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Wave Propagation in Electric Periodic Structure in Space
with Modulation in Time (2D+ 1)

J. J. Salazar-Arrieta* and P. Halevi

Abstract—We studied electromagnetic wave propagation in a system that is periodic in both space
and time, namely a discrete 2D transmission line (TL) with capacitors modulated in tandem externally.
Kirchhoff’s laws lead to an eigenvalue equation whose solutions yield a band structure (BS) for the
circular frequency ω as function of the phase advances kxa and kya in the plane of the TL. The surfaces
ω(kxa, kya) display exotic behavior like forbidden ω bands, forbidden k bands, both, or neither. Certain
critical combinations of the modulation strength mc and the modulation frequency Ω mark transitions
from ω stopbands to forbidden k bands, corresponding to phase transitions from no propagation to
propagation of waves. Such behavior is found invariably at the high symmetry X and M points of the
spatial Brillouin zone (BZ) and at the boundary ω = (1/2)Ω of the temporal BZ. At such boundaries
the ω(kxa, kya) surfaces in neighboring BZs assume conical forms that just touch, resembling a South
American toy “diábolo”; the point of contact is thus called a “diabolic point”. Our investigation reveals
interesting interplay among geometry, critical points, and phase transitions.

1. INTRODUCTION

Wave propagation in TLs and crystals has been amply studied in one, two, and three spatial dimensions
in [1], the 3D case of crystals being basic to Solid State physics [2]. The band structures of these
crystals depend on intrinsic properties that are difficult to alter. On the other hand, artificial structures
with 1D, 2D, and 3D periodicities, known as “photonic crystals”, were developed and are much more
easily tuned [3]; with appropriate design and long wavelengths in comparison to the unit cell, they can
even display “metamaterial” behavior with backward propagating waves [4]. Effects of the periodicity
have also been researched in detail in 1D TLs in [5]. The band structures of all the aforementioned
systems are periodic in the reciprocal lattice, and they display forbidden frequency bands. In a 2D
low-pass TL, Momeni and Afshari [6] demonstrated that a high quality spatial filter, called “electric
prism”, can be designed. The same group, using nonlinear voltage dependent varactors, showed that
it is possible to modify the spectral content, width, and height of a pulse [7]. They also performed
more detailed studies of generation of harmonics with selective maximization of their amplitudes [8],
of nonlinear constructive interference of voltage waves [9], and of a high-speed quantifier [10]. Further,
Afshari’s group implemented an integrated circuit in CMOS technology so as to improve the amplitude
and width of an incident signal [11]. On the other hand, with merely interchanging the capacitors and
inductors (namely, the dual structure of the low-pass TL), a 2D TL can exhibit “left-handed” behavior
for long wavelengths, giving rise to negative refraction [12]. Eleftheriades’s group combined a low-pass
TL and its dual, thus obtaining a composite right/left handed (CRLH) medium with planar negative
refractive index [13, 14]. It is also possible to achieve negative refraction by means of inductive coupling
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of 2D TLs [15], and the same effect can as well be realized by an anisotropic arrangement of capacitors
and inductors [16].

The parameters of the TLs and crystals can also depend on time. In the case of crystals, they
were called “temporal photonic crystals” [17]. Zurita-Sánchez et al. researched the photonic band
structure of a uniform, modulated dielectric, and optical response of a slab of such a medium [17].
They also reported parametric resonances in a time-periodic slab for critical widths of its thickness [18].
These investigations were generalized to allow for modulation of the permeability, in addition to the
permittivity [19, 20]. The hallmark of all of these cases [17–20] is band gaps in the wave vector, rather
than the frequency. Such gaps were indeed observed for microwaves in a dynamic TL [21, 22]. We also
mention a partial review of temporal photonic crystals and modulated TLs [23]. All of these papers
concern 1D periodicity in space.

