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Metal Discovery by Highly Sensitive Microwave Multi-Band
Metamaterial-Inspired Sensors
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Abstract—A simple, compact, contactless, and high sensitivity metamaterial-inspired sensor has been
developed to detect and classify precious transition metals in the S- and C-band regime, using reflection
coefficients. A multi-band metamaterial, quadruple concentric circular split ring resonator, is specifically
designed as a sensing enhancer, where the additional bands can effectively trigger the electromagnetic
properties, as well as enhance the differentiation between the testing metal samples. The proposed sensor
was tested on precious transition metals, silver, platinum, and gold thin slabs of various thicknesses, from
0.5µm to 3mm. Five resonances were established in the frequency range of 2–8GHz. Distinguishable
frequency responses generated from different metal samples at those five resonances specify the capability
of classifying the metal contents and thicknesses.

1. INTRODUCTION

Most existing metal sensors are based on the chemical and optical properties of metal substances [1–12],
concentrating on the reaction between the substance atoms and catalysts [1, 3, 7], or light excitation [8–
12]. Electroreduction from acids (AuCl4 and [PdCl4]2) was used for recovering gold (Au) and palladium
(Pd) [1]. Silver (Ag) and Au were detected using PH-sensitivity [2] and aminoantipyrine solid [3] by X-
ray fluorescent system [7]. Surface plasmon, the collective charge oscillations, that occur at the interface
between conductors and environment, are mainly used in optical metal sensors. An optical fiber sensor
based on surface plasmon resonance for Ag in water contamination generated two resonances between
400 and 500THz, for thickness of 2540 nm [8]. A quartz crystal microbalance was tested for gold ions
with thickness varying from 0 to 100µm, where a resonance near 650 nm was found [9]. Fluorescence
absorption technique was implemented to improve sensor sensitivity for Au nanoparticle detection [10].
The thickness of Au in the range of 8–60 nm was calculated by its plasmonic behavior in the visible to
infrared regime, from 640 to 950 nm [11]. One resonance was found in between 1200 nm–1350 nm, while
the Ag thickness of the 3–20 nm range is calculated [12].

Currently there are several commercial metal detectors [13–19], mostly operating in low radio
frequency (RF) ranges, 5.5 kHz–800 kHz [14]. These metal detectors based on eddy current-induced
coil [19] typically consist of two loops, i.e., a transmitting loop to generate an eddy current and a
receiving loop to detect the magnetic field of the eddy current [13]. The swept-frequency excitation
method was introduced to improve the sensitivity to detect the eddy current within a wide range of
frequencies [15]. Several RF frequency metal detectors are also used to detect unnecessary metals in
food industry [13, 16]; however, they do not classify metal types. An approach based on the air-coil
inductance change was implemented to detect ferrite existence in copper (Cu), iron (Fe), and aluminum
(Al) [17, 18], by comparing the amplitude and phase angle of the received signal.
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It is challenging to create an alternative and simple microwave sensor [20–25], a label-free,
non-destructive, no-contact, instant measurement, low-cost, and low-profile sensor to identify the
metals based on their electromagnetic (EM) properties, e.g., electric conductivity and permittivity
in the microwave frequency regime. EM waves are mostly reflected from the medium with negative
permittivity, a general behavior found in metals in microwave frequency. The waves can also penetrate
the medium and pass through based on the medium skin depth or penetration depth: δ = 1√

πfµσ , where

µ and σ are the medium permeability and conductivity, respectively, and f is the operating frequency.
At δ, the wave amplitude is attenuated by the factor e−1, or about 37% of its original peak. The skin
depth is inversely proportional to the operating frequency; for example, the skin depths of Ag and Au
are 1.002µm and 1.191µm at 4GHz, and 31.7 nm and 37.7 nm at 4THz. The attenuation (α) and
phase (β) constant of good conductors are identical: α≈β≈

√
πfµσ. Both constants depend directly

on the operating frequency, permeability, and conductivity. The attenuation indicates the strength of
the outgoing wave and how much the waves decay while they are propagating through the medium. It
means that the transmission, reflection, and absorption from different metals of different thicknesses at
different frequencies are unique.

