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Diffraction Radiation Generated by a Density-Modulated Electron
Beam Flying over the Periodic Boundary of the Medium Section.

IV. Structures of Finite Thickness

Yuriy Sirenko1, 2, Seil Sautbekov3, *, Nataliya Yashina1, and Kostyantyn Sirenko1

Abstract—The paper is focused on reliable modeling and analysis of the effects connected with the
resonant transformation of the field of a plane and density-modulated electron beam flying over the
periodic rough boundary of a natural or artificial medium. In the paper, such a medium occupies a part
of the half-space, limited in thickness. Therefore, the numerous effects appeared due to transverse (in
the thickness of the periodic structure) resonances, and the coupling of eigen regimes of two different
periodic interfaces also contributes to the anomalies appearing due to excitation of the surface eigen
waves of the periodic boundary interface that had been discussed in previous papers of this series.

1. INTRODUCTION

As we wrote in the first of three papers [1–3] of this series, Vavilov-Cherenkov radiation (VChR) [4]
and Smith-Purcell radiation (SPR) [5] are among the most significant physical phenomena discovered
in the 20th century. Classic works [6–9] are devoted to the theory of these phenomena and questions
of their practical use. The surge of interest to them in modern science is mainly due to a growing list
of relevant physical and applied problems, whose solution is facilitated or could be facilitated by new
knowledge about the effects appearing in the processes of diffraction radiation (VChR or SPR). We are
interested in this topic because in several computational experiments when working with sufficiently
reliable mathematical models and corresponding computational schemes, the results that proved the
possibility of anomalously high levels of coherent diffraction radiation during the flight of a density-
modulated electron beam over a periodic boundary separating the usual artificial environment and
environment with a specific frequency dispersion of permittivity and permeability have been obtained.
It is not enough to simply record such results, and they also need to be convincingly explained in order
to make them interesting, to disclose their potential for prospective consumers working in the field of
diffraction electronics, diagnostics of charged particle beams, and monitoring of natural or artificial
materials and environments of practical interest. The works [1–3] are just devoted to this problem,
and there are the main components that are solved: (i) a mathematical model has been constructed
and implemented in software that allows obtaining reliable numerical data on all the features of the
processes of coherent diffraction radiation during the flight of a plane density-modulated electron beam
over a periodic boundary of a half-space occupied by a dispersion medium [1]; (ii) the conditions for
the excitation of the so-called eigen modes of the corresponding periodic structure were studied, and
those of them which could provoke the effects with an anomalously high level of VChR and SPR were
determined [2]; (iii) problem-oriented computational experiments confirming the conclusions based on
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an analytical consideration of model problems were carried out; they once again demonstrated the
possibility of implementing regimes of spatial-frequency transformations of the electron beam field
having undoubted practical interest [3].

All the results of works [1–3] concerned the system ‘flat density-modulated electron beam — the
periodic boundary of the half-space occupied by the dispersion medium’. Obviously, with necessity
they had to be ‘extended’ to more realistic systems in which the dispersion half-space would give way
to periodic structures with the same material parameters, but limited in thickness, or the geometric
variety of multilayer structures arising due to their wide application in various areas of science and
technology. This is the provenance and background of the problem considered in this paper. We start
it with a brief presentation of the model problem, which is the key for all situations of interest here and
was considered in detail in [1].

In [1, 10], we had presented the algorithm for the accurate solution to the boundary value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
∂2

y + ∂2
z + ε (g, k)μ (g, k) k2

]
U (g, k) = 0; g = {y, z} ∈ Ωint

Etg (q, k) , Htg (q, k) are continuous when crossing Σε,μ

and virtual boundaries y = 0, y = −h; q = {x, y, z}
U {∂z U} (y, l, k) = exp (2πiζ)U {∂z U} (y, 0, k) for − h ≤ y ≤ 0

, (1a)

U (g, k) = V0 (g, k) + U+ (g, k) = V0 (g, k) +
∞∑

n=−∞
U+

n (g, k)

= exp
(−iΓ+

0 y
)
ϕ0 (z) +

∞∑
n=−∞

Rn (k) exp
(
iΓ+

n y
)
ϕn (z); g ∈ A, (1b)

U (g, k) = U− (g, k) =
∞∑

n=−∞
U−

n (g, k) =
∞∑

n=−∞
Tn (k) exp

(−iΓ−
n (y + h)

