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Robust CFAR Detection of Noise Jamming in Coherent Radars
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Abstract—This paper introduces a robust constant false alarm rate (CFAR) method to detect
continuous noise jamming in coherent radar systems with a single antenna having no pattern control.
The proposed detector is robust to interfering signals such as strong spikes from neighboring radars and
returns from targets of interest and is resistant to land, sea, and weather clutter. The detector operates
on data vectors extracted from a real-valued Range-Doppler data matrix generated at the output of
Doppler processing for each azimuth cell within the entire scanning sector. Each data vector consists of
statistically independent range samples associated with one of the specified Doppler bins. These samples
are selected from non-overlapping range intervals allocated within the noise-dominant region in the full
range coverage to mitigate the effect of clutter on the detector’s performance. To perform jamming
detection for each cell under test (CUT) in the current antenna scan, the proposed detector uses the
CUT-associated data vectors generated in the current antenna scan and CFAR reference data vectors
generated in the previous antenna scan. These reference data vectors are extracted from Range-Doppler
data matrices associated with reference azimuth cells uniformly distributed within the entire scanning
sector. The proposed detector achieves robustness to interfering signals by using a two-step detection
algorithm. The first step performs censored video integration (CVI) for the CUT and reference data
vectors and individual adaptive CFAR detection in each specified Doppler bin. The detector applies the
“m-of-n” detection strategy to a complete set of decisions declared by the individual CFAR detectors
in the second step. This strategy provides immunity to the simultaneous presence of interfering signals
in the specified Doppler bins. The robustness of the proposed noise jamming detector is verified using
Monte-Carlo simulations.

1. INTRODUCTION

One of the effective electronic countermeasures (ECM) techniques commonly used against radar systems
is continuous-wave noise jamming [1, Chapter 12] that prevents the detection of targets by raising the
receiver noise level. Consequently, the radar detection performance degrades due to the increase in the
CFAR threshold that adapts to a higher noise level. Moreover, the presence of noise jamming denies
accurate measurements of the target’s range and radial velocity.

The most common types of noise jamming techniques are spot noise and barrage noise. A spot
noise jammer, which is used when the carrier frequency and the bandwidth of the victim radar are
known, has a relatively narrow spectral band and may be effective if its band matches the radar signal
bandwidth. If the radar signal bandwidth is unknown to the jammer or the radar changes carrier
frequency, the spot jammer loses its effectiveness. The jammer must then employ a wide frequency
band that covers the expected radar frequency extent. Such a jammer, called a barrage noise jammer,
needs more power than a spot jammer because only some portion of its power lies in the instantaneous
bandwidth of the radar receiver. Thus, an effective ECCM technique against noise jamming is varying
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radar frequency since it forces the jammer to spread its energy over the broader bandwidth, reducing
the power density of jamming if the mean jammer power remains constant at the input of the radar
receiver. Frequency changing by the radar can be performed in a manner of frequency agility when
radar carrier frequency changes on a pulse-to-pulse basis for non-coherent signal processing modes and
a dwell-to-dwell basis when radar echoes received over dwell intervals are coherently processed. Another
technique for coherent radars is frequency hopping, when radar changes transmit frequency whenever
it detects noise jamming.

The mentioned ECCM techniques are especially suitable for radars we address in the context of
this paper: coherent radars with a single antenna having no adaptive pattern control.

To cope with the radar performance degradation caused by noise jamming, a method is required,
which would allow to reliably detect the presence of jamming at the specified false alarm rate, i.e., the
method has to possess the CFAR property. Also, such a method may be supplemented with a jamming
power estimator and, if required, with a direction of arrival estimator. Once the noise jamming is
detected and measured, the radar can select the least-jammed carrier frequency (or a set of frequencies)
based upon the measured jamming power and implement frequency hopping.

Over the past decades, most published works have addressed antenna-based methods to deny noise
jamming attacks; see [1, Chapters 9 and 12], some recent works [2–4], as well as references therein.
However, these methods are designed for radar systems with adaptive antenna arrays and, therefore,
can not be applied to the radars we address in the context of this paper.

Work [5] introduced a jamming detection method that possesses the CFAR property and can be
used in the radars we address herein. This method estimates the statistical distribution of the received
signal: an amplitude histogram represents this estimate. Then, it compares the estimated distribution
with a reference distribution specified for a predetermined signal model. The result of this comparison
is a deviation of the measured distribution from a specified reference distribution. The presence of
jamming is determined according to the deviation X: if the deviation exceeds a specified threshold,
that is X ≥ X(n, β), then the presence of jamming is declared. The threshold X(n, β) is determined
depending on the total number of the received signal samples n that is used for computing the amplitude
histogram and on a given probability of false alarm β.

Although the method [5] has the CFAR property, it is not resistant to interfering signals and
clutter. Indeed, in the presence of strong clutter returns or interfering signals from neighboring radars,
the received signal distribution significantly deviates from the specified reference distribution. Hence,
the deviation X computed for the actual received signal may exceed the specified threshold X(n, β);
therefore, the detection of noise jamming is declared even if no jamming is present.

A robust noise jamming detection method for noncoherent radars with a single nonadaptive antenna
was proposed in [6]. This method applies order statistics CFAR to a sequence of azimuthal samples
resulted from censored video integration in range for each azimuth resolution cell within the full radar
coverage. As shown in [6], the method is reasonably robust to strong spikes and provides reliable noise
jamming detection. However, it has no immunity to clutter in the cell under test and CFAR reference
data.

The purpose of this paper is to develop a new noise jamming detection method for coherent radars.
The new method has to be capable of: 1) detecting, with high probability, the presence of continuous
noise jamming; 2) maintaining the specified constant false alarm rate; 3) being robust to strong spikes
such as interfering signals from neighboring radars and targets of interest, and 4) being immune to the
land, sea and weather clutter.

This paper is organized as follows. Section 2 briefly reviews some basics concepts we use in designing
the new method. Section 3 addresses a non-adaptive noise jamming detector (NJD) which assumes that
the receiver thermal noise power is known. For no interference scenarios, the NJD detector provides the
upper detection performance bound for an adaptive noise jamming detector (AJD) we shall introduce
in Section 4. We design the AJD detector under the condition that the receiver thermal noise power
is unknown. Section 3 analyzes the performance of two versions of the NJD detector: the NJD-CVI
detector employing the censored video integration (CVI) and the NJD-FVI detector using the full video
integration (FVI). This analysis compares their jamming detection performance in a no interference
scenario and the robustness of their false alarm performance to strong spikes in the CUT data. Section 4
analyzes the AJD-CVI’s detection performance in a no interference scenario and the robustness of its
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detection performance to the presence of strong spikes and noise jamming in the CFAR reference data.
We also analyze the robustness of the AJD-CVI’s false alarm performance to strong spikes in the
CUT data. Whenever relevant, we compare the AJD-CVI’s performance with that of NJD-CVI. The
conclusion is given in Section 5. Appendix A describes an adaptive CFAR method exploited by the
AJD-CVI detector.

2. BASIC CONCEPTS

Figure 1 shows a two-dimensional search radar that looks for surface targets in azimuth and range using
a fan antenna beam. The radar antenna rotates to scan the entire azimuthal area around the radar
(360◦ coverage in azimuth) and receives returns from some range interval for each azimuth bin, which
angular extent is equal to the antenna beamwidth in azimuth.

360° coverage 

     Azimuth 

    Beamwidth Antenna 

Figure 1. Exemplary scan pattern for surveillance radar.

Signals received by the radar antenna during the dwell time corresponding to each of naz azimuth
resolution cells (azimuth bins) are amplified, downconverted, digitized (converted into digital samples),
pulse compressed (matched filtering), coherently integrated with Doppler processor followed by a square-
law detector, and then collected into an L-by-N Range-Doppler data matrix: L is the number of range
bins within the specified range interval, and N is the number of coherently integrated pulses (this is
also the number of Doppler bins) within the dwell time interval. Such a Range-Doppler data matrix
represents radar-generated information on a specific environmental scene associated with a particular
azimuth cell from the full coverage in azimuth.

Figure 2 shows an example of the Range-Doppler data matrix for L � 1 and N = 16, assuming
no continuous noise jamming in a particular azimuth bin associated with this data matrix. In addition
to the receiver thermal noise, which samples occupy all Range-Doppler bins, this data matrix contains
samples representing a specific radar scenario. In this scenario, there are four targets (the target-
associated samples appear as black circles at Doppler bins 3, 8, 9, and 11), and extended in range sea
clutter mainly concentrated in Doppler bin 9 (zero Doppler), and an extended in range rain clutter
concentrated in Doppler bin 5.

The receiver thermal noise is a zero-mean Gaussian random process [7, Chapter 2]. At the input
of a square-law detector, the I and Q samples of the thermal noise can be modeled as statistically
independent Gaussian random values, which probability density function wn(x) is given by

wn(x) =
(√

2π (σ2
n/2)

)−1
exp
(
− x2

2 (σ2
n/2)

)
(1)

where σ2
n is the receiver thermal noise power after Doppler processing. The magnitude-squared noise

samples at the output of the square-law detector (SLD) are independent exponentially distributed (i.e.d.)
random values (r.v.) with the probability density function pn(x) [7]

pn(x) =
1
σ2

n

exp
(
− x

σ2
n

)
(2)
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Figure 2. Example of Range-Doppler data matrix.