In this research, we design a microwave sensor operating in the S- (2–4GHz) and C- (4–8GHz)
bands to discover precious transition metals, focusing on the 3 best known precious metals: silver,
platinum, and gold, of various thicknesses from 0.5µm to 3mm. An S- and C- multi-band bowtie
antenna was used as a transmitting port, where the reflection coefficients (S11) were collected to analyze
the material types and thicknesses. In the next section, the standalone bowtie antenna was first tested
with various dielectric slabs (εr= 1.5− 10) of 0.5µm–1mm thickness. The reflection responses showed a
clear distinction among the slabs of different contents and thicknesses. The aforementioned standalone
bowtie can also differentiate transition metals and metalloids, but it is challenging to classify the metal
types. In response to this issue, a novel metamaterial (MTM) structure, a quadruple concentric circular
split ring resonator (SRR), was designed to add to the bowtie antenna, as presented in Section 3. An
array of three MTM structures are placed in between the bowtie antenna and the metal sample. The
extra multi-resonances of MTMs are to improve the sensor’s sensitivity. Five resonances were established
in between the frequency of 2–8GHz while the sensor was tested with thin Ag, Pt, and Au slabs. The
reflection responses of Ag, Pt, and Au slabs can visibly separate the metal types and thicknesses.

2. S- AND C-BAND BOWTIE ANTENNAS AND ITS METAL, METALLOIS, AND
DIELECTRIC DETECTING PROPERTIES

2.1. Multi S- and C-Band Bowtie Antenna

Although a simple quarter wavelength transmission line is commonly used in most MTM-inspired
microwave sensors as a microwave transmission part, there was an attempt to implement a
complementary SRR-loaded patch as an excitation port, where only reflection coefficients (S11) were
collected. In fact, a stand-alone antenna can be employed as a main sensing element [21, 22]. In this
research, a bowtie antenna was chosen based on its structure and omnidirectional pattern. Not only can
the radiation pattern and beamwidth of the bowtie antenna be easily designed to focus on the testing
sample and the MTM enhancer, but also the operating frequency range can be controlled effectively.
Therefore, more accurate data can be obtained, which is desirable for detecting different sample types.
Its flat, printed structure helps to make the overall sensor size compact. A planar bowtie antenna was
designed to operate in the S- and C-bands, where 3 of 5 bands are pronounced, at 4.17GHz (−22.81 dB),
5.96GHz (−12.74 dB), and 7.77GHz (−10.10 dB). The bowtie was made of a two-sided 1 oz Cu FR-4
substrate with εr = 4.4. Figure 1 shows the bowtie dimensions, S11 parameter, and far-field radiation.

2.1.1. Bowtie Testing with Dielectric Slabs

The bowtie antenna was tested with a 100mm×60mm dielectric slab of 6 different thicknesses: 0.5µm,
1µm, 3µm, 10µm, 0.1mm, and 1mm. CST Microwave Studio [26] is implemented for the real-time
simulations. The perfectly matched layer (PML) or open ‘add space’, a specific CST name, set for the
system boundaries, ensures the least reflected and scattered waves from the boundaries. The estimated
reflected level is 0.0001% or 0.01%. The sensitivity of the bowtie antenna was optimized by varying the
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Figure 1. Bowtie dimensions, S11 parameter and far-field radiation.

spacing between the bowtie and the testing sample slab. The 18.75mm showing the most pronounced
detecting response was therefore selected in this study. The permittivity of the slab was varied (1.5, 2, 3,
5, and 10) to investigate the sensitivity of the antenna based on the reflection coefficients or S11. While
the dielectric slab is tested, all existing five S11 resonances were slightly shifted to a higher frequency,
as shown in Figure 2. At least one of the five S11 resonances with a clear inclination can be used to
identify the dielectric slab, i.e., 2nd, 3rd, and 4th for the 0.5µm slabs; 1st, 2nd, 3rd, and 4th for the
1µm slabs; 2nd, 3rd, 4th, and 5th for the 3µm slabs; 4th and 5th for the 10µm slabs; 5th for the
0.1mm slabs; and 1st for the 1mm slabs.

