469 −0.0016 + j0.0504 −0.0036 + j0.0687 −0.0108 + j0.0852

29–32 −0.0165 + j0.0824 −0.0132 + j0.0639 −0.0042 + j0.0480 −0.0042 + j0.0462

33–36 −0.0322 + j0.0334 −0.0267 + j0.0401 −0.0297 + j0.0580 −0.0388 + j0.0745

37–40 −0.0449 + j0.0732 −0.0402 + j0.0558 −0.0303 + j0.0403 −0.0272 + j0.0383

41–44 −0.0417 + j0.0103 −0.0335 + j0.0147 −0.0400 + j0.0208 −0.0512 + j0.0263

45–48 −0.0553 + j0.0258 −0.0460 + j0.0193 −0.0327 + j0.0140 −0.0312 + j0.0120

49–52 −0.0278− j0.0023 −0.0188− j0.0006 −0.0284− j0.0032 −0.0447− j0.0061

53–56 −0.0532− j0.0067 −0.0439− j0.0071 −0.0241− j0.0060 −0.0180− j0.0059

57–60 −0.0211− j0.0192 −0.0120− j0.0093 −0.0177− j0.0149 −0.0268− j0.0291

61–64 −0.0319− j0.0335 −0.0312− j0.0261 −0.0237− j0.0158 −0.0200− j0.0098

The sectional drawings of different azimuth angles are shown in Figure 7. According to these
figures, it can be drawn that if θ is 0◦, 10◦, or 40◦, the nulls are formed in the interference directions,
while when θ = −20◦, one null is generated at ϕ = 17◦, which is slightly shifted from 16◦. The reason
may be that the PSLL is added into the fitness function to suppress the sidelobe, which causes the null
to be shifted. However, the depth of the null reaches 62.46 dB at ϕ = 16◦, which is lower than that of
LCMV and still superior to LCMV in terms of interference suppression.

Then, to compare the effect of different adjustment coefficients on the performance of HBPSO, the
beamwidth between mainlobes, PSLL, and the depth of nulls are shown in Table 6, where mainθ and
mainϕ represent the beamwidths between mainlobes in directions of azimuth and elevation, respectively
(the value of beam patterns is reduced to −3 dB). Nulls 1–16 indicate the depth of nulls in the DOAs
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Figure 7. Sectional drawings of different azimuth angles. (a) θ = −20◦. (b) θ = 0◦. (c) θ = 10◦. (d)
θ = 40◦.

of 16 interference signals. The values in bold represent the nulls that are deeper than those of LCMV.
Similarly, the data of HBPSO in Table 6 are the average of 50 independent runs. It can be concluded
that when ξ changes from 0.05 to 0.2, the PSLL decreases gradually, and the number of nulls that are
deeper than the LCMV technique changes from 13 to 4, which is related to the increasing proportion
of PSLL in the fitness function.

The comparison of the beamwidth between mainlobes, PSLL, and the depth of nulls at different
maximum speeds is shown in Table 7. It is obvious that if the maximum speed is small, the performance
of HBPSO degrades severely, and the depth of nulls and PSLL are inferior to LCMV. The reason is that
the particles are unable to search the whole hypercube at a low speed. When the maximum speed is
set to be large, HBPSO can still maintain strong search ability, and the number of deep nulls is slightly
less than that of vmax = 6.

Finally, to verify the performance of HBPSO for different received signals, the parameters of
the algorithm are fixed, i.e., ξ = 0.1 and vmax = 6. The UPA receives a new SOI arriving from
(θ0, ϕ0) = (−5◦,−15◦) and 16 interference signals that are different from before (see Table 8). The
comparison of the beamwidth between mainlobes, PSLL, and the depth of nulls between LCMV and
HBPSO in different SNRs and INRs is given in Table 9. It can be concluded that when the received
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Table 5. Optimal excitation weights of HBPSO algorithm.