)
ϕn (z); g ∈ B (1c)

describing the diffraction of a plane H-polarized (Ei
x = H i

y = H i
z = 0, ∂x = 0) wave V0(g, k) =

H i
x(g, k) = exp(−iΓ+

0 y)ϕ0(z), coming from an upper half-space to the periodic rough boundary
Σε,μ = Σε,μ

x × (−∞ < x < ∞), Σε,μ
x = {g : y = f(z), −h ≤ f(z) ≤ 0, f(z) = f(z + l)}, separating

vacuum (ε = μ = 1.0) and a dispersive (in a common case) medium with constitutive parameters
ε(k), μ(k) : Imε(k) = Imμ(k) = 0 (see Fig. 1). Here, U(g, k) = Hx(g, k),

Ey (g, k) = − η0

ikε (g, k)
∂zHx (g, k) , and Ez (g, k) =

η0

ikε (g, k)
∂yHx (g, k) (2)

— are the nonzero components of the total field {E(g, k),H(g, k)}, g = {y, z}, ∂x = 0, formed by
the system ‘boundary Σε,μ — electron flow’; Ωint = {g ∈ R : −h < y < 0}, A = {g ∈ R : y > 0},
B = {g ∈ R : y < −h}, R = {g = {y, z} ∈ R2 : 0 < z < l}, and Ḡ is the closure of the domain G.
Γ+

n =
√

k2 − Φ2
n, ReΓ+

n ≥ 0, ImΓ+
n ≥ 0 and Γ−

n =
√

k2ε(k)μ(k) − Φ2
n, ε−1(k)ReΓ−

n ≥ 0, ImΓ−
n ≥ 0 are

l
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Figure 1. Periodic boundary between two media: upper half-space is filled with vacuum and lower
half-space is filled with dispersive material.
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vertical propagation constants of spatial harmonics U+
n (g, k) and U−

n (g, k), outgoing upward (in half-
space occupied by vacuum) and downward (in half-space occupied by a dispersive medium) from the
boundary Σε,μ

x ; functions ϕn(z) = l−1/2 exp(iΦnz), n = 0,±1,±2, . . . form a complete (in space L2(0, l))
orthonormal system in the cross-section of the Floquet channel R; Φn = (n + ζ)2π/l, ζ : Imζ = 0
is a numeric parameter, characterizing the phase shift of the field of spatial harmonics U+

n (g, k) and
U−

n (g, k) along one period of the structure; k = 2π/λ is a frequency parameter; λ is a wavelength in
free space. The choice of the branches of the square roots Γ±

n is due to the so-called partial radiation
conditions [1, 11–14], according to which the fields U±(g, k) should not contain harmonics arriving
(transferring energy) from y = ±∞ to the boundary Σε,μ

x . There are no current sources in problem (1)
(the right-hand side in the Helmholtz equation is equal to zero). The periodic boundary is excited by
a homogeneous (in the case ImΓ+

0 = 0) or inhomogeneous (in the case ImΓ+
0 > 0) plane wave V0(g, k).

How is the problem of analyzing the effects of diffraction radiation arising during a density-
modulated electron beam flight over a periodic boundary Σε,μ

x and the model problem of the
electrodynamic theory of grating (1) related? Suppose that over the boundary Σε,μ

x the density-
modulated electron beam is flying, and its instantaneous charge density can be written as
ρδ(y − c) exp[i(k/β)z], c ≥ 0 (see Fig. 1). Here, ρ and k are the modulation amplitude and modulation
frequency of the beam, and β < 1 is its relative velocity. The electromagnetic field of such an electron
beam is H-polarized field (Ebeam

x = Hbeam
y = Hbeam

z = 0, ∂x = 0) with [9, 15]

Hbeam
x (g, k) = 2πρβexp

{
i

[√
k2 − (k/β)2 |y − c| + (k/β) z

]}
[|y − c|/(y − c)] ; y �= c.

From this representation it follows that in the presence of a plane (in case h = 0) or periodic (h > 0)
boundary Σε,μ between vacuum and dispersive medium, the density-modulated electron beam with
−2πρβ