Recently, there has been growing interest in spectral singularities in parameter space, and these
singularities were entitled “critical points” [24]. The critical points are singularities at which two or more
eigenvalues degenerate, although critical points also exist in other kinds of problems [25, 26]. Two kinds
of critical points occur in general in eigenvalue problems that depend on system parameters: exceptional
points and “diabolic points” [24, 27]. The exceptional points degenerate where the eigenvalues and
corresponding (linearly dependent) eigenvectors coalesce [24, 28, 29]; these points are sensitive to changes
in the system parameters, and this sensitivity depends on the “order of the point” [30, 31]. These
exceptional points are found in optical systems [24], in systems with parity-time (PT) symmetry [32],
and also in electronic systems with periodic time variation [33]. On the other hand, diabolic points
are accidental degenerations that are found when two branches of eigenvalues with different (linearly
independent) eigenvectors cross [24, 28, 34]. They are characterized by conical symmetry in parameter
space, forming double cones around the point of degeneracy. This structure resembles a South American
toy called “diábolo” [24, 27, 34]; hence the degeneracy point is also known as “diabolic”. These points
are not as sensitive as the exceptional points [30] and are well known in quantum systems with
“anti-crossing” effect [35]. The existence of diabolic points in such systems has been demonstrated
experimentally by means of the Berry phase [34].
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Figure 1. (a) 2D transmission line or temporal electric crystal in the x-y plane with square lattice. (b)
A unit cell with constant inductances L and periodically modulated capacitances C(t). This is a discrete
or granular lattice with each unit cell specified by a pair of integers (x, y) = (p, q). The corresponding
currents Ix,yp,q and voltages Vp,q are indicated.
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In this paper we explore the properties of EM waves that can propagate in our system, a boundless
two-dimensional (2D) TL modulated in time, Fig. 1. While we consider the inductances L to be
constant, the capacitances are assumed to be modulated in time periodically, thus C(t + T ) = C(t),
where T is the temporal periodicity of our system. Thus, we have 2D+1 periodicity, with “+1” denoting
the temporal dimension. Note that all the capacitances are modulated in phase or “in tandem” and
that resistive elements are neglected. While normally the modulations are accomplished by means of
voltage-dependent (non-linear) capacitors or varactors, with all the varactors connected to an external
time-periodic voltage source [22], this will not be taken into account in the present work. Our main
interest lies in the interplay between 2D spatial periodicity and temporal periodicity of a system. That
said, future applications would require these idealized constraints to be replaced by realistic modeling;
specifically, a resistance should be connected in series to each conductor; a conductance to the ground
should be included in each unit cell; and all the varactors should be connected to a single source of
modulation.

In Section 2 we employ Kirchhoff’s laws to derive an eigenvalue equation for EM waves that can
propagate in the “temporal electric crystal” of Fig. 1. This equation is solved in Section 2.1 for the
static case and in Section 2.2 for the limit of vanishing modulation strength. In Section 3 the eigenvalue
equation is solved numerically for the EM band structures ω(kx, ky). This is done for propagation in
the high symmetry [10] and [11] directions in Section 3.1 and for arbitrary direction of propagation in
Section 3.2. We consider three cases of modulation strength: vanishing or “empty temporal lattice”,
“weak”, and “strong”. In Section 4 we explore the diabolic points in the band structures, concluding
the article in Section 5.

2. EIGENVALUE PROBLEM FOR THE ELECTROMAGNETIC BAND STRUCTURE

The object of our investigation is the periodic planar structure of capacitors and inductors shown
in Fig. 1. It is assumed that the capacitors are modulated periodically in time, with this external
modulation being in tandem, so that all the capacitances in the infinite plane of the structure are
given by the same periodic function C(t) at any instant t. We note that for constant (unmodulated)
capacitances Fig. 1 would simply represent a 2D low-pass transmission line.

For simplicity, we assume a square lattice in Fig. 1(a) and define a unit cell in Fig. 1(b), of side
a, and there are one varactor and four inductors. The origin is placed at an arbitrary vortex, and the
position of any vortex is specified by the discrete 2D vector r = apx̂+aqŷ, where p and q run over all the
integers, and x̂ and ŷ are unit vectors in the x and y directions. Thus the pair of integers (p, q) defines
an arbitrary unit cell. Applying Kirchhoff’s current law to the point (p, q) (see notation in Fig. 1(b))
and expressing the voltage over the four adjacent inductors as LdIx,yp,q /dt, where Ix,yp,q is the appropriate
current flowing through the inductor, we obtain the relation

L
d

dt
IC = Vp−1,q + Vp+1,q + Vp,q−1 + Vp,q+1 − 4Vp,q. (1)

Equation (1) has a plane wave-type spatial solution

Vp,q(r, t) = V (t)eik·r (2)

where k = kxx̂ + kyŷ is the 2D wave vector. Taking into account the dependence on time of the
capacitance C(t), the current through it is

IC =
d

dt
[C(t)Vp,q(r, t)]. (3)

Substituting Eqs. (2) and (3) in Eq. (1), the voltage V (t) is found to satisfy the differential equation

d2

dt2
[C(t)V (t)] +

4

L
[sin2(kxa/2) + sin2(kya/2)]V (t) = 0. (4)

Having assumed that the varactors are modulated periodically in time, C(t) can be expanded in a
Fourier series

C(t) =
∑
n

Cne
inΩt (5)
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where the (circular) modulation frequency is Ω = 2π/T ; T is the period of modulation; and n runs
over all integers. The temporal periodicity also implies that the solutions of Eq. (4) must satisfy the
Bloch-Floquet theorem. Namely, the potential V (t) must have the form