Q wHBPSO

1–4 0.0089− j0.0019 0.0103 + j0.0002 0.0124 + j0.0016 0.0146 + j0.0021

5–8 0.0159 + j0.0013 0.0146− j0.0005 0.0101− j0.0012 0.0043− j0.0005

9–12 0.0097 + j0.0067 0.0136 + j0.0099 0.0175 + j0.0131 0.0212 + j0.0156

13–16 0.0229 + j0.0162 0.0206 + j0.0139 0.0145 + j0.0092 0.0076 + j0.0045

17–20 0.0029 + j0.0110 0.0087 + j0.0186 0.0135 + j0.0275 0.0164 + j0.0335

21–24 0.0173 + j0.0342 0.0156 + j0.0298 0.0115 + j0.0212 0.0063 + j0.0119

25–28 −0.0005 + j0.0137 −0.0008 + j0.0264 −0.0018 + j0.0385 −0.0027 + j0.0452

29–32 −0.0038 + j0.0452 −0.0040 + j0.0389 −0.0035 + j0.0272 −0.0029 + j0.0140

33–36 −0.0064 + j0.0128 −0.0141 + j0.0234 −0.0211 + j0.0329 −0.0252 + j0.0377

37–40 −0.0261 + j0.0370 −0.0226 + j0.0311 −0.0158 + j0.0212 −0.0080 + j0.0112

41–44 −0.0121 + j0.0053 −0.0222 + j0.0093 −0.0307 + j0.0136 −0.0347 + j0.0159

45–48 −0.0336 + j0.0159 −0.0276 + j0.0130 −0.0184 + j0.0092 −0.0091 + j0.0068

49–52 −0.0086− j0.0013 −0.0169− j0.0018 −0.0245− j0.0020 −0.0280− j0.0016

53–56 −0.0262− j0.0010 −0.0218− j0.0007 −0.0167− j0.0008 −0.0115− j0.0009

57–60 −0.0029− j0.0031 −0.0070− j0.0071 −0.0109− j0.0095 −0.0131− j0.0090

61–64 −0.0126− j0.0074 −0.0106− j0.0064 −0.0080− j0.0063 −0.0056− j0.0069

Table 6. Comparison of the beamwidth between mainlobes, PSLL and the depth of nulls between
LCMV and HBPSO.

Parameters LCMV
HBPSO

ξ = 0.05 ξ = 0.1 ξ = 0.2

mainθ/mainϕ (◦) 14.78/15.16 15.42/15.33 15.82/15.71 15.67/16.30

PSLL (dB) −17.04 −19.83 −21.62 −22.47

null 1 (dB) −67.51 −80.81 −75.21 −66.09

null 2 (dB) −85.71 −92.74 −68.89 −61.37

null 3 (dB) −52.88 −72.04 −62.46 −54.77

null 4 (dB) −61.86 −73.09 −87.16 −69.58

null 5 (dB) −53.71 −73.90 −58.12 −53.26

null 6 (dB) −90.11 −81.03 −87.81 −66.26

null 7 (dB) −53.77 −68.76 −58.54 −52.97

null 8 (dB) −52.44 −71.41 −65.80 −55.41

null 9 (dB) −62.57 −71.76 −73.52 −62.52

null 10 (dB) −57.81 −75.43 −63.63 −57.05

null 11 (dB) −88.35 −77.34 −64.40 −59.08

null 12 (dB) −76.52 −75.77 −72.91 −60.02

null 13 (dB) −71.87 −83.25 −66.99 −68.94

null 14 (dB) −75.20 −79.66 −80.90 −64.83

null 15 (dB) −73.43 −83.74 −79.05 −81.82

null 16 (dB) −77.62 −77.95 −66.16 −63.49
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Table 7. Comparison of the beamwidth between mainlobes, PSLL and the depth of nulls under different
vmax.

Parameters vmax = 4 vmax = 8 Parameters vmax = 4 vmax = 8

mainθ/mainϕ (◦) 15.18/15.26 15.79/15.73 PSLL (dB) −16.88 −21.17

null 1 (dB) −60.11 −77.68 null 2 (dB) −56.39 −72.35

null 3 (dB) −47.37 −63.17 null 4 (dB) −60.42 −92.26

null 5 (dB) −53.96 −58.12 null 6 (dB) −56.19 −76.78

null 7 (dB) −57.78 −57.69 null 8 (dB) −53.66 −66.62

null 9 (dB) −52.66 −70.48 null 10 (dB) −56.08 −62.10

null 11 (dB) −55.59 −64.23 null 12 (dB) −55.16 −75.92

null 13 (dB) −63.40 −70.18 null 14 (dB) −70.25 −80.69

null 15 (dB) −58.66 −71.86 null 16 (dB) −62.62 −66.78

Table 8. DOAs of 16 interference signals.