2.1.2. Bowtie Testing with Transition Metals and Metalloids

Metals or electropositive elements form positive ions by losing electrons during chemical reactions. They
are characterized by bright luster and hardness. Metals grouped in the middle to the left-hand side of
the periodic table consist of the alkali, alkaline earths, transition metals, post-transition, lanthanides,
and actinides. Transition metals, where their valence electrons tend to fill the ‘d’ orbitals in their
atoms, are located in the middle of the periodic table. They are known as good electrical conductors
and have a high melting point [27]. Post-transition metals are located after transition metals and before
metalloids in the periodic table. Their melting points are lower than the transition metals, same as
their boiling points [28]. Aluminum is one of the most abundant elements on earth. Metalloid elements
or semiconductors, i.e., boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and
tellurium (Te) [29], do not have too many free electrons comparative to conductors. They have common
properties between metals and non-metals, so they behave like metals under certain conditions, and
behave the same as non-metals under other conditions. Their electrons are more easily bound by atoms
than conductors. The conductivity of metalloids is much lower than that of the transition metals and
post-transition metals. Regarding thermal conductivity, precious transition metals have good thermal
conductivity, but semiconductors such as silicon have better thermal conductivity than post-transition
metals or even rich transition metals such as iron and manganese. The heat capacity of metalloids is
better than that of transition metals and posttransition metals.

Here, several metals and metalloids were chosen to investigate the metal detecting and sensing
properties of the bowtie antenna. We focus on their EM properties in the microwave frequency regime.
Table 1 lists the electric conductivity of the precious transition metal: Ag, Pt, and Au, the abundant
transition metals: Fe and Mn, the post transition or basic metals: Al and Sn, and metalloid: Si.

Figure 3 shows the reflection coefficient or S11 response of the bowtie testing with various thin
metal and metalloid slabs (precious transition metals: gold (Au), silver (Ag), platinum (Pt); abundant
transition metals: iron (Fe) and manganese (Mn); post transition or basic metals: aluminum (Al) and
tin (Sn); metalloids: silicon (Si)) of 6 different thicknesses, i.e., 0.5µm, 1µm, 3µm, 10µm, 100µm, and
1mm.

All four resonances (4–4.4GHz, 5.8–6.2GHz, 7.5–8GHz, and 9.4–9.8GHz) of the metalloid, Si,
and those of the metals (Au, Ag, Pt, Fe, Mn, Al, and Sn) stand out from those of the standalone
bowtie antenna. Only the metals’ 1st resonances are located at higher frequency, compared to that
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of the bowtie’s 1st resonance. All the rest (2nd, 3rd, and 4th) appear at lower frequency. However,
these reflection responses of the transition and post transition metal slabs with the same thickness are
marginally distinct. The detecting performance is not reaching its full potential. By carefully analyzing
the reflection responses from the bowtie antenna, we can recognize different dielectrics, metalloids, and
metals, but the metal types are not distinguishable.
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Figure 2. Bowtie S11 response testing with dielectric slabs of different permittivity values and
thicknesses.

In this research, we have integrated our unique multi-band metamaterial, as a sensing enhancer, to
create additional resonances, or points of detecting, in order to enhance metal detecting sensitivity. In
the next section, we present our metamaterial (MTM) and its electromagnetic properties, followed by an
MTM array integration with the bowtie to investigate the enhancement of metal detecting sensitivity.
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Table 1. Electric conductivity [26, 30, 31].

Precious

Transition

Metal

Abundant

Transition

Metal

Post Transition

or Basic Metal
Metalloid

Ag Pt Au Fe Mn [28] Al Sn Si

Electric

Conductivity

[S/m]

6.30e+7 9.43e+6 4.10e+7 1.04e+7 6.9e+5 3.56e+7 8.6957e+6 0.00025
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Figure 3. Bowtie S11 response testing with thin metal and metalloid slabs of different thicknesses.

3. METAMATERIAL-INSPIRED SENSORS

3.1. Metamaterial Design

Metamaterials (MTMs), engineered or artificial electromagnetic materials, have been implemented
in various electromagnetic applications, e.g., MTM-inspired sensors [20–25, 32–91] and MTM-inspired
antennas [92–94]. Typical MTM structures are fabricated using metals or conductive materials, e.g.,
gold (Au), silver (Ag), palladium (Pd) [33, 42, 44, 45], and Copper (Cu) [38, 56]. Split ring resonators
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(SRR) in both circular [23, 35, 50] and rectangular [32, 34, 36, 49, 55, 56] shapes, the most common
MTM structures, are combined with a quarter wavelength transmission line or a simple antenna to
design a compact electromagnetic contactless sensor. These SRR structures can be optimized as a
separate [23, 48, 57, 59, 60] or concentric [35, 36, 49, 50, 55, 56] SRR array, derived from a conventional
SRR. Other MTM shapes like H-shape [37, 51], X shape [43], omega shape [47], and U shape [45] are
also found in some specific MTM-inspired sensors.