√
l exp[−kc

√
(1/β)2 − 1] = 1 and k/β = Φ0 = ζ2π/l (for such value of Φ0, Γ+

0 is imaginary) is
generated in domains y > 0 and y < −h H-polarized field; its Hx-components U+(g, k) and U−(g, k)
are defined from the solution U(g, k) to boundary value problem (1). Indeed, under the conditions
specified above Hbeam

x (g, k) = V0(g, k) = H i
x(g, k) for y < c, the electromagnetic field of electron beam

and the field of an inhomogeneous plane wave exciting the boundary Σε,μ
x coincide. Consequently, the

secondary fields arising as a result of such excitation also coincide.
This allowed us, while solving numerically the problem (1) for artificial plasma-like medium in lower

half-space y < f(z), to investigate anomalous and resonant phenomena, accompanying the excitation
of Vavilov-Cherenkov or Smith-Purcell radiation, and unambiguously relate these phenomena to the
excitation of ‘unusual true eigen waves’ of the periodic boundary Σε,μ [2, 3]. In this paper, we continue
our analysis, extending it to the structures with similar materials and geometric parameters, but limited
in thickness (see, for example, Fig. 2). The relevance of such an analysis is due, first of all, to the fact
that such structures are widely used in optics, microwave, and antenna technology.

Same as in [1–3], the time dependence t for harmonic processes considered in this work is defined
by the factor exp(−iωt) omitted everywhere, and ω is a circular frequency. The dimensions of the SI
system of all mentioned physical quantities are also omitted.

2. BASIC ELECTROMAGNETIC MODELS

For solving problem (1), we used the method of analytical regularization [1, 10, 11, 13, 14, 16, 17], which
reduces the boundary value problems of the diffraction theory to the Fredholm operator equations
of the second kind, allowing us to calculate all interesting characteristics of electromagnetic wave
resonant scattering with any required accuracy. In the case of the problem (1), the role of such
an operator equation is played by the infinite system of linear algebraic equations with respect
to sets of complex amplitudes {Rn}∞n=−∞, {Tn}∞n=−∞ from the space of infinite sequences l̃2 =
{a = {an}∞n=−∞ :

∑
n |an|2(1 + |n|) < ∞} [13, 16].

Obviously, quite formal substitutions V0(g, k) → V A
p (g, k) = exp(−iΓ+

p y)ϕp(z), p = 0,±1,±2, . . .,
Rn → RAA

np , Tn → TBA
np or V0(g, k) → V B

p (g, k) = exp(iΓ−
p (y + h))ϕp(z), g ∈ B, Rn → TAB

np , Tn → RBB
np ,

lead us to consideration of the situations of a scattering of homogeneous and inhomogeneous plane waves
V A

p (g, k) or V B
p (g, k) arriving onto the boundary Σε,μ from a region A or from a region B. So there are
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Figure 2. Layered structures with periodic interfaces: (a) a slab of dispersive material; (b) a coat on
a metal substrate and a two-layer structure made of dispersive material.

no fundamental changes in the problem (1). Thus, within the framework of the previously developed
algorithm, we obtain the possibility to rigorously calculate the generalized scattering matrices:

RAA =
{
RAA

np

}∞
n,p=−∞ , TBA =

{
TBA

np

}∞
n,p=−∞

and RBB =
{
RBB

np

}∞
n,p=−∞ , TAB =

{
TAB

np

}∞
n,p=−∞ ,

(3)

These matrices provide us with the operators, limited on a pair of spaces l̃2 → l̃2 operators [13, 16, 18],
which determine all the electrodynamic characteristics of the considered periodic structure.

The extensive library of operators (3) (for many different values of constitutive parameters
ε(k), μ(k) and configurations of boundaries Σε,μ

x ) may be sufficient to rigorously solve problems of
type (1) within the framework of the method of generalized scattering matrices [11, 14, 16, 19, 20] for a
considerable number of layered structures with periodic rough and plane interfaces (see, for example,
Fig. 2). The construction of the corresponding resulting operator equations of the second kind on a
pair of spaces l̃2 → l̃2 follows the same standard schema [14] in all cases. Below, we briefly discuss
the implementation of this schema only for one of the simplest structures whose geometry is shown in
Fig. 2(a).

The boundary value problem describing the scattering of a plane H-polarized wave V0(g, k) =
H i

x(g, k) = exp(−iΓ+
0 y)ϕ0(z) arriving at the structure in Fig. 2(a) from a half-space y > 0 can be

written in the following form:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
∂2

y + ∂2
z + ε (g, k) μ (g, k) k2

]
U (g, k) = 0; g = {y, z} ∈ Ωint

Etg (q, k) , Htg (q, k) are continuous when crossing Σε,μ

and virtual boundaries y = 0, y = −h, y = −(h + d), y = −(2h + d)
U {∂z U} (y, l, k) = exp (2πiζ)U {∂z U} (y, 0, k) for − h ≤ y ≤ 0 and
−2h − d ≤ y ≤ −h − d

, (