interferences (θi, ϕi) (
◦)

1–4 (−10,−40) (−36,−27) (23,−26) (−5, 5)

5–8 (0,−33) (−15, 18) (15,−13) (−25, 21)

9–12 (35, 39) (15, 25) (5,−34) (36,−55)

13–16 (20,−28) (34,−19) (−15,−25) (−16,−20)

Table 9. Comparison of the beamwidth between mainlobes, PSLL and the depth of nulls between
LCMV and HBPSO in different SNRs and INRs.

Parameters
SNR = 10dB
INR = 30dB

SNR = 0dB
INR = 30 dB

SNR = 10dB
INR = 20 dB

LCMV HBPSO LCMV HBPSO LCMV HBPSO

mainθ

mainϕ (◦)
13.82
14.65

14.47
15.21

13.85
14.50

14.36
15.13

14.02
14.58

14.77
15.19

PSLL (dB) −17.79 −20.63 −16.92 −20.32 −17.68 −20.19

null 1 (dB) −60.04 −52.06 −65.9 −55.51 −52.89 −43.41

null 2 (dB) −71.78 −63.78 −70.24 −67.57 −56.86 −54.35

null 3 (dB) −44.55 −48.25 −46.29 −50.59 −40.49 −43.76

null 4 (dB) −51.36 −51.82 −55.03 −55.49 −51.26 −42.54

null 5 (dB) −44.29 −51.19 −46.36 −53.52 −39.17 −47.48

null 6 (dB) −62.73 −63.40 −63.95 −66.97 −52.53 −54.40

null 7 (dB) −66.19 −51.22 −72.82 −54.78 −55.28 −42.29

null 8 (dB) −72.08 −60.99 −68.62 −64.51 −77.31 −52.31

null 9 (dB) −64.19 −84.10 −62.54 −86.48 −57.06 −79.42

null 10 (dB) −70.23 −70.98 −68.42 −73.86 −60.51 −64.72

null 11 (dB) −46.27 −49.58 −49.05 −52.03 −42.50 −45.01

null 12 (dB) −71.93 −77.98 −62.55 −82.11 −64.30 −67.39

null 13 (dB) −44.35 −49.96 −47.38 −51.85 −41.36 −48.41

null 14 (dB) −56.61 −53.41 −59.41 −56.83 −49.27 −44.82

null 15 (dB) −59.27 −62.34 −57.50 −64.64 −51.60 −61.18

null 16 (dB) −43.13 −47.14 −47.49 −50.63 −41.11 −43.59
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signal of UCA changes, different SNRs have little impact on the performance of the HBPSO algorithm.
When the INR changes from 30 dB to 20 dB, the depths of nulls of both LCMV and HBPSO become
shallower. However, the number of nulls that are deeper than LCMV has always remained at a high
level, which indicates that the performance of the HBPSO algorithm is still superior to LCMV while
the received signal is changed.

5. CONCLUSIONS

An improved BPSO algorithm called HBPSO, which combines the S-shaped transformation function
and V-shaped transformation function, has been developed in this paper. In HBPSO, the global search
ability and local optimization ability are both taken into account, which can improve the optimization
performance of the algorithm. Through the tests of six benchmark functions, the results show that
HBPSO can be much closer to the optimal values of the functions. Then, HBPSO is applied to the
beamforming of UPA. In order to reduce the PSLL, a fitness function including the term of PSLL is
constructed. By comparing the pattern synthesis, contour plots, and sectional drawings of different
azimuth angles between LCMV and HBPSO, as well as the effect of different adjustment coefficients
and different speeds on the performance of HBPSO, it can be concluded that by setting the parameters
reasonably, HBPSO succeeds not only to form deeper nulls towards the DOA of interference signals
but also to depress the PSLL more than LCMV does. Therefore, the proposed algorithm seems quite
promising in the beamforming applications of planar antenna arrays.
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