The broken symmetry or gap of a ring loop, excited by appropriate electric and magnetic-field
orientations, creates electric and magnetic couplings, which generate a resonance. The inductance (L)
and capacitance (C) formed by the material structure setting control the resonance location: f =√

1/(LTCT ). By varying the MTM, transmission line and antenna dimensions, MTM-inspired sensors
can be designed to operate work in the microwave regime or GHz range [23, 32, 34–36, 38, 41, 42, 46–
48, 50, 52, 54–60] or up to a low optical regime in the tenth THz band [33, 37, 39, 40, 43–45, 49, 51, 53].
Multiple resonance bands can be easily manipulated by having MTM structure SRRs of different
dimensions. MTM-inspired sensors then can be designed to operate in a single band [36, 37, 41–
43, 46–49, 51] or multibands [23, 33, 34, 59–61] with higher sensitivity. MTM-inspired sensors have been
employed for a variety of detecting purposes, for instance, liquidor fluid [23–25, 34, 43, 44, 46–48, 53–
55, 57, 63, 65–69, 95], solid dielectric material [35, 36, 38, 52, 58, 62, 70], or biomaterials [37, 49, 50, 80, 91].

Quadruple homocentric circular SSRs with an aligned gap were initially designed to create four
resonances; however, while the rings are slightly rotated, due to an extra broken symmetry, six additional
resonances are created. Therefore, in this study, the misaligned gap four concentric SRRs, presented
in Figure 4(a), have been implemented. The dimensions: D1 = 31mm, D2 = 21mm, D3 = 15mm,

(a) (b)

(c)

Figure 4. (a) Proposed quadruple concentric MTM structure, (b) its simplified equivalent circuit, and
(c) S parameters.
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D4 = 9mm, W = 1.5mm, and T = 1.5mm, were adjusted in order to manipulate the resonance
locations within the C- and S-bands. An equivalent circuit of the MTM is shown in Figure 4(b). Each
inductance (L) represents the line segments of the MTM structure, whilst the gaps are represented by
capacitances (C). These inductances and capacitances were added in series and in parallel depending
on their respective nodes. The inductance and capacitance were calculated using an approximation for
the self-inductance of a circular loop and parallel plate capacitor formulas, respectively [96]. The MTM
structures were built by a one-sided 1 oz Cu (0.03mm thickness) 1.54mm FR-4 (εr = 4.4) substrate.
As projected, four major resonances, at 3.26GHz, 5.16GHz, 6.64GHz, and 7.76GHz, were generated.
There were six additional minor resonances created within the S- and C-bands, i.e., 5.44GHz, 5.78GHz,
6.96GHz, 8.48GHz, 9.12GHz, and 9.48GHz. Figure 4(c) shows the transmission coefficient (S21) and
reflection coefficient (S11) of the proposed quadruple concentric circular SRRs, where the ten resonances
can be observed.

The results presented in the previous section have shown that the multi-band bowtie antenna can
be used to classify dielectrics, metalloids, and metals; however, it is almost impossible to identify metals,
even from different groups. We therefore were motivated to enhance the sensing and detecting property
of the aforementioned bowtie by integrating the multi-band MTMs, and concentrated on precious metals,
i.e., gold, silver, and platinum. These precious metals are transition metals located close together in
the periodic table: VIIIB (Ru, Rh, Pd, Os, Ir, and Pt), and IB (Ag and Au) columns. Most precious
metals share similar physical, thermal, and mechanical properties, while Ag and Au stand out for their
low electrical resistivity and high thermal conductivity.

The proposed MTM array was inserted in between the bowtie antenna and the testing metal slab
to create an MTM-inspired sensor, shown in Figure 5. The sensor sensitivity was optimized by varying
the spacing between the bowtie antenna and the testing slab, h, (i.e., 3.75, 8.75, 13.75, 18.75, and
23.75mm). The 18.75mm showed the most pronounced detecting response, therefore was selected in
this study. The distance, g, between the MTM array and the bowtie was fixed at 2.5mm. The distance
g, between the MTM array and the bowtie was fixed at 2.5mm.

(a) (b)

Figure 5. Proposed MTM-inspired sensor.

3.2. MTM-Inspired Sensor Testing with Au, Ag, Pt Slabs of Various Thicknesses

The MTM-inspired sensor was tested with Au, Ag, and Pt slabs of various thicknesses: A1) 0.5, 0.6,
and 0.7µm; A2) 3, 5, 7, and 9µm; A3) 0.1, 0.5, 1, and 2mm. The comparison responses are presented
in Figures 6–8.