V (t) = V (ω, t)e−iωt (6)

where the (circular) frequency ω corresponds to the excitation frequency, and V (ω, t) is periodic in time
with the period T = 2π/Ω. Hence, it can also be expanded in a Fourier series

V (ω, t) =
∑
n

vn(ω)e
inΩt. (7)

At this point it is convenient to normalize the Fourier coefficients of the capacitance Cn, the excitation
frequency ω, and the modulation frequency Ω

Ĉn = Cn/C0, ω̂ = ω/Ω, Ω̂ = Ω/ω0, (8)

Cn is normalized by means of the n = 0 coefficient C0 (equal to the average capacitance); ω is normalized
by the modulation frequency Ω; and Ω itself is normalized by the resonance frequency of a single
unmodulated unit cell (ω0 = 1/

√
LC). Then substituting Eqs. (5)–(8) into Eq. (4) and after some

algebra, we obtain that∑
n

{
Ĉm−n(ω̂ −m)2 −

(
2

Ω̂

)2 [
sin2(kxa/2) + sin2(kya/2)

]
δmn

}
vn = 0, m, n = 0,±1,±2,±3... (9)

with δmn being the Kronecker delta. With the free index m and summation index n running through
all the integer values, Eq. (9) corresponds to an infinite number of homogeneous linear equations for
the infinite number of unknown Fourier coefficients vn of the potential V (t). Thus, this is an eigenvalue
equation; once we set to zero the determinant of the coefficients of vn, it is possible to calculate the
eigenvalues. In a typical problem the reduced frequency ω̂ and a chosen propagation direction k̂ for the
wave are given, and the task is to determine the magnitude of the wave vector k = (ω̂, k̂), namely the
eigenvalue. That also leads to the wavelength λ = 2π/k. Once the eigenvalues have been calculated,
the corresponding normalized eigenvectors vn/v0 can be found from the full Eq. (9). We note that this
equation is periodic in ω̂ with unit period and also periodic in kxa and kya with period 2π.

Importantly, we have not restricted the form (profile) of modulation. Thus, for example, C(t)
could be a harmonic or a square function. We can also consider the special case of static capacitors
and the limiting case of vanishing modulation strength. These two related situations are the topics in
Section 2.1 and Section 2.2.

2.1. The Special Case of Static (Unmodulated) Capacitors

The absence of modulation is equivalent to the assumption of vanishing modulation frequency Ω = 0.
With this substitution in Eq. (9) we get

ω = 2ω0

[
sin2(kxa/2) + sin2(kya/2)

]1/2
. (10)

This is the dispersion relation for the 2D low-pass transmission line [1, 6]. It corresponds to propagation
up to the frequency ω = 2ω0 in the [10] direction (ky = 0) and up to ω = 2

√
2ω0 in the [11] direction

(kx = ky).

2.2. The Limit of Vanishing Modulation Strength (Empty Temporal Lattice)

Unlike case 2.1, here we wish to preserve the modulation, namely Ω ̸= 0, albeit with vanishing strength.
This implies that in Eq. (5) all the Fourier coefficients of the capacitance are taken to vanish, with the

exception of Cn=0. Then C(t) = C0 and in Eq. (8) Ĉn = δn0. Substituting Ĉm−n = δmn in Eq. (9) we
find that

ω̂ = ±
(
2

Ω̂

)[
sin2(kxa/2) + sin2(kya/2)

]1/2
+m. (11)
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This is the dispersion relation for the 2D empty temporal lattice. Once we replace ω̂ by ω/Ω, Ω̂ by
Ω/ω0 (see (8)), m = 0, and take the positive root, Eq. (11) gives a solution that is identical to the static
dispersion relation in Eq. (10). Hence, we realize that the modulation (even when having vanishing
strength) produces two qualitative changes: one is that the low frequency band given by Eq. (10) now
also has an inversion, as given by the negative sign, and the second difference is that both of these
bands also become shifted by positive (negative) integers m upward (downward) in frequency.