The model for noise jamming is also a zero-mean white Gaussian process statistically independent of
the receiver thermal noise. Therefore, when the noise jamming with power σ2

j is present, the total
noise power increases to σ2

n + σ2
j and the resulting I and Q samples at the input of the SLD are also

independent Gaussian values, which probability density function is

wn+j(x) =

(√
2π
(
[σ2

n + σ2
j ]/2
))−1

exp

⎛
⎝− x2

2
(
[σ2

n + σ2
j ]/2
)
⎞
⎠ (3)

Thus, in the presence of noise jamming, the magnitude-squared noise samples at the SLD output are
i.e.d.r.v., which probability density function is

pn+j(x) =
1

σ2
n + σ2

j

exp

(
− x

σ2
n + σ2

j

)
(4)

or

pn+j(x) =
1

σ2
n(1 + JNR)

exp
(
− x

σ2
n(1 + JNR)

)
(5)

where JNR = σ2
j /σ

2
n is the jamming-to-noise ratio (JNR).

The method proposed in this paper is robust in the sense of immunity to strong spiky signals (such
as asynchronous spikes from neighboring radars), returns from targets of interest, and the land, sea,
and weather clutter. For the NJD and AJD detector, the term “robust” indicates its ability to maintain
the overall probability of false alarm PFA at some low level despite the presence of one or more strong
spikes and clutter in the CUT. For the AJD detector, this term also reflects its ability to maintain
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reliable detection performance (overall probability of detection PD) in the presence of strong spikes,
noise jamming, and clutter in CFAR reference data.

To provide robustness to strong spikes, the methods proposed in this paper employ the so-called
censored video integration (CVI) [8, 9]. As shown in [8], CVI is immune to spikes yet suffers a small
loss relative to the full video integration (FVI) that sums all Q samples in each vector representing data
associated with an azimuth CUT or with CFAR reference data. Moreover, CVI provides the minimal
SNR loss relative to FVI among all robust integration techniques analyzed in [9].

The CVI-integrator works as follows. Let z1, z2, ..., zQ be an initial set of samples in one of the
data vectors. First, it sorts the samples according to their magnitudes to obtain the ordered sequence
of samples x1 ≤ x2 ≤ ... ≤ xQ. After sorting, it integrates the lowest Kc samples: however, this is not
a simple summation. Whereas each of the lowest Kc − 1 ordered samples is given a unit weight, the
Kc-th ordered sample is given a weight Q − Kc + 1. Therefore, the CVI-integrator output is

Y = (Q − Kc)xKc +
∑Kc

i=1
xi (6)

where Kc is the highest order used in the censoring, Kc ∈ {1, 2, ..., Q}. It is clear that CVI provides
immunity against Q−Kc strong spikes. Additionally, it possesses the following important property. As
has been proven in [10, 11], when z1, z2, ..., zQ are i.e.d.r.v. the statistical distribution of Y in Eq. (6)
is the same as that for the sum of only Kc i.e.d.r.v. without sorting. We use this property to derive the
detection performance for noise jamming detectors with CVI.

3. NONADAPTIVE NOISE JAMMING DETECTOR

3.1. Block Diagram

In this section, we assume that the receiver thermal noise power σ2
n is known. The noise jamming

detection algorithm designed under this assumption is a non-adaptive jamming detector (NJD). For no
interference scenarios, the NJD detector achieves ultimate jamming detection performance that serves as
a reference for an adaptive jamming detector (AJD) that we shall consider in Section 4. Figure 3 shows
a block diagram of NJD with CVI (NJD-CVI) as a sequence of operations implemented by computing
units CU1, ..., CU5.

CU1 extracts from the input data matrix B (L-by-N matrix representing a specific radar scene for
each particular azimuth cell in radar coverage) a set of vectors vi, i = 1, 2, ...,D

v1 = [v11, v21, ..., vQ1]
T , v2 = [v12, v22, ..., vQ2]

T , ..., vD = [v1D, v2D, ..., vQD]T (7)

where Q is the number of the range bin indices for each of the specified Doppler bin indices n1, n2, ...,
nD, and the symbol T denotes the transposition.

CU2 sorts the samples in each vector vi in ascending order to obtain the corresponding sets xi of
ordered samples

xi : x1i ≤ x2i ≤ ... ≤ xQi, i = 1, 2, ...,D (8)

CU3 performs CVI for each xi, i = 1, 2, ...,D according to Eq. (6)

Yi = (Q − Kc) xKci +
∑Kc

j=1
xji, i = 1, 2, ...,D (9)

where Kc is the censoring rank, Kc ∈ {1, 2, ..., Q}.
CU4 implements the following operations:
a) Perform individual detections for each of the specified Doppler bins using the following sequence

of statistical hypothesis tests

Yi

H1

≷
Ho

T = ασ2
n, i = 1, 2, ...,D (10)

where T is the detection threshold, and α is the threshold multiplier precomputed for the specified
individual probability of false alarm Pfa, which is the same for all individual detections; Ho and H1

respectively stand for the null hypothesis (no noise jamming) and the alternative hypothesis (noise
jamming is present).
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Figure 3. Nonadaptive noise jamming detector with CVI (known receiver noise power).

b) Count the number of detections Nd (the number of cases when Yi, i = 1, 2, ...,D exceeds
the fixed precomputed detection threshold T ) out of the total number of possible detections D, and
accumulates the vector of detected Yi samples: [Yi1 , Yi2, ..., YiNd

], where i1, i2, ..., iNd
are the indices

of those Doppler bins at which noise jamming detection occurred.
CU5 implements final noise jamming detection using the m-out-of-n detection strategy

if Nd ≥ DT noise jamming is present, otherwise no jamming (11)

where DT is the integer threshold (0 < DT ≤ D) for the number of individual detections.
Whenever CU5 declares the presence of noise jamming (decides that hypothesis H1 is true), it sends

a warning signal to the so-called Frequency Control Algorithm (FCA). CU5 also sends a set of detected
samples [Yi1 , Yi2 , ..., YiNd

] to the Jamming Measurement Algorithm (JMA) that estimates the average
noise jamming power. FCA decides what a new carrier frequency (or a new set of carrier frequencies)
from a set of permissible radio frequencies (RFs) is the best choice for current radar operations. One
of the reasonable criteria for the best choice is to select that RF (or a set of RFs), which is jamming-
free; otherwise, if all permissible RFs are currently affected by noise jamming, that one, for which the
estimated average jamming-to-noise ratio (JNR) is minimal. These estimates may be stored in a look-up
table available to FCA.

3.2. Data Extraction from a Range-Doppler Matrix

Figures 4(a) and 4(b) illustrate some possible arrangements for selecting the range-Doppler samples
from the input matrix B = [bmn] (m = 1, ..., L; n = 1, ..., N), which are to be used for generating the
set of the vectors vi given by Eq. (7). In selecting these samples, the primary goal is to ensure that
they contain as low as possible clutter power due to sea, land, and weather clutter.

Typically, the clutter intensity concentrates in the vicinity of a fixed Doppler frequency. Therefore,
for a given number of coherently processed pulses N , the number of Doppler bins D (D ≥ 3) and
their separations in the Doppler dimension should be chosen to ensure a low clutter power leakage
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Figure 4. Some possible arrangements for extracting data from a Range-Doppler data matrix.

between the selected Doppler bins. To provide a low power of the sea, land, and weather clutter in
the selected Range-Doppler samples, we suggest arranging the corresponding range intervals within the
noise-dominant range region and as close as possible to the maximum range point Rmax. The noise-
dominant range region is that part of the full range coverage, for which the clutter-to-noise ratio (CNR)
does not exceed unity (CNR < 1) for all possible types of clutter the radar is designed to operate in.
To guarantee the mutual statistical independence of the said Range-Doppler samples, these samples for
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each vector vi (i = 1, 2, ...,D) should be selected from non-overlapping range intervals. If possible, there
should be as wide as possible gaps between these range intervals.

As follows from Eq. (9), to compute the scalar Yi for each xi, CVI discard the Q−Kc largest samples
x(Kc+1)i, x(Kc+2)i, ..., xQi (censoring procedure) and uses only the lowest Kc samples x1i, x2i, ..., xKci. It
is well known [8, 9, 11] that discarding the Q − Kc largest samples ensures the robustness of individual
detections given by Eq. (10) to strong spikes if their number does not exceed Q − Kc. Such strong
spikes can appear when several radars operate nearby or due to targets of interest: returns from these
targets act as interfering signals for noise jamming detectors. However, CVI does not provide immunity
to range-extended clutter that may corrupt all samples in the vector vi.

The m-out-of-n detection strategy (Figure 3, CU5) improves the overall robustness of the NJD-
CVI detector by providing immunity to interfering signals, including clutter, that may simultaneously
present in several Doppler bins. Indeed, if individual detectors have declared Nd detections due to the
presence of strong spikes or sea, land or weather clutter, the NJD-CVI detector will maintain the overall
robustness as long as the condition Nd < DT is met. In designing radar systems, radar engineers have
the freedom to choose the parameters Q,Kc,D, and DT . One can choose to have the following event
highly improbable to occur. This event is the presence of more than Q − Kc strong interfering signals
simultaneously in DT or more well-separated Doppler bins out of all D Doppler bins for a particular
azimuth cell, i.e., within a limited angular extent on the order of antenna beamwidth. For example,
setting Q = 24, Kc = 18, D = 5, and DT = 3 may be a practically reasonable choice. On the other
hand, when the noise jamming is present in the CUT-associated azimuth cell, the total noise power level
increases simultaneously in all Range-Doppler cells (in all entries of the CUT-associated Range-Doppler
data matrix B). The overall noise power increase provides favorable conditions for detecting continuous
noise jamming, especially when JNR � 1.

3.3. NJD Performance Analysis

3.3.1. No Interference in Cell under Test

The overall probability of detection PD for NJD is given by the known expression for the m-of-n
strategy [7] as the probability of at least m = DT detections out of all n = D detections

PD = PD (DT ,D) =
∑D

k=DT

D!
k! (D − k)!