A1) 0.5, 0.6, and 0.7 µm

Five resonances were found in between 2–8GHz. Ag, Pt, and Au slabs with 0.5–0.7µm thickness
can be differentiated in the 4th resonance, 7.2–7.5GHz.
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Figure 6. MTM-inspired sensor S11 response: Ag, Pt, Au slab of 0.5, 0.6 and 0.7µm thickness.

A2) 3, 5, 7, and 9 µm

Five resonances were established in between 2–8GHz, while the sensor was tested with Ag, Pt, and
Au slabs of 3–9µm thicknesses. Pt slabs were standing out at the 1st resonance, 2.1–2.6GHz. Similar
to slabs of 0.5–0.7µm thicknesses, these Ag, Pt, and Au of 3–9µm can be visibly separated in the 4th
resonance, 7.2–7.5GHz.
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Figure 7. MTM-inspired sensor S11 response: Ag, Pt, Au slab of 3, 5, 7 and 9µm thickness.

A3) 0.1, 0.5, 1, and 2mm

Five resonances were also observed in the S- and C- bands, while the sensor was tested with Ag,
Pt, and Au slabs of 0.1–2mm thickness. The Ag, Pt, and Au slabs can be noticeably differentiated in
the 4th resonance, 7.2–7.5GHz, and also possibly distinguished in the other four resonances.
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Figure 8. MTM-inspired sensor S11 response: Ag, Pt, Au slab of 0.1, 0.5, 1 and 2mm thickness.

Next, the MTM-inspired sensor was tested with the Ag, Pt, and Au of various thicknesses, from
0.5µm to 3mm. The comparison responses are presented in Figures 9–14.
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3.3. MTM-Inspired Sensor Testing with Ag Slabs

Five resonances were observed in the S- and C-bands, while the sensor was tested with Ag slabs of
0.5µ–3mm thicknesses. The Ag slabs of various thicknesses are noticeably differentiated in the 4th and
5th resonances, and are also possibly distinguished in the other three resonances.

(a) (b)

Figure 9. (a) MTM-inspired bowtie sensor with Ag slab and (b) S11 results of various Ag thicknesses.
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Figure 10. MTM-inspired sensor S11 response: Ag slab of 0.5µm–3mm.

3.4. MTM-Inspired Sensor Testing with Pt Slabs

Five resonances were established in the observation band, while the sensor was tested with Pt slabs
of 0.5µm–3mm thickness. The Pt slabs of different thicknesses are markedly differentiated in the 4th
resonance and are also distinguished in the other four resonances.

(a) (b)

Figure 11. (a) MTM-inspired bowtie sensor with Pt slab and (b) S11 results of various Pt thicknesses.
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Figure 12. MTM-inspired sensor S11 response: Pt slab of 0.5µm–3mm.

3.5. MTM-Inspired Sensor Testing with Au Slabs

Five resonances were found in the observation frequency band, while the sensor was tested with Au
slabs of 0.5µm–3mm thicknesses. The Au slabs of different thicknesses are noticeably differentiated in
the 4th resonance and are also possibly distinguished in the other four resonances.

(a) (b)

Figure 13. (a) MTM-inspired bowtie sensor with Au slab and (b) S11 results of various Au thicknesses.
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Figure 14. MTM-inspired sensor S11 response: Au slabs of 0.5µm–3mm.

4. CONCLUSION

A simple metamaterial-inspired sensor is proposed to discover and classify metals of different thicknesses
in the microwave regime, within the S- and C-bands. The sensor is composed of an S- and C-band bowtie
antenna and multi-band metamaterials. Five resonances of the reflection coefficients were established
in the observation band, while the sensor was tested with three precious transition metal slabs, silver,
platinum, and gold, of 0.5µm–3mm thicknesses. The metal slabs of different thicknesses are noticeably
differentiated in the 4th resonance, in the 7.2–7.5GHz range, and also possibly distinguished in the
other four resonances. In order to improve the sensor’s sensitivity, another antenna can be added
as receiving port to collect the transmission coefficients, which can then be used to extract other
electromagnetic parameters, for instance, complex permittivity and permeability, chirality, etc. These
additional electromagnetic parameters can be used to further identify the metal contents.
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