The upward (+) m = 0 band and the downward (−) m = 1 band are related in an important
way. It is not difficult to verify that they are reflections of each other about the line ω̂ = 1/2. That
is, ω̂+

0 = 1 − ω̂−
1 where we introduced the notation ω̂±

m for the frequency eigenvalues. The width of all

2D allowed bands (determined by the condition kxa = kya = π in Eq. (11)) is 2
√
2/Ω̂. If Ω̂ = 4

√
2

the extrema of these ± bands will just touch at ω̂ = 1/2. On the other hand, for Ω̂ > 4
√
2 there is

a frequency band gap (centered at ω̂ = 1/2), while for Ω̂ < 4
√
2 the upward and downward bands

overlap, as seen in Fig. 2 (for the [11] direction). Thus, the behavior changes qualitatively, depending
whether the modulation frequency Ω is equal to, greater than or smaller than 4

√
2 times the resonances

frequency ω0.
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Figure 2. Band structures ω̂ versus k in the limit of vanishing modulation, mc → 0 (empty temporal
lattice). The two high symmetry directions of propagation ΓX (or [10]) and ΓM (or [11]) are considered.
In (a) the dotted black curve, blue curve, and red curve are characterized, respectively, by the parameters

Ω̂(= Ω/ω0) = 6
√
2, 4

√
2, and 4. In (b) the magenta, cyan, and gray curves correspond to Ω̂ = 2

√
2, 2,
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2

The corresponding limit in solid state physics (with crystalline potentials V (r⃗) → constant) is
known as the empty lattice model [2]. In the case of modulation in time we call it empty temporal
lattice model [20].

3. ELECTROMAGNETIC BAND STRUCTURES

This section is devoted to solutions of the eigenvalue problem ω̂ = ω̂(kx, ky) based on the eigenvalue
Equation (9) for the normalized variables. We assume that the capacitances are modulated harmonically

C(t) = C0[1 +mc sin(Ωt)] (12)

here mc is the strength of modulation or, briefly, just “modulation”. Because C(t) cannot be negative,
mc ranges from 0 to 1. Throughout our numerical work it will take three values: mc = 0 for the
empty temporal lattice, mc = 0.36 (a relatively weak modulation), and mc = 0.86 (a relatively strong
modulation). In order to make our complex 2D + 1 band structure problem more manageable, first we
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present results for propagation in [10] (with ky = 0) and [11] (with kx = ky) directions and then to
address propagation in an arbitrary direction k in the plane in Section 3.2.

3.1. Propagation in the [10] and [11] Directions

For propagation in the [10] direction, all the voltages along any line of varactors, which is perpendicular
to the x axis, have the same voltage (in magnitude and phase), for which reason there is no current in
the y direction. Because in our simple model we have excluded resistive elements, these plane waves
propagate without attenuation.

Consider first the unmodulated TL (Ω = 0). By Eq. (10) the dispersion relation is simply

ω/ω0 = 2| sin(kxa/2)|. (13)

This is identical to the dispersion relation for vibrational waves in a mono-atomic lattice [2]. For very
low frequencies, ω ≪ ω0, Eq. (13) is identical to the dispersion relation for the ordinary 1D TL and

gives the well-known phase (and group) velocity ω/kx = 1/
√

L̄C̄0, where L̄ and C̄0 are the distributed
(per unit length) inductance and capacitance [5]. With increasing frequency the group velocity dω/dkx
decreases and vanishes at the edge of the BZ kx = π/a. For this value of kx the band reaches its upper
edge at ω = 2ω0.

Now we turn to the case of vanishing modulation strength, mc = 0 in Eq. (12), albeit Ω ̸= 0. And
ky = 0 in Eq. (11) gives

ω̂ = ±
(
2

Ω̂

)
[sin(kxa/2)] +m m = 0,±1,±2... (14)

for this empty temporal lattice model. Taking into account the two adjacent temporal BZs, the width
of the allowed bands is 4/Ω̂. Thus for very large Ω̂ (such that Ω ≫ 2ω0), the bands shrink to negligible
width, while in the opposite limit the bands overlap so that no frequency is prohibited for propagation.
It is instructive to single out the ω̂+

0 and ω̂−
1 bands. These bands are reflections of each other about the

line ω̂ = 1/2, as seen in Fig. 2 for series of values of Ω̂, as we mentioned before. If Ω̂ = 4 the ω̂+
0 and ω̂−

1
bands just touch in [10] direction. For a band gap to form, it is necessary to have a bandwidth smaller

than 1/2, namely Ω̂ > 4. On the other hand, for Ω̂ < 4, the upward and downward bands overlap.
Because of the unit periodicity of ω̂, this behavior is repeated in all the temporal BZs, one of which is
depicted in Fig. 2. Note that, for any value of Ω̂, the ω̂+

0 bands dispersion is given by Eq. (13) for the
unmodulated TL. For the [11] direction, the band structure has the same qualitative behavior; however,

the aforementioned values of Ω̂ are multiplied by
√
2, as seen in Fig. 2.