(Pd)
k (1 − Pd)

D−k (12)

where Pd is the individual probability of detection for each of the individual detectors in Eq. (10).
Similarly, the overall probability of false alarm PFA (at least DT false detections out of all D

detections when no noise jamming is present) is given by

PFA = PFA (DT ,D) =
∑D

k=DT

D!
k! (D − k)!

(Pfa)
k (1 − Pfa)

D−k (13)

where Pfa is the individual probability of false alarm for each detector in Eq. (10).
To derive the equation for the individual probability of detection Pd, we refer to [9, 10]. As has

been proven therein, when the elements in vectors vi = [v1i, v2i, ..., vQi], i = 1, ...,D are i.e.d.r.v.then
the statistical distribution of the corresponding random values Yi, i = 1, ...,D in Eq. (9) is the same
as that for the sum of only Kc i.e.d.r.v. without sorting. Thus, the random variables Yi, i = 1, ...,D
are independent, and each of them obeys a gamma distribution with a shape parameter Kc and scale
parameter θ. The probability density function (PDF) pY (y) and the cumulative distribution function
(CDF) PY (y) for this distribution are, respectively

pY (y) =
1

(Kc − 1)!
1

θKc
yKc−1e−

y
θ , (14)

PY (y) = 1 − e−
y
θ

∑Kc−1

i=0

(y/θ)i

i!
, (15)

where the parameter θ is given by

θ =
{

σ2
n, if noise jamming is not present

σ2
n (1 + JNR) , if noise jamming is present

(16)
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In the presence of noise jamming, the individual detection at the i-th specified Doppler bin takes place
when Yi (i = 1, 2, ...,D) exceeds a predetermined threshold T = ασ2

n. The individual probability of
detection is therefore

PD = 1 − PY (T ) , (17)

which gives taking into account Eq. (15)

Pd = e
− T

σ2
n(1+JNR)

∑Kc−1

k=0

(
T

σ2
n (1 + JNR)

)k

k!
(18)

Noting that T = ασ2
n, we get

Pd = e−
α

1+JNR

∑Kc−1

k=0

(
α

1 + JNR

)k

k!
(19)

The individual probability of false alarm Pfa is readily obtained from Eq. (19) at JNR = 0

Pfa = e−α
∑Kc−1

k=0

(α)k

k!
(20)

For a given Pfa, the corresponding threshold multiplier α (this multiplier is equal to the threshold value
T normalized to σ2

n) is computed iteratively from Eq. (20).
As has been proved in [10], the detection rule given by Eq. (10) is the best statistical test that uses

first Kc ordered samples (from a total set of Q i.e.d.r.v.) to detect white Gaussian noise. The term
“best” means, according to the usual Neyman-Pearson terminology, a test which ensures the maximum
detection probability Pd among all statistical tests having a fixed probability of false alarm, which is
equal to a given individual Pfa. Thus, for any fixed Pfa NJD provides the ultimate detection performance
when the first Kc ordered samples from an entire set of Q i.e.d.r.v. are used.

In terms of detection performance, full video integration (FVI) is the most efficient among all the
noncoherent integration methods studied in [9]. Therefore, it is reasonable to compare the detection
performance of the NJD-CVI detector against that of the NJD-FVI detector.

The FVI-integrator computes the sum of all samples z1, z2, ..., zQ

Y =
∑Q

i=1
zi (21)

If these samples are i.e.d.r.v., the random value Y obeys a gamma distribution with a shape parameter
Q and scale parameter θ. Therefore, the expressions for the PDF and CDF of Y in Eq. (21) directly
follow from Eqs. (14) and (15), respectively, after substituting Kc with Q. If the individual detector
in Eq. (10) employs FVI instead of CVI, then one can directly obtain from Eqs. (19) and (20) the
individual probability of detection and false alarm for the NJD-FVI detector as

Pd = e−
α

1+JNR

∑Q−1

k=0

(
α

1 + JNR

)k

k!
(22)

Pfa = e−α
∑Q−1

k=0

(α)k

k!
(23)

respectively, where the constant α is computed iteratively from Eq. (23) given Pfa.
Figure 5 compares the receiver operating characteristic (ROC) of NJD-CVI and that of NJD-FVI

in the absence of interference; the ROC plots (PD vs. JNR) were computed for Pfa = 10−3, Q = 24,
Kc = 18, D = 5, and DT = 3. The threshold multiplier for NJD-CVI α = 33.9925842 and that for
NJD-FVI α = 42.0185661 were calculated iteratively from Eqs. (20) and (23), respectively. For both
the NJD-CVI and NJD-FVI detectors, the overall probability of false alarm PFA = 9.9850057 × 10−9

was computed from Eq. (13). The individual probability of detection Pd was computed from Eq. (19)
for NJD-CVI and from Eq. (22) for NJD-FVI. The ROC curves were computed using Eq. (12) for both
NJD-CVI and NJD-FVI. From Figure 5, one can see that the penalty for the robustness of NJD-CVI
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Figure 5. Receiver operating characteristics of NJD-CVI and NJD-FVI.

is an added integration loss in the JNR relative to NJD-FVI: this loss is about 0.76 dB at PD = 0.5.
This relatively small JNR loss explains the NJD-CVI’s capability to provide reliable noise jamming
detection. Indeed, for such a low overall probability of false alarm (PFA ≈ 10−8), NJD-CVI ensures a
high overall probability of detection (PD ≥ 0.9) starting from JNR = 1dB.

It is noteworthy that in NJD-CVI, one has the freedom to choose the parameter Kc (Kc ≤ Q)
that defines the number of samples to be integrated. Figure 6 illustrates how the added JNR loss drops
as Kc approaches Q. The price paid for this decrease is a corresponding degradation in robustness to
strong spikes.

4,...,24

Figure 6. JNR loss for NJD-CVI relative to NJD-FVI versus the censoring rank Kc.
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3.3.2. NJD False Alarm Performance in the Presence of Strong Spikes

For detectors of noise jamming, the critical consequence caused by strong spikes in the CUT is increasing
the probability of false alarm. A principal drawback of FVI is its essential sensitivity to strong spiky
interference. As follows from Eq. (21), the presence of even a single infinitely strong spike in a data
vector associated with any Doppler bin will inevitably result in a false alarm. This false alarm occurs
because the FVI’s output sum Y will exceed the threshold with probability unity even if the remaining
samples represent the receiver thermal noise.

In the case of CVI, the nsp infinitely strong spikes in the data vector vi (i = 1, ...,D) associated
with the ni-th Doppler bin (see Figure 3) will always occupy the top nsp ranks in the corresponding
sorted data vector xi. Hence, the number of effective samples reduces from Q to Qsp = Q − nsp. The
distributions of order statistics in Eq. (8) depends on the number of effective samples Qe. The k-th rank
sample (k ≥ 1) out of Qe = Qsp < Q independent identically distributed (i.i.d.) samples is statistically
higher than the k-th rank sample out of Q i.i.d. samples. The term statistically higher means the
following relationship between the corresponding PDFs

pk : Qsp (x) > pk : Q (x) , x ≥ T, Qsp < Q (24)
where pk : Qe(x) stands for the PDF of the k-th order statistic out of Qe (i.i.d.) samples and T is the
threshold corresponding to a sufficiently low probability of false alarm Pfa.

Since for Qe = Qsp, the PDFs for all order statistics involved in Eq. (8) are not identical to the
corresponding PDFs for Qe = Q, a new PDF of the weighted sum Yi in Eq. (9) is not equal to the PDF
of Kc unsorted i.e.d. samples [see Eq. (14)], in the absence of spikes in the corresponding CUT data
vector vi. Eq. (24) suggests that the new PDF exceeds that in Eq. (14): pYi(x) > pY (x), x ≥ T . Thus,
the presence of strong spikes even in one of the CUT data vectors inevitably increases the individual
and overall probability of false alarm.

This subsection analyzes the increase in the overall probability of false alarm PFA due to the
presence of strong spikes in the CUT under the condition that the threshold multiplier α is set to yield
the nominal Pfa (and, accordingly, PFA) assuming no interferences. To compute α, we used Eq. (20) for
NJD-CVI, and Eq. (23) for NJD-FVI.

To evaluate the NJD-CVI’s robustness, we resorted to the Monte-Carlo simulation. This simulation
was carried out for a single individual detector in Eq. (10) associated with one of the Doppler bins.
In this simulation, the strong spikes were specified as infinitely large constants. The simulation results
are the estimates of the conditional individual probability of false alarm Pfa(nsp|1). This probability is
conditioned on the number of strong spikes nsp present in the data vector v1 associated with a single
Doppler bin n1. For brevity, we will refer to nsp as “the number of spikes per one Doppler bin.” Let
these estimates be

P̂fa (nsp|1) , nsp = 0, 1, 2, ..., nmax
sp (25)

where nmax
sp is the maximum number of spikes per one Doppler bin and P̂fa(nsp = 0|1) = Pfa (nominal

value).
To estimate the unconditional individual probability of false alarm for a single Doppler bin, we

assume that the number of strong spikes per one Dopper bin is a random value sk, k = 0, 1, ..., nmax
sp ,

uniformly distributed over the corresponding k-th set Sk of integers: sk ∼ U : Sk = {0, 1, ..., k}.
Averaging the estimates from Eq. (25) over the set Sk yields the corresponding estimates of the
unconditional individual probability of false alarm Pfa:1(nmax

sp ) for a single Doppler bin as

P̂fa:1

(
nmax

sp

)
=
(

1
q + 1

)∑q

nsp=0
P̂fa (nsp|1), q = 0, 1, ..., nmax

sp (26)

Having obtained the estimates in Eq. (26), one can compute the corresponding estimates of the
overall probability of false alarm PFA(nmax

sp |dsp) conditioned on dsp, where dsp ∈ {1, ...,D} is the number
of vectors vi, i ∈ {1, 2, ...,D} affected by strong spikes. For brevity, we refer to the parameter dsp as
the number of spiky Doppler bins. For the “DT -of-D” overall detection strategy with DT = 3, these
estimates are given by

P̂FA(nmax
sp |dsp) = 1 −

[
P̂0 + P̂1 + P̂2

]
dsp ∈ {1, ...,D}

(27)
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where P̂r, r ∈ {0, 1, 2} is the estimate of the probability of exactly r detections out of all D possible
detections. Since the false alarms for any subset of Doppler bins are mutually independent events, these
estimates are given by

P̂0 = ΠD
i=1

(
1 − P̂i

)
, P̂1 =

∑D

i=1
P̂i Π(1 − P̂j)︸ ︷︷ ︸

j=1,...,D
j �=i

, P̂2 =
∑D−1

i=1

∑D

j=i+1
P̂iP̂j Π(1 − P̂n)︸ ︷︷ ︸

n=1,...,D
n �=i, n �=j

(28)

where P̂i, i = 1, 2, ...,D is a set of the false alarm probability estimates, which is specified for any
q ∈ {0, 1, ..., nmax

sp } according to the number of spiky Doppler bins dsp as given below{
for dsp ∈ {1, ...,D} : {P̂i = P̂fa:1

(
nmax

sp

)
, i = 1, ..., dsp, P̂i = Pfa, i = dsp + 1, ...,D}

if dsp = 0 or nmax
sp = 0 : {P̂i = Pfa, i = 1, ...,D} (29)

It should be noted that Eq. (29) assumes equal P̂fa:1(nmax
sp ) values for all spiky Doppler bins.

Table 1 summarizes the estimates P̂fa(nsp|1), nsp = 0, 1, ..., nmax
sp , nmax

sp = Q − Kc + 1 = 7. To
obtain the estimates in Table 1, we performed 107 Monte-Carlos for each fixed nsp value from the set
1, 2, ..., nmax

sp ; for nsp = 0, we use the nominal Pfa value P̂fa (0|1) = 10−3. Table 2 summarizes the
estimates P̂fa:1(nmax

sp ), nmax
sp = 0, 1, ..., 7, computed from Eq. (26) using the corresponding data from

Table 1.

Table 1. Estimates of conditional individual probability of false alarm Pfa(nsp|1).

NJD integration

method

Number of strong spikes per one Doppler bin nsp

0 1 2 3 4 5 6 7

FVI 10−3 1 1 1 1 1 1 1

CVI 10−3 3.6378×10−3 12.5719×10−3 40.6964×10−3 11.9266×10−2 30.6868×10−2 6.46334×10−1 1

To characterize the NJD-CVI’ and NJD-FVI’ robustness to the strong spikes, we use the overall
probability of false alarm PFA(nmax

sp |dsp). We computed the estimates P̂FA(nmax
sp |dsp), nmax

sp = 0, 1, ..., 7,
dsp ∈ {1, 2, ..., 5} from Eqs. (27)–(29) using the corresponding data from Table 2.

Table 2. Estimates of unconditional individual probability of false alarm Pfa:1(nmax
sp ).

NJD integration

method

Maximum number of strong spikes nmax
sp per one Doppler bin

0 1 2 3 4 5 6 7

FVI 10−3 0.5005000 0.6670000 0.7502500 0.8002000 0.8335000 0.8572857 0.8751250

CVI 10−3 2.3189×10−3 5.7366×10−3 14.4765×10−3 35.4345×10−3 8.06735×10−2 16.14821×10−2 26.62968×10−2

Figure 7 compares the detectors’ robustness under the same settings that we used for Figure 5. The
simulation has shown that the plots in Figure 7 computed for the spike-to-noise ratio SpNR ≥ 20 dB
are almost indistinguishable from the corresponding plots obtained for infinitely strong spikes. Thus,
this figure shows the results of the simulation for SpNR = Inf only. These results present the worst-case
increase in the individual and the overall probability of false alarm.

From Figure 7, it can be seen that NJD-CVI exhibits essentially enhanced robustness to the strong
spikes relative to NJD-FVI. For these detectors, Table 3 compares the overall probability of false alarm
using the estimates P̂FA(nmax

sp |dsp), nmax
sp = 1, 2, 3 taken from Figure 7 for dsp = 2, 3. As one can see in

Table 3, the values of P̂FA(1|2), P̂FA(2|2]), and P̂FA(3|2) for NJD-CVI are lower than those for NJD-FVI
by about four orders of magnitude. For dsp = 3, the advantage of NJD-CVI over NJD-FVI is even more
essential. Indeed, the estimates P̂FA(1|3), P̂FA(2|3]), and P̂FA(3|3) for NJD-CVI are lower than those
for NJD-FVI by about 7, 6, and 5 orders of magnitude, respectively.
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Figure 7. Comparison of false alarm performance for NJD-CVI and NJD-FVI detectors in the presence
of strong spikes in CUT: Estimates of the overall probability of false alarm PFA(nmax

sp |dsp).

Table 3. Comparison of estimates of overall probability of false alarm PFA(nmax
sp |dsp).

dsp NJD version
Maximum number of strong spikes nmax

sp per one Doppler bin
0 1 2 3

2
NJD-FVI 9.985 × 10−9 7.522 × 10−4 1.335 × 10−3 1.688 × 10−3

NJD-CVI 9.985 × 10−9 3.098 × 10−8 1.338 × 10−7 7.146 × 10−7

3 NJD-FVI 9.985 × 10−9 1.261 × 10−1 2.976 × 10−1 4.231 × 10−1

NJD-CVI 9.985 × 10−9 5.157 × 10−8 4.020 × 10−7 4.315 × 10−6

4. ADAPTIVE NOISE JAMMING DETECTOR

4.1. Block Diagram

This section addresses the noise jamming detection in situations where the receiver noise power σ2
n is

unknown. In order to provide the CFAR property, the detection algorithm has to estimate the receiver
noise power and adjust the detection threshold accordingly. We refer to this algorithm as the adaptive
noise jamming detector (AJD).

Figure 8 shows a block diagram of an AJD with CVI (AJD-CVI) as a sequence of operations
implemented by a primary set of computing units CU1, ..., CU5, and a secondary set of computing units
CU6, CU7, and CU8. The primary computing units, except for CU4, perform operations identical to
those of the corresponding CUs in NJD-CVI (see Figure 3). CU1 produces a set of vectors vi, i = 1, ...,D
as given by Eq. (7) for the k-th current antenna scan. CU2 generates the set of ordered samples
xi, i = 1, 2, ...,D as Eq. (8) gives. CU3 computes the scalar values Yi (i = 1, 2, ...,D) using CVI as given
by Eq. (9). CU5 finalizes the noise jamming detection as given by Eq. (11).

In Figure 8, CU4 exploits an adaptive CFAR method (Appendix A describes this method in detail).
CU4 carries out the following operations:
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Range-Doppler 

Data Matrix B
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,  =  1, 2,…, D
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corresponding vectors = 1,…,D

:  …

Perform CVI for each , that is, compute 

the following scalar values

= + , =  1,2,…,D

Perform individual detections of noise jamming 

using the adaptive CFAR threshold  
 
= ( )×

 
, = 1,2,…,

and count the number of cases when exceeds

the threshold . Let this number be
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binary integration for the individual detections:

if  jamming is present, otherwise no jamming
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of size 1-by-Li that represent 

thermal noise samples from the 

corresponding vectors , and then 

compute from the estimates of  

thermal noise power , =  1,…,D 

Generate reference 

matrices of size Q-by-M

Ci = [ : : … : ]

= 1,…, D  for the 
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indices , , …,
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corresponding to M specified reference 

azimuth bins from the (k-1)-th 
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CU4
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CU6

CU7
CU8

Figure 8. Adaptive jamming detector with CVI (unknown receiver noise power).

a) Perform individual detections for each of specified Doppler bins using the sequence of statistical
hypothesis tests as given by

Yi

H1

≷
Ho

Ti, i = 1, 2, ...,D (30)

In Eq. (30), the adaptive CFAR threshold Ti is computed as Ti = αiP̂i, where P̂i is an estimate of
the background power due to the thermal noise in the i-th specified Doppler bin and αi = α(Li)
is the threshold multiplier extracted from a stored look-up table. This table contains the values of
the threshold multipliers α precomputed for the predefined false alarm probability Pfa (identical for all
specified Doppler bins). The threshold multiplier is computed as a function of the length of the adaptive
reference vector (window) Li in concordance with a distribution of the estimate P̂i.

b) Count the number of detections Nd (the number of cases when Yi, i = 1, 2, ...,D exceeds the
adaptive CFAR detection threshold Ti) out of the total number of possible detections D;

c) Accumulate the vector of detected Yi samples: [Yi1 , Yi2, ..., YiNd
], and the vector of the thermal

noise power estimates [P̂i1 , P̂i2 , ..., P̂iNd
], where the integers i1, i2, ..., iNd

are the indices of those
Doppler bins at which noise jamming detection occurred.

In the secondary set, CU6 generates the reference matrices of size Q-by-M

Ci = [ vi:1 vi:2 ... vi:M ] =

⎡
⎢⎣

v1i:1 v1i:2 ... v1i:M

v2i:1 v2i:2 ... v2i:M

... ... ... ...
vQi:1 vQi:2 ... vQi:M

⎤
⎥⎦ , i = 1, 2, ...,D (31)

for the specified Doppler bin indices ni, i = 1, 2, ...,D.
CU7 computes the vectors of reference samples (reference vectors) of size 1-by-M

ui = [ ui1 ui2 ... uiM ] , i = 1, 2, ...,D (32)
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using the sorting procedure (identical to that of CU2) and CVI (identical to that of CU3) in each column
of the corresponding matrix Ci.