In order to obtain the spatio-temporal band structure for finite modulation strength, we solved
the eigenvalue Equation (9) (with ky = 0). The results are pictured in Fig. 3 for two spatial BZs
(−2π ≤ kxa ≤ 2π) and one temporal BZ (0 ≤ ω̂ ≤ 1). The modulation parameter mc is represented by
three values: mc = 0 (empty temporal lattice) dotted black line, mc = 0.36 (weak modulation) red line,
and mc = 0.86 (strong modulation) blue line. The other parameter, namely the reduced modulation

frequency Ω̂ takes on nine values, starting with Ω̂ = 8.1939 in Fig. 3(a) and descending in unequal steps

to Ω̂ = 1.8849 in Fig. 3(i). The periodicity in kxa (with period 2π) and the reflection symmetry about
ω̂ = 1/2 are evident. Although not shown, the same band structure is to be repeated periodically into
other temporal BZs such as 1 ≤ ω̂ ≤ 2.

Generally speaking, in Fig. 3, the band structures for mc = 0.36 and mc = 0 are very similar, so
indeed, modulations mc ≤ 0.36 can be considered “weak”. Nevertheless, qualitative differences can be
observed in some cases in the region ω̂ ∼ 1/2, especially in Fig. 3(e) and Fig. 3(f). On the other hand,

the band structures for mc = 0.86 differ in an important way for all Ω̂ from those for mc = 0.36, thus
justifying the term “strong modulation” for mc = 0.86. We confirm the behavior found in Fig. 2 for
mc = 0 that a frequency gap exists for Ω̂ > 4 increasing in width with Ω̂, and there is no wave vector
gap for any value of Ω̂.

In the case of weak modulation (red lines), we find an ω-gap for Ω̂ > 4.5201, see Figs. 3(a)–3(d).

The gap closes for Ω̂ = 4.5201, Fig. 3(e) (compared with Ω̂ = 4 in the case of mc = 0). For Ω̂ < 4.5201,
see Figs. 3(f)–3(i), there are no more frequency gaps; on the other hand, wave vector gaps develop. For
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Figure 3. Atlas of band structures for propagation in the [10] (or ΓX) direction; two spatial BZs and

a single temporal BZ is presented. Each subfigure is characterized by some value of the parameter Ω̂,
in descending order from Ω̂ = 8.1939 in (a) to Ω̂ = 1.8849 in (i). The modulation parameter mc takes
the values 0 (empty temporal lattice), 0.36 (weak modulation), and 0.86 (strong modulation) for the
dotted black lines, red lines, and blue lines, respectively. The horizontal yellow bands indicate forbidden
frequency bands, light yellow for mc = 0.86, butter yellow for mc = 0.36, and deep yellow for mc → 0.
The vertical green bands indicate forbidden wave vector bands, strong green for mc = 0.86, and lemon
green for mc = 0.36. (a) Ω̂ = 8.1939, (b) Ω̂ = 7.1658, (c) Ω̂ = 6.1240, (d) Ω̂ = 5.1430, (e) Ω̂ = 4.5201,

(f) Ω̂ = 4.0000, (g) Ω̂ = 3.4414, (h) Ω̂ = 2.4496, (i) Ω̂ = 1.8849.

Ω̂ = 4 in Fig. 3(f), these gaps border the BZ edges k = ±π/a, however move away from the edge and

become narrower as Ω̂ decreases further, Figs. 3(g)–3(i). The maximum of the + band steadily increases

as Ω̂ decreases, eventually penetrating into the second temporal BZ, see Fig. 3(i). An identical lobe
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penetrates from below into the first BZ; corresponding symmetrical behavior can also be observed for
the − bands (“+ band” that curves upward and a “− band” curving downward).

In the case of the strong modulation (blue lines), frequency gaps exist only for Ω̂ > 7.1658, although

much narrower than that for weak modulation, see Fig. 3(a). For Ω̂ = 7.1658, the gap closes, as observed

in Fig. 3(b), and for Ω̂ < 7.1658 wave vector gaps develop, Figs. 3(c)–3(i). These are considerably wider

than that for weak modulation. For Ω̂ = 3.4414 (Fig. 3(g)), a separate structure develops at the spatial

BZ edges, and as Ω̂ is decreased, the extrema of this structure move further apart, until for Ω̂ = 2.4496
in Fig. 3(h) they just touch the boundaries of the temporal BZ at ω̂ = 1 and ω̂ = 0. For still smaller

Ω̂ penetration of lobes from neighboring temporal BZs can be seen, as noted for the weak modulation,
but now much stronger.

We call attention to Fig. 3(e) and Fig. 3(b) where for the modulation 0.36 and 0.86, respectively,

neither an ω-gap nor a k-gap develops. The corresponding values of the modulation frequency Ω̂, 4.5201
and 7.1658, are transition points between ω-gaps for greater values of Ω̂ and k-gaps for smaller values
of Ω̂. Section 4 will be devoted to such “phase transitions”.