CU8 implements the following operations:
a) Estimate the adaptive reference vector of size 1-by-Li

zi = [ zi1 zi2 ... ziLi ] , i = 1, 2, ...,D, (33)

which represents the thermal noise samples (clear region) in the corresponding vector ui.
b) Compute the thermal noise power estimates P̂i in the i-th specified Doppler bin from the

corresponding adaptive reference vector zi (i = 1, ...,D).
Figure 9 illustrates how the reference data matrices Ci in Eq. (31) and the corresponding reference

vectors ui in Eq. (32), i = 1, 2, ...,D, are generated from data matrices associated with the specified
reference azimuth bins. The columns in the i-th matrix Ci are the vectors vi:1, vi:2, ..., vi:M marked
as gray rectangular in the real-valued Range-Doppler data matrices B1, B2, ..., BM generated at the
(k − 1)-th scan (previous antenna scan). In Figure 9, the vectors vi:1, vi:2, ..., vi:M are generated
identically to vectors vi (see Section 3.2) by extracting the samples at the predefined range cells in
the corresponding Doppler bins ni (i = 1, 2, ...,D) from the matrices B1, B2, ..., BM , respectively.
Figure 10 shows the correspondence between these matrices and the M reference azimuth cells, which
indices are a1, a2, ..., aM , respectively.
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Doppler bins

, = 1,2,…,

Figure 9. Generating reference data matrices Ci and corresponding reference vectors ui.

Any possible spatial distribution for the reference azimuth bins is associated with the corresponding
set of indices a1, a2, ..., aM selected from a complete set of indices [1, 2, ..., naz], where naz is the
maximum index. For example, if the radar antenna scans within the azimuthal sector Δθ = 360◦ and
the 3 dB antenna beamwidth is θ3 = 1◦, then naz = Δθ/θ3 = 360.
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Figure 10. Range-Doppler data matrices Bi associated with reference azimuth bins ai (i = 1, ...,M).

In selecting the distribution of reference azimuth bins for generating the matrices B1, B2, ...,
BM , the primary criteria are to provide the mutual statistical independence between these matrices
and minimize the number of reference bins simultaneously affected by interfering signals. To ensure
statistical independence, we separate the selected azimuth bins as far as possible within the sector of
angular scanning Δθ. To avoid many “corrupted bins” due to noise jamming or strong spikes, we suggest
equidistant distribution of reference azimuth bins within a given scanning sector Δθ.

In generating a set of indices a1, a2, ..., aM , one can use a deterministic approach (fixed set of
indices from scan to scan) or a probabilistic approach (indices randomly change from scan to scan).
Figure 11 illustrates both of these approaches.

Computing the 1-by-M reference vectors in Eq. (32) is the first step in adaptive CFAR processing.
CU7 calculates the reference samples ui1, ui2, ..., uiM in each ui, i = 1, 2, ...,D by sequentially
performing sorting and CVI for each column in the corresponding matrix Ci in Eq. (31) as given
below by Eqs. (34)–(35).

Sorting each column in Ci⎧⎨
⎩

vi:1 = [v1i:1 v2i:1 ... vQi:1]T → xi:1 : x1i:1 ≤ x2i:1 ≤ ... ≤ xQi:1

vi:2 = [v1i:2 v2i:2 ... vQi:2]T → xi:2 : x1i:2 ≤ x2i:2 ≤ ... ≤ xQi:2

vi:M = [v1i:M v2i:M ... vQi:M ]T → xi:M : x1i:M ≤ x2i:M ≤ ... ≤ xQi:M

(34)

Censored video integration (CVI)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui1 = (Q − Kc) xKci:1 +
∑Kc

j=1
xji:1

ui2 = (Q − Kc) xKci:2 +
∑Kc

j=1
xji:2

uiM = (Q − Kc)xKci:M +
∑Kc

j=1
xji:M

ui = [ui1 ui2 ... uiM ]

(35)

The calculations according to Eqs. (34) and (35) are repeated for i = 1, 2, ...,D.
The individual CFAR detectors in Eq. (30) cannot directly use the reference samples from the

corresponding reference vectors ui, i = 1, 2, ...,D because these samples may be corrupted by noise
jamming or other interfering signals. For example, assume that noise jamming is present in one of
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Figure 11. (a) Deterministic and (b) probabilistic approaches to generate reference azimuth bins.

the specified reference azimuth bins: let this bin index be a1. Then all the samples in the associated
Range-Doppler matrix B1 are corrupted by jamming, and, therefore, all the samples in the 1-st column
(since the corrupted azimuth bin’s index is a1) of each matrix Ci, i = 1, 2, ...,D are corrupted as well
(see Figure 9). After sorting and CVI according to Eqs. (34) and (35) the first reference sample ui1 in
each reference vector ui will be corrupted because the first Kc sorted samples included in the censored
video integration remain affected by noise jamming even if the CVI-integrator discards the Q − Kc

largest samples.
The reference samples corrupted by jamming or other interfering signals are outliers since the

average power of these samples may be significantly higher than that of the reference samples that
represent the receiver thermal noise only. If strong outliers are present among the reference samples
used in estimating the CFAR detection threshold, the threshold raises essentially. As a result, the
individual probability of detection and the overall probability of detection degrades significantly.

To eliminate the detrimental effect of outliers on the CFAR detection performance, we propose
an adaptive CFAR detection method that is a modification of the adaptive OFPI-CFAR (Outlier-Free
Positions Identification CFAR) proposed in [12, 13]. To estimate an outlier-free CFAR threshold, this
method identifies such an adaptive reference vector (or reference window), which is free of outliers. Using
outlier-free adaptive reference windows eliminates the outliers’ negative effect on the CFAR threshold
and, finally, on the individual and overall detection performance. Appendix A describes the proposed
adaptive CFAR technique in detail.

Whenever CU5 declares the presence of noise jamming, it sends an alarm signal to FCA (Frequency
Control Algorithm) and the corresponding data to JMA (Jamming Measurement Algorithm) to select
the best carrier frequencies for current radar operations.
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4.2. AJD Performance Analysis

In this section, we analyze the AJD-CVI’s performance using the same settings that have been used
for the NJD detectors in Section 3: Pfa = 10−3, Q = 24, K = 18, D = 5, DT = 3. For the individual
adaptive CFAR detector, we set the number of reference samples M = 32 and the probability of false
censoring Pfc = 10−4 (see the description of this detector in Appendix A). To identify an adaptive
reference window of length L (1 ≤ L ≤ M), this individual CFAR detector exploits the corresponding
pairs of parameters Rm and βm, m = 1, 2, ...,M − 1 for Pfc = 10−4 from Table A1. In computing the
detection threshold, the detector employs the optimum rank K = K(L) and the corresponding threshold
multiplier α(L) for Pfa = 10−3 from Table A2.

4.2.1. Detection Performance

A. With No Interference in Cell Under Test and Reference Data

We evaluate the detection performance of AJD-CVI using 105 Monte-Carlos. To estimate the
overall probability of detection for AJD-CVI, we use Eq. (12), where an exact value of the individual
probability of detection Pd is substituted with its estimate P̂d

P̂D = P̂D (DT ,D) =
∑D

k=DT

D!
k! (D − k)!

P̂ k
d

(
1 − P̂d

)D−k
(36)

Figure 12 compares the overall receiver operating characteristic (ROC) of NJD-CVI and AJD-
CVI, assuming no interference in all the reference azimuth bins. For NJD-CVI, we computed the
theoretic ROC using Eqs. (19) and (12). As noted in Section 3, for a fixed “DT -of-D” strategy at
the final detection stage, NJD-CVI provides the ultimate detection performance for a given PFA in no
interference scenario. Therefore, no other detector can provide a higher overall probability of detection
than NJD-CVI, other conditions being equal. In Figure 12, one can see that the ROC curve for AJD-
CVI is pretty close to that for NJD-CVI. Indeed, AJD-CVI achieves the overall detection probability
PD = 0.5 at JNR = −0.1459 dB that is just by 0.2 dB higher than the JNR = −0.3442 dB required for
NJD-CVI at the same PD and PFA.

Figure 12. Comparison of overall ROC (PD vs. JNR) for AJD-CVI and NJD-CVI.
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B. In the Presence of Strong Spikes in CFAR Reference Data

This subsection analyzes the AJD-CVI’s robustness regarding the overall probability of detection
in the presence of strong spikes in CFAR reference data. First, we estimate the individual probability
of detection Pd at a reference JNR in the presence of infinitely large spikes for the individual CFAR
detector in Eq. (30). Figure 13 illustrates a possible scenario with strong spikes in the reference data
matrix C1 associated with a single Doppler bin, which index is n1 (see Figure 9). In this matrix, the j-th
column (j = 1, ...,M) contains the Q-by-1 reference data vector v1:j associated with the n1-th Doppler
bin in the real-valued Range-Doppler data matrix Bj associated with the j-th reference azimuth bins
aj. In this matrix, some columns may be corrupted by strong spikes.
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… Inf
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Inf

: : … … :
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Figure 13. Spiky samples in reference data matrix for a single Doppler bin.

The number of spike-affected (spiky) azimuth bins in the entire scanning sector is assumed to be
nsp

az = 36, 72, 108: respectively, it makes up 10%, 20%, and 30% of the total number of the azimuth
bins naz = 360. For each fixed nsp

az value, we generated a set of the spiky azimuth bins’ indices as the
first nsp

az elements j1, j2, ..., jnsp
az

in a uniform random permutation of the set {1, 2, ..., naz}.
We assumed that the number of spikes q in each spiky azimuth bin is a uniformly distributed integer

q ∼ U : {1, ..., nmax
sp }, where nmax

sp is the maximum number of spikes per one Doppler bin. The positions
of these q spikes in the reference data vectors v1:jr , r = 1, 2, ..., nsp

az associated with the spiky azimuth
bins are q independent unique integers uniformly distributed on the set {1, 2, ..., Q}.