For the [11] direction, again, the qualitative behavior is the same, however with the special values

of Ω̂ multiplied by
√
2.

3.2. Propagation in an Arbitrary Direction of the Wave-vector k in the x-y Plane

In this subsection, we generalize the former Section 3.1 to propagation in any direction k in the plane of
the 2D TL, not necessarily of high symmetry. First consider the case of static capacitors (C(t) = C0),
namely a 2D low pass TL. The dispersion is given by Eq. (10), and we present it as both isofrequency level
contours (like in [1]) ω/ω0 = const in Fig. 4(a) and a three-dimensional surface ω/ω0 = ω(kxa, kya)/ω0

in Fig. 4(b). The normalized frequency ω/ω0 varies from 0 to 2
√
2, and these limiting values correspond

to the band edges. In Fig. 4(a), subsequent contours vary by δω/ω0 = 0.2 steps. For ω/ω0 ≤ 1, the
contours are nearly circular; however as the (square) BZ edges are approached, the anisotropy becomes
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Figure 4. Dispersion ω(kxa, kya) for 2D spatial periodicity with no temporal modulation (Ω = 0). (a)
14 isofrequency contours from ω/ω0 = 0.2 to ω/ω0 = 2.8 with increments of 0.2. (b) Three-dimensional
rendition of the same. The irreducible BZ ΓXM is shown and the high symmetry directions ΓX (ΓM)
are marked in red (blue).
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apparent, especially upon comparison of the ⟨10⟩ and ⟨11⟩ directions. As we noted previously, for the
⟨10⟩ direction propagation is limited to frequencies below ω/ω0 = 2; at this point the isofrequency
contour is a square. For ω/ω0 > 2, the curvature changes sign, and for ω/ω0 ≈ 2

√
2, the isofrequency

contours become circles centered at the BZ edges (kxa, kya) = (±π,±π).
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Figure 5. Atlas of band structures for the 2D temporal electric crystal, for 9 values of the parameter Ω̂.
Weak modulation (mc = 0.36) is considered, presenting a single spatial BZ and a single temporal BZ.
In (a) the frequency gap is projected in gray at the surfaces kxa = π and kya = π. In (c)–(f) the wave

vector gaps are projected in gray at the ω̂ = 0 surface. (a) Ω̂ = 8.1939, (b) Ω̂ = 6.3923, (c) Ω̂ = 5.6198,

(d) Ω̂ = 5.0656, (e) Ω̂ = 4.5201, (f) Ω̂ = 4.0232, (g) Ω̂ = 3.6636, (h) Ω̂ = 2.9133, (i) Ω̂ = 1.9869.
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For finite modulation frequency Ω, if we divide the ordinate ω/ω0, in Fig. 4(b), by Ω̂(= Ω/ω0), we
get reduced frequency ω̂, and this surface just represents the ω̂+

0 band of the empty temporal lattice
limit mc = 0. Reflecting this surface in ω̂ = 1/2, we get the corresponding ω̂−

1 band for vanishing
modulation. Translating these surfaces in the vertical direction by all the integers m, the entire 2D+ 1
band structure of the empty temporal lattice can be obtained, as follows from Eq. (11). Giving the

parameter Ω̂ a series of values, the generalization of Fig. 2, for any propagation direction, is obtained.
For finite modulations mc, we obtain the 2D + 1 band structure by solving the eigenvalue

Equation (9). For weak modulation, mc = 0.36, the “atlas” of Fig. 5 shows the qualitative changes that

occur as the parameter Ω̂ is decreased in unequal steps from the value 8.1939 in Fig. 5(a) to 1.9869 in
Fig. 5(i). This can be considered a generalization of Fig. 3 (for the red lines) for propagation in the
⟨10⟩ directions to propagation in an arbitrary direction in the x-y plane.

For Ω̂ > 6.3923, there is a frequency gap (for any direction k) centered at ω̂ = 1/2, and for

Ω̂ = 8.1939 the gap is of width ∼ 1/4, as determined by the values of ω̂ of the + and − bands at

the vertices of the BZ, see Fig. 5(a). For Ω̂ = 6.3923 in Fig. 5(b), these bands just come to touch at

the vertices, thus obliterating the band gap. Between Ω̂ = 6.3923 and Ω̂ = 3.6636 (Figs. 5(c)–5(g))
wave vector forbidden bands are created; these correspond to regions of the (kx, ky) plane which are
excluded from propagation (see shaded areas in the ω̂ = 0 plane) for any value of ω̂. In Fig. 5(c),

for Ω̂ = 5.6198, these k-gaps have the form of small, almost circular, disks that are centered at the
vertices of the spatial BZ. Lowering Ω̂ further, to Ω̂ = 5.0656 in Fig. 5(d), these disks become annular.