In the Monte-Carlo procedure for each fixed nsp
az, the set of spiky azimuth bins is generated before

the trials and then fixed during the simulation. The indices of the reference azimuth bins are simulated
as a set of M random integers at each Monte-Carlo trial. The first reference azimuth bin’s index a1 is
generated as an integer uniformly distributed on the set {10, 11, ..., 38} and then a complete set of the
reference azimuth bins {aj , j = 1, ...,M} is generated as aj = a1 + 8(j − 1), j = 1, ...,M . The indices
of spiky reference azimuth bins belong to the intersection of the set of spiky azimuth bins’ indices
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{j1, j2, ..., jnsp
az
} with the set of reference azimuth bins’ indices {a1, a2, ..., aM}. Hence, the indices of

spiky reference azimuth bins kp, p = 1, 2, ..., nsp
rb, 1 ≤ k1 < k2 < ... < kp ≤ M (see Figure 13) and their

number nsp
rb change randomly from trial to trial. At each Monte-Carlo trial, the number of spiky samples

q in the kp-th column (p = 1, ..., nsp
rb) in the matrix C1 is generated as the first element in a uniform

random permutation of the set {1, ..., nmax
sp }. The positions of these q spiky samples are generated as

the first q elements in a uniform random permutation of the set {1, 2, ..., Q}.
The reference jamming-to-noise ratio JNRo = 1.3659390 was computed iteratively from Eq. (19)

for the reference value of the individual probability of detection Pdo = 0.8. This equation defines the Pd

value for the individual detector in NJD-CVI. Using Eq. (12) yields the corresponding reference value
of the overall detection probability PDo = 0.9420800. For AJD-CVI, we obtained the corresponding
reference individual probability of detection as Pdo = 0.7702845 using linear interpolation at the point
JNRo for the AJD-CVI’s data Pd(JNR) shown in Figure 12. From Eq. (12), the corresponding reference
value of the overall probability of detection is PDo = 0.9167118.

The result of the Monte-Carlo simulation is the estimates P̂d of the individual probability of
detection Pd conditioned on the number of spikes nsp per one Doppler bin. Let these estimates be

P̂d (nsp|1) , nsp = 0, 1, 2, ..., nmax
sp (37)

where nmax
sp is the maximal number of spikes per one Doppler bin; for nsp = 0, we set P̂d(0) = Pdo =

0.7702845. To compute the estimates of the unconditional individual probability of detection P̂d:1(q),
we use Eq. (26) after substituting the subscript “fa” with “d”

P̂d:1

(
nmax

sp

)
=
(

1
q + 1

)∑q

nsp=0
P̂d (nsp|1), q = 0, 1, ..., nmax

sp (38)

Having obtained the estimates in Eq. (38), one can find the corresponding estimates of the overall
probability of detection PD(nmax

sp |dsp) conditioned on the number of spiky Doppler bins dsp ∈ {1, ...,D}
associated with CFAR reference data. We compute these estimates from Eqs. (27)–(29) where the
subscripts “fa” and “FA” are substituted with “d” and “D,” respectively. Thus, the estimates
P̂D(nmax

sp |dsp) are given by

P̂D(nmax
sp |dsp) = 1 −

[
P̂0 + P̂1 + P̂2

]
dsp ∈ {1, ...,D}

(39)

where P̂k, k ∈ {0, 1, 2}, is the estimate of the probability of exactly k detections out of all D possible
detections. Since the detections for different Doppler bins are mutually independent events, P̂k are
given by

P̂0 = ΠD
i=1

(
1 − P̂i

)
, P̂1 =

∑D

i=1
Pi Π(1 − P̂j)︸ ︷︷ ︸

j=1,...,D
j �=i

, P̂2 =
∑D−1

i=1

∑D

j=i+1
P̂iP̂j Π(1 − P̂k)︸ ︷︷ ︸

k=1,...,D
k �=i, k �=j

(40)

where {P̂i, i = 1, ...,D} is a set of the detection probability estimates defined as{
for dsp ∈ {1, ...,D} : {P̂i = P̂d:1(nmax

sp ), i = 1, ..., dsp, P̂i = Pdo, i = dsp + 1, ...,D}
if dsp = 0 or nmax

sp = 0 : {P̂i = Pdo, i = 1, ...,D} (41)

It should be noted that Eq. (41) assumes equal P̂d:1(nmax
sp ) for all spiky Doppler bins.

Tables 4 and 5 respectively summarize the estimates P̂d(nsp|1) and P̂d:1(nmax
sp ) for nmax

sp =
Q − Kc + 1 = 7 in the scenario where nsp

az = 72 spiky azimuth bins (20%) out of the total number
of the azimuth bins naz = 360 are affected by strong spikes. We obtained the former using 105 Monte-
Carlo trials for each fixed nsp value. For nsp = 0, we set P̂d(0|1) = Pdo = 0.7702845.

In Table 4, it can be seen that the estimates P̂d(nsp|1) gradually decrease when nsp increases from
0 to 5: P̂d(0|1) = 0.7703 > P̂d(1|1) > ... > P̂d(5|1) = 0.6372. Then, P̂d(6|1) = 0.6426 becomes slightly
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Table 4. Estimates of conditional individual probability of CFAR detection Pd(nsp|1).

Number of spikes nsp per one Doppler bin
0 1 2 3 4 5 6 7

0.7702845 0.7505750 0.7256000 0.6951100 0.6649350 0.6371500 0.6426100 0.7604500

Table 5. Estimates of unconditional individual probability of CFAR detection Pd:1(nmax
sp ).

Maximum number of spikes nmax
sp per one Doppler bin

0 1 2 3 4 5 6 7
0.7702845 0.7604297 0.7488198 0.7353924 0.7213009 0.7072757 0.6980378 0.7058393

higher P̂d(5|1), and, finally, one can see a relatively sharp increase from P̂d(6|1) to P̂d(7|1) = 0.7605
that is fairly close to P̂d(0|1) = Pdo = 0.7703.

This phenomenon relates to the following two factors. The first one is changing the statistical
distributions of the elements in the reference vector (in our example, this is u1) after CVI (see Figure 9),
depending on the number of strong spikes nsp in spiky columns of the corresponding reference data
matrix C1. The second one is changing the distributions of the corresponding adaptive detection
threshold T1 computed by adaptive CFAR detector using data extracted from the vector u1.

The adaptive CFAR detector (see Appendix A) applies the censoring procedure to the elements in
vector u1, to discard outliers that appear due to interfering signals and identify an adaptive reference
vector z1 of length L1 ∈ {1, ...,M}. The elements in the vector z1 represent the receiver thermal noise.
Using the adaptive reference vector z1, the adaptive CFAR detector computes the detection threshold
T1 = α(L1)P̂1, where α is the CFAR constant precomputed for a given Pfa as a function of L1, and P̂1

is the receiver noise power estimate.
As shown in Subsection 3.3.2, in the presence of strong spikes in a data vector before CVI, the order

statistics involved in CVI become statistically higher. Correspondingly, the output of CVI becomes
statistically higher than that in the absence of strong spikes. Hence, for any spiky column in the
reference data matrix C1 (see Figure 9), when nsp gradually increases, some elements u1k in the vector
u1 = [u11 u12 ... u1M ] become statistically higher accordingly. We refer to these as the corrupted
elements. These are those u1k, which indices k belong to a set of spiky reference azimuth bins, i.e.,
k ∈ {kp, p = 1, 2, ..., nsp

rb}, where nsp
rb is the number of reference bins corrupted by spikes. While nsp

increases from 1 to 5, the probability that significant corrupted elements appear in u1, also increases.
However, they are not large enough to be discarded from u1 in the CFAR censoring procedure. Thus,
the threshold T1 increases and the individual (overall) probability of detection decreases accordingly.
Nevertheless, when nsp continues increasing from 6 to 7, at point nsp = 6, the magnitudes of corrupted
elements reach such a level that they are discarded with noticeably higher probability than that for
nsp < 6. Due to this discarding, the adaptive threshold T1 decreases, and the individual and overall
probability of detection increase somewhat. When nsp = Q−Kc +1 = 7, i.e., when nsp exceeds Q−Kc,
which is the CVI immunity threshold to the presence of strong spikes, then all the nsp

rb corrupted elements
in u1 become infinitely strong. The CFAR censoring procedure discards all these corrupted elements
from u1 with probability unity, and the adaptive reference vector z1 of length L1 = M −nsp

rb represents
only the thermal noise background. Hence, the adaptive detection threshold T1 is not distorted by
spikes since its level is determined by the receiver noise power estimated from the “clean” reference
vector. Accordingly, the individual (overall) probability of detection increases noticeably relative to its
value for nsp < 7.

As one can see, the estimate P̂d(7|1) = 0.7605(nsp = 7) is slightly less than Pdo = 0.7703(nsp = 0).
This is because the average length L̄1 = M−nsp

rb of the adaptive reference vector, where nsp
rb is the average

number of spiky reference azimuth bins, is slightly less than that L̄1 = M for nsp = 0. In scenarios with
more dense spikes’ distribution in azimuth, where nsp

az/naz > 0.3, the nsp
rb increases and, accordingly, the



184 Kononov et al.

L̄1 decreases. This decrease in L̄1 results in a corresponding decreasing the individual/overall probability
of detection for nsp > Q − Kc.

Figure 14 illustrates the phenomenon discussed above by comparing the conditional individual (a)
and overall (b) probabilities of detection estimated using 105 Monte-Carlo trials. The ROC graphs in
this figure were computed for nsp = 4 < Q − Kc and nsp = 7 > Q − Kc in a scenario with nsp

az = 108
(30% of the total number of the azimuth bins).

(a) (b)

Figure 14. Effect of the number of spikes per one Doppler bin on the conditional probability of detection
(a) individual probability Pd(JNR, nsp|1), (b) overall probability PD(JNR, nsp|dsp) for dsp = 3.

To characterize the robustness of the AJD-CVI’s overall detection performance to the presence of
strong spikes in the CFAR reference data, we use the estimates of the overall probability of detection
PD(nmax

sp |dsp), nmax
sp = 0, 1, ..., 7, conditioned on the number of spiky Doppler bins dsp ∈ {1, 2, ..., 5}.

These estimates P̂D(nmax
sp |dsp) were computed from Eqs. (39)–(41) using the corresponding data in

Table 5. Figure 15 shows the decrease in the overall probability of detection PD(nmax
sp |dsp) relative

to the reference value PDo = 0.9167 as a function of the maximum number of spikes nmax
sp per one

Doppler bin for a fixed number of spiky Doppler bins dsp. This figure shows that as dsp increases, the
overall probability of detection decreases relative to PDo for the scenario without interference in the
CFAR reference data. For example, for dsp = 3 the maximum decrease in the probability takes place
at nmax

sp = 6 and is about 5%: (1 − 0.8715/0.9167) = 0.0493. In the worst-case scenario, when dsp = 5,
i.e., strong spikes are in all Doppler bins, the maximum decrease in the overall probability of detection
does not exceed 10%: (1 − 0.8343/0.9167) = 0.0899.

Therefore, even in the worst-case situation (dsp = 5), the AJD-CVI’s overall detection performance
is highly robust to the presence of strong spikes in the CFAR reference data.

To show the effect of the number of spiky azimuth bins nsp
az on the overall probability of detection

PD(nmax
sp |dsp) conditioned on dsp, Figure 16 compares the estimates P̂D(nmax

sp |dsp) for nsp
az = 36, 72,

and 108 (10, 20, and 30% of the total number of azimuth bins, respectively) at a fixed number of spiky
Doppler bins (dsp = 3). This figure demonstrates that AJD-CVI provides reliable detection performance
in dense spiky environments. Indeed, even when 30% of the total number of azimuth bins are affected
by strong spikes (nsp

az = 108), the minimal overall probability of detection is 0.8279 (at point nmax
sp = 6).

Moreover, the overall detection probability loss less than 10%: 1 − 0.8279/0.9167 = 0.0969.
Thus, the results shown in Figures 15 and 16 confirm that the AJD-CVI detector can maintain

reliable noise jamming detection in the presence of strong spikes in the CFAR reference data.
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Figure 15. Robustness of AJD-CVI to the presence of strong spikes in CFAR reference data. Estimates
of the overall probability of detection PD(nmax

sp |dsp) versus the maximum number of spikes nmax
sp per one

Doppler bin at fixed number of spiky Doppler bins dsp; the number of spiky azimuth bins nsp
az = 72 (20%

of the total number of azimuth bins naz).

Figure 16. Robustness of AJD-CVI to the presence of strong spikes in CFAR reference data. Estimates
of the overall probability of detection PD(nmax

sp |dsp) for different number of spiky azimuth bins nsp
az = 36,

72, and 108 at a fixed number of spiky Doppler bins (dsp = 3).

C. In the Presence of Noise Jamming in CFAR Reference Data

Figure 17 shows the robustness of the AJD-CVI’s overall detection performance to the presence
of noise jamming in the reference azimuth bins. The number of “jammed” azimuth bins njam

az , i.e., the
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Figure 17. Robustness of the AJD-CVI’s overall detection performance PD(JNR|D), D = 5, to the
presence of noise jamming in CFAR reference data.

number of azimuth bins out of the total number of azimuth bins naz = 360, is assumed to be njam
az = 90

and 180 (25 and 50% of naz, respectively). In the Monte-Carlo trials for each fixed njam
az value, the

indices for jammed azimuth bins were generated before trials and then fixed during the simulations.
The indices of jammed azimuth bins were generated as the first njam

az elements from a uniform random
permutation of the set {1, 2, ..., naz}. The indices of the reference azimuth bins were generated as a
random set of M integers at each independent trial as described in Subsection 4.2.1B. The estimates of
the overall probability of detection PD(JNR|D) with D = 5 were computed using Eqs. (38)–(40) and
modified Eq. (41) (see Subsection 4.2.1B). In the modified Eq. (41), we set P̂i = P̂d:1(JNR), i = 1, ...,D
at each JNR-value. This setting is used because even if one reference azimuth bin is corrupted by
noise jamming, all reference vectors ui, i = 1, ...,D associated with D specified Doppler bins contain
jamming-corrupted samples. Indeed, if a noise jamming is present in the k-th reference azimuth bin
ak then all the samples in the associated Range-Doppler matrix Bk are corrupted by this jamming,
and, therefore, all the samples in the k-th column of each matrix Ci, i = 1, 2, ...,D (see Figure 9) are
corrupted as well. After sorting and CVI according to Eqs. (34) and (35), the k-th reference sample uik

in each reference vector ui will inevitably be corrupted by jamming. This is because the first Kc sorted
samples remain affected by noise jamming even if the Q−Kc largest samples are discarded before CVI.
To compute the estimates of the conditional probability of detection Pd(JNR|1), we used 105 Monte-
Carlo trials for each JNR value. For the jamming in the reference data, we set the jamming-to-noise
ratio JNRref = 30 dB.

Figure 17 shows that AJD-CVI is highly robust to the number of azimuth bins corrupted by
jamming. This statement is valid even in the case of highly dense jamming distribution in azimuth.
Indeed, even if 50% percent (njam

az = 180) of the total azimuth bins are jammed, the JNR loss (at point
PD = 0.5) is relatively small: 0.21 and 0.41 dB, respectively, relative to the JNR required for AJD-CVI
and NJD-CVI in the case of no interference. Let us assume the PD-values 0.9 and 0.8623 (at point
JNR = 1.069 dB) are the reference values for NJD-CVI and AJD-CVI, respectively. As one can see,
the loss in the overall probability of detection is also reasonably small: 9.31% (1− 0.8162/0.9 = 0.0931)
relative to NJD-CVI and 5.35% (1 − 0.8162/0.8623 = 0.0535) relative to AJD-CVI.
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4.2.2. False Alarm Performance in the Presence of Strong Spikes in CUT

This section analyzes the false alarm performance of AJD-CVI in the presence of infinitely strong spikes
in the cell under test (CUT) compared to that of NJD-CVI. In this analysis, we consider the estimates of
the overall probability of false alarm PFA(nmax

sp |dsp) as a function of the maximum number of strong spikes
per one Doppler bin nmax

sp for a fixed number of spiky Doppler bins dsp. To compute these estimates,
we used the methodology that has been used for the NJD-CVI/FVI detectors in Subsection 3.3.2.

Table 6 summarizes the estimates of the conditional probability of false alarm Pfa(nsp|1), nsp =
0, 1, ..., nmax

sp , nmax
sp = Q − Kc + 1 = 7 for both detectors in question. These estimates were computed

using 107 Monte-Carlos for each fixed value of nsp ∈ {1, ..., nmax
sp }; for nsp = 0, we use the nominal Pfa

value Pfa(0|1) = 10−3. Table 7 summarizes the estimates of the unconditional probability of false alarm
Pfa:1(nmax

sp ), nmax
sp = 0, 1, ..., 7, calculated from Eq. (26) using the corresponding data from Table 6. The

Table 6. Estimates of conditional individual probability of false alarm Pfa(nsp|1).

Method
Number of strong spikes per one Doppler bin nsp

0 1 2 3 4 5 6 7

NJD-CVI 10−3 3.75 × 10−3 12.46 × 10−3 39.39 × 10−3 11.796 × 10−2 30.954 × 10−2 6.4480 × 10−1 1

AJD-CVI 10−3 3.49 × 10−3 11.66 × 10−3 35.75 × 10−3 10.593 × 10−2 28.237 × 10−2 6.1315 × 10−1 1

Table 7. Estimates of unconditional individual probability of false alarm Pfa:1(nmax
sp ).

Method
Maximum number of strong spikes nmax

sp per one Doppler bin

0 1 2 3 4 5 6 7

NJD-CVI 10−3 2.3750×10−3 5.7367×10−3 14.150×10−3 34.912×10−3 8.0683×10−2 1.61271×10−1 2.66113×10−1

AJD-CVI 10−3 2.2450×10−3 5.3833×10−3 12.975×10−3 31.566×10−3 7.3367×10−3 1.50478×10−1 2.56669×10−1

 

Figure 18. Comparison of AJD-CVI’ and NJD-CVI’ robustness using the estimates of the overall
probability of false alarm PFA(nmax

sp |dsp), dsp = 0, 1, ..., 5, in the presence of strong spikes in CUT.
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estimates P̂FA(nmax
sp |dsp), nmax

sp = 0, 1, ..., 7, dsp ∈ {1, 2, ...,D} were obtained from Eqs. (27)–(29) using
the corresponding data from Table 7.

Figure 18 shows that AJD-CVI is quite robust to strong spikes in the CUT and its robustness
performance is essentially similar to that of NJD-CVI. As one can see, for each fixed dsp value, the
AJD-CVI curve goes slightly below the corresponding NJD-CVI curve. The reason for this is the well-
known fact: the average CFAR detection threshold in the case of unknown noise power is somewhat
higher than the fixed detection threshold in the case of known noise power. This is also the cause of
the CFAR loss in the probability of detection relative to the fixed threshold detection.