In Fig. 5(e), for Ω̂ = 4.5201, these annular regions increase becoming quasi-square. At the same time,
a rhomb-like band develops centered at the Γ point and ω̂ = 1/2. This band just touches the X points,
Fig. 5(e). By symmetry, in the neighboring zones there are identical “rhombs” touching the same zone
edges from the other side. Because this structure resembles a South American toy called “diábolo”,
such shared points are sometimes referred to as “diabolic” [34]. The value Ω̂ = 4.5201 ≡ Ω̂∗ marks

the transition from a partial ω̂-gap (for propagation in the ⟨10⟩ directions, see Fig. 3(e)) for Ω̂ > Ω̂∗

to complete k-gaps for Ω̂ < Ω̂∗ corresponding to a form of phase transition [24, 27], see Section 4. In

Fig. 5(f), for Ω̂ = 4.0232, the k-gaps become distanced from the M points of the BZ and get closer

to the zone center. Proceeding from Ω̂ = 3.6636 in Fig. 5(g) to Ω̂ = 2.9133 in Fig. 5(h), and then to

Ω̂ = 1.9869 in Fig. 5(i), annular forbidden k bands form around the Γ point, gradually becoming more

circular, narrower, and smaller. In Fig. 5(h), for Ω̂ = 2.9133, the bands at the M points reach the
limits of the temporal BZ at ω̂ = 0 and ω̂ = 1, resembling petals of a flower. Finally in Fig. 5(i), with

Ω̂ = 1.9869, other parts of the band also reach the same limits.
As we saw in Section 3.1, the qualitative changes that occur for weak modulation also occur for

others modulations.

4. DIABOLIC POINTS

We recall Fig. 5(b) where a particular set of parameters (mc = 0.36 and Ω̂ = 6.3923 ≡ Ω̂∗) marks a
transition from a frequency gap (as in Fig. 5(a)) to wave vector gaps (as in Fig. 5(c)). The same behavior
is, of course, displayed in neighboring BZs; the geometry in (ω̂, kxa, kya) space is better appreciated by
centering the figure at the M-point (kxa = kya = π), see Fig. 6(a). Similarly, for another specific set of

parameters (mc = 0.36 and Ω̂ = 4.5201 ≡ Ω̂∗), a transition occurs from propagation forbidden in the Γ
X direction (namely, a partial ω-gap, Fig. 5(d) and Fig. 3(d)) to propagation in this direction (namely,
a k-gap, Fig. 5(f) and Fig. 3(f)). Again, it is instructive to observe this behavior by a translation to the
X-point, see Fig. 6(b). In both Fig. 6(a) and Fig. 6(b), two conical surfaces touch at a high symmetry
point, respectively M- and X-points and at ω̂ = 1/2. These surfaces resemble a South American toy
called “diábolo” and are, hence, sometimes referred to as “diabolic points” [34]. They correspond to

critical values of the parameters (mc, Ω̂
∗) of our 2D + 1 system [24].

Fig. 5 and Fig. 6 suggest that diabolic points are obtained only at BZ edges in high symmetry (ΓX
and ΓM) directions, and indeed, we have not found such points for other directions of propagation.
It is worth noting that ω̂ = 1/2 is also a BZ edge, corresponding to the temporal periodicity. Solving
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Figure 6. “Diábolos” formed at the temporal BZ edge ω̂ = 1/2 and the spatial high-symmetry BZ
edges M in (a) and X in (b). Note the correspondence between (a) and Fig. 5(b) and between (b) and
Fig. 5(e) and Fig. 3(e). The black lines emphasize the high symmetry directions [11] and [10].
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Figure 7. Eigenvalues of (9) for ω̂ = 1/2 and (kxa, kya) = (π, 0), namely the X point. For every value

of the modulation mc there is an infinite number of solutions for Ω̂, however only the greatest values
(red dots on the rightmost curve) are critical values Ω̂∗.

Eq. (9) for ω̂ = 1/2 at the X-point, we find an infinite number of eigenvalues Ω̂ for every given value of

mc, but only one of these values, namely Ω̂∗, corresponds to a critical point, as can be seen in Fig. 7.
In the limit mc = 0 in Eq. (9) yields a very simple result for the eigenvalues, namely Ω̂ = 4/n, with n
being an odd integer.

For a deeper understanding of the transition involved in the neighborhood of a diabolic point, in
Fig. 8(a) we present a vertical cross-section of Fig. 6(a) in the [11] direction. While we fix mc at the

value 0.36, Ω̂ varies in tiny steps of just ∆Ω̂ = 7 × 10−5. Considering the sequence of curves 1, 2, ...,
11 (corresponding to gradually decreasing values of Ω̂), a qualitative change in behavior occurs as we

proceed from values Ω̂ > Ω̂∗ = 6.392389 (curves 1 to 5) to values Ω̂ < Ω̂∗ (curves 7 to 11). Namely, an

infinitesimal decrease of Ω̂ causes frequency gaps to give way to wave vector gaps. The intersection of
the line 6 thus represents a critical point; for Ω̂ = Ω̂∗ there is neither an ω̂-gap nor a k-gap. This can
be considered as a phase transition for no propagation (for Ω̂ > Ω̂∗) to propagation (for Ω̂ < Ω̂∗). It is
worth noting that the width of the band gaps (both ω̂ and k) increase as the critical point is approached.
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Figure 8. Transversal cut of Fig. 6(a) in the [11] direction with zoom in the neighborhood of

the diabolic point with small increments ∆Ω̂ = 7 × 10−5. The Ω̂ values corresponding to the 11
lines are (1)Ω̂ = 6.392739, (2)Ω̂ = 6.392669, (3)Ω̂ = 6.392599, (4)Ω̂ = 6.392529, (5)Ω̂ = 6.392459,

(6)Ω̂∗ = 6.392389, (7)Ω̂ = 6.392319, (8)Ω̂ = 6.392249, (9)Ω̂ = 6.392179, (10)Ω̂ = 6.392109,

(11)Ω̂ = 6.392039. The diabolic point is given by the intersection of the lines 6 and is obtained for

Ω̂ = Ω̂∗ = 6.3923894. The ω̂(ka) lines are rendered in red for Ω̂ < Ω̂∗ and in green for Ω̂ > Ω̂∗. (b)

Three-dimensional surface Ω̂(ω̂, ka) corresponding to (a). In this representation the diabolic point of
(a) becomes a saddle point of the surface.

Figure 8(b) is a three-dimensional rendition of Fig. 8(a) with Ω̂ plotted in the vertical direction.
In this representation, a critical point becomes a saddle point.

5. CONCLUSIONS

In this paper, we explored electromagnetic wave propagation in a system that is periodic both in
space (in a plane) and in time, namely a discrete 2D low-pass TL with capacitors that are periodically
modulated in tandem, see Fig. 1. Kirchhoff’s laws lead to an eigenvalue problem whose solution is an
electromagnetic band structure for the frequency ω as function of the phase advances kxa and kya,
see Fig. 5. The surfaces ω(kxa, kya) are periodic in ω with period Ω and in kxa and kya with period
2π. These exotic band structures can display forbidden ω bands, forbidden k bands, both, or neither,
depending on the values of two parameters: the strength of modulation mc of the capacitances and the
reduced modulation frequency Ω̂ = Ω/ω0 (where ω0 is the LC resonance frequency of a unit cell). It

turns out that for every value of mc there is one critical value Ω̂∗ for the [10] direction and another

critical value, namely
√
2Ω̂∗, for the [11] direction at which a kind of phase transition occurs from

frequency stopbands to wave vector forbidden bands: no wave propagation for Ω̂ > Ω̂∗ giving way to
propagation for Ω̂ < Ω̂∗, see Fig. 8(a). We find such critical behavior only at the high symmetry points
X and M in the 2D spatial BZ and ω = (1/2)Ω, namely a boundary of the temporal BZ. At such
boundaries, the ω(kxa, kya) surfaces have the form of the toy “diábolo”, so that such critical points are

also known as “diabolic points”. Moreover, surfaces such as Ω̂(ω, kxa) exhibit a saddle point just at

Ω̂ = Ω̂∗, see Fig. 8(b).
Our paper gives a glimpse into the rich propagation characteristics of waves in systems that are

modulated periodically in time, as well as in space. It is about periodicity and symmetry in space and
time and consequent critical phenomena. Besides, our system is an emerging platform that provides
facility to investigate the diabolic points and their exotic phenomena. A generalization of the 2D spatial
periodicity to 3D spatial periodicity is underway. Exploration of parametric resonances for finite size
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modulated transmission lines [18] and associated energy transfer phenomena would be of great interest.
The experimental counterparts of such studies could be readily realized in the microwave and, perhaps,
terahertz regime. And, we expect similar behavior to occur in modulated granular phononic crystals.

As a final remark, validation of the theoretical findings presented here would be very desirable. This
would have to involve realistic modeling to replace the bare-bone model of Fig. 1, namely, resistances
connected in series to each inductance, conductances to the ground in each unit cell, and an AC
modulating source attached to all the varactors. Such a 2D dynamic transmission line would have
to be excited by a plane wave source, so as to simulate an experiment by calculating the reflection
and transmission coefficients. Finally, these coefficients should be measured, along with the underlying
electromagnetic band structure.
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