5. CONCLUSION

This paper has introduced an adaptive CFAR method to detect continuous noise jamming in coherent
radars with a single antenna having no pattern control. The proposed detector, called AJD-CVI, is
designed under the condition that the receiver noise power is unknown. For noise jamming detection,
the AJD-CVI detector uses data associated with a set of specified Doppler bins. These data are extracted
from a real-valued Range-Doppler data matrix generated at the output of Doppler processing for each
angular cell within the entire scanning sector. To mitigate the effect of sea, land, and weather clutter on
detection performance, the proposed detector extracts the required data from a set of non-overlapping
range intervals allocated within the noise-dominant region in the full range coverage.

In no interference scenario, the AJD-CVI detector ensures reliable noise jamming detection:
its required JNR is pretty close to that of the non-adaptive detector, called NJD-CVI. The NJD-
CVI detector assumes that the receiver noise power is known and provides the ultimate detection
performance.

The AJD-CVI detector is also highly robust to interfering signals in the cell under test and CFAR
reference data. The robustness is achieved by using a two-step detection algorithm. In the first step, the
proposed detector removes interfering signals by performing censored video integration and individual
adaptive CFAR detection in each of the specified Doppler bins. Then it applies the “m-of-n” detection
strategy to a complete set of decisions declared by the individual CFAR detectors in the second step.
This strategy provides immunity to the simultaneous presence of interfering signals in the data associated
with the specified Doppler bins.

APPENDIX A. ADAPTIVE CFAR DETECTOR

In the present paper, we propose an adaptive CFAR detection method, a modification of the adaptive
OFPI-CFAR (Outlier-Free Positions Identification CFAR) introduced in [12, 13]. To estimate an outlier-
free CFAR threshold, our method identifies such an adaptive reference vector (or adaptive reference
window), which is free of outliers due to noise jamming and other interfering signals. Using outlier-free
adaptive reference windows eliminates the outliers’ negative effect on the CFAR threshold and, finally,
on the individual and overall detection performance.

We characterize the homogeneity of reference windows using the notions of the noise (clear) and
interferer regions, which we denote by Sn and Si, respectively. Figure A1 illustrates these regions using
a sequence of sorted reference samples xi1 ≤ xi2 ≤ ... ≤ xiM (assuming no samples intermixing between
different regions) for the case when m noise-only samples and M−m outliers are present in the reference
vector ui = [ui1 ui2 ... uiM ] , i ∈ {1, 2, ...,D}, which is associated with this sequence. In a particular
case, when no outliers are present in the reference vector ui, the clear region Sn completely characterizes
the homogeneity of this vector because all M reference samples represent the receiver thermal noise.

Figure A2 shows a flowchart of an algorithm that the proposed adaptive CFAR method uses to
identify an outlier-free (noise-only samples) adaptive reference vector (ARV). We refer to this algorithm
as the ARV estimation algorithm. As can be seen, the ARV algorithm operates on the ordered sequence
of the reference samples xi1 ≤ xi2 ≤ ... ≤ xiM that is the result of sorting procedure performed
for the i-th reference vector ui = [ui1 ui2 ... uiM ] , i = 1, 2, ...,D. The ARV algorithm estimates the
total number of outlier-free samples Li in the i-th reference vector ui using the following step-by-step
censoring procedure that is a modified version of the (r, q)-estimation algorithm from [12].
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Figure A1. Homogeneity regions in a reference window.
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Figure A2. Estimator of adaptive reference window (ARV algorithm).

At the m-th step of the censoring procedure, m = 1, 2, ...,M − 1, the (m + 1)-th order sample
xim+1 is compared against the censoring threshold τm = βmxiRm , where βm is the censoring threshold
multiplier at the m-th step, xiRm is the Rm-th sample selected from the current censoring window
xi1, xi2, ..., xim+1, and Rm is the representative sample rank at the m-th step. If for the first m − 1
steps, the adaptive censoring thresholds τj = βjxiRj , j = 1, 2, ...,m − 1 have not been exceeded and at
the m-th step xim+1 ≥ τm = βmxiRm then the current step index m is the estimate of the total number
of outlier-free reference samples, i.e., Li = m. It is clear that Li = M when the procedure reaches the
last step, i.e., m = M − 1 and xiM < τM−1.

For each reference vector ui (i = 1, ...,D), once the number of outlier-free reference samples Li is
estimated, the adaptive reference vector zi = [zij | j = 1, ..., Li] is readily identified as

zi = [xi1 xi2 ... xiLi ] , i = 1, 2, ...,D (A1)
In [12], the censoring threshold multipliers βm, m = 1, 2, ...,M − 1 are precomputed as OS-CFAR

constants for the predetermined probability of false censoring Pfc and corresponding values of Rm
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assuming homogeneous censoring reference window with exactly m + 1 samples, i.e., assuming that the
outliers are infinitely strong and xim+1 is the last outlier-free sample. This assumption has also been
used in [14] for deriving the censoring threshold multipliers based on the CA-CFAR principle. The values
of Rm, m = 1, 2, ...,M − 1, are specified based on the optimum representative rank corresponding to
the average decision threshold minimum [15]. We use the numerical procedure from [12] to compute the
values of Rm and the corresponding values of βm. Table A1 summarizes the results of this computation
for M = 32, Pfc = 10−3 and 10−4.

An estimate P̂i of the average noise background level in the outlier-free region (clear region) at the
i-th specified Doppler bin ni (i = 1, 2, ...,D) is required to compute the corresponding adaptive CFAR
threshold Ti. In Figure 8, CU8 derives the estimate P̂i from the corresponding adaptive reference
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Figure A3. Estimator of average noise background power.
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Figure A4. Jamming detection using individual adaptive CFAR detectors.
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Table A1. Optimum values of Rm and corre-
sponding constant βm for censoring procedure,
M = 32.

m

Pfc

10−3 10−4

R β R β

1 1 4.390232 1 3.186795
2 2 3.085648 2 2.428126
3 3 2.700861 3 2.184419
4 4 2.509522 4 2.058686
5 5 2.392044 4 2.208169
6 5 2.539891 5 2.118923
7 6 2.450900 6 2.055927
8 6 2.550689 6 2.148828
9 7 2.480191 7 2.097261
10 7 2.556783 7 2.168103
11 8 2.498772 8 2.124682
12 9 2.451407 8 2.182259
13 9 2.512172 9 2.144845
14 10 2.470928 10 2.113296
15 10 2.522627 10 2.160646
16 11 2.486146 11 2.132394
17 12 2.454389 11 2.173573
18 12 2.498533 12 2.148011
19 13 2.469688 13 2.125398
20 13 2.508939 13 2.161150
21 14 2.482526 14 2.140282
22 14 2.517889 14 2.172449
23 15 2.493536 15 2.153081
24 16 2.471429 15 2.182332
25 16 2.503142 16 2.164267
26 17 2.482493 17 2.147734
27 17 2.511642 17 2.174173
28 18 2.492272 18 2.158592
29 18 2.519250 18 2.183043
30 19 2.501012 19 2.168311
31 20 2.484076 19 2.191060

Table A2. Optimum values of K = K(L) and
corresponding OSCFAR constants α = α(L) for
adaptive CFAR detection, M = 32.

L

Pfa

10−3 10−4

K α K α

1 1 12.98819 1 11.61079
2 2 6.443261 2 5.985644
3 3 5.041953 3 4.739017
4 4 4.429446 4 4.186532
5 4 4.600121 4 4.353661
6 5 4.241963 5 4.027648
7 6 4.006293 6 3.811728
8 6 4.117032 6 3.920290
9 7 3.944968 7 3.761654
10 7 4.031351 7 3.846193
11 8 3.898141 8 3.722853
12 9 3.792067 9 3.624504
13 9 3.862233 9 3.693009
14 10 3.774298 10 3.611080
15 10 3.834424 10 3.669867
16 11 3.759745 11 3.599715
17 12 3.694565 12 3.537767
18 13 3.635798 13 3.481979
19 14 3.582717 14 3.432431
20 14 3.635235 14 3.482892
21 15 3.586587 15 3.437819
22 15 3.633653 15 3.482687
23 16 3.588950 16 3.441654
24 16 3.631418 16 3.481801
25 17 3.590359 17 3.444500
26 17 3.628813 17 3.480552
27 18 3.591197 18 3.446739
28 18 3.626060 18 3.479174
29 19 3.591735 18 3.511052
30 19 3.623341 19 3.477838
31 20 3.592160 19 3.506809
32 20 3.620794 20 3.476663

vector zi. Figure A3 is a block diagram of an estimator for computing the estimate P̂i based on
the OS-CFAR principle [12]. To compute P̂i, the procedure extracts from a stored look-up table the
precomputed value of the representative CFAR rank Ki corresponding to the length Li (1 ≤ Li ≤ M)
of the adaptive reference vector zi = [zi1 zi2 ... ziKi ... ziLi ] and extracts the Ki-th ordered sample ziKi

from this vector. As known from the OS-CFAR theory [15, 16], this sample ziKi can be treated as an
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estimate of the background power, i.e., P̂i = ziKi , under the assumption that the reference window
(vector) is homogeneous. For the proposed adaptive CFAR method, the optimum representative CFAR
rank K is precomputed for each possible length L ∈ {1, 2, ...,M} of the adaptive reference vector as such
an integer that minimizes the average decision threshold (ADT) [15]. For each L, the optimum rank
K = K(L) and the corresponding CFAR constant α(L) are computed as described in [12]. Table A2
summarizes the results for M = 32 at Pfa = 10−3 and 10−4.

Figure A4 shows a block diagram of the individual detectors (CU4 in Figure 8) based on the
proposed adaptive CFAR method. The adaptive detection threshold Ti is a product Ti = αiP̂i, where
αi = α(Li) is extracted from a stored look-up table (Table A2 is an example). This table contains the
values of α precomputed for a given Pfa in concordance with the statistical distribution of the receiver
noise power estimate P̂i = ziKi as a function of L (L = 1, 2, ...,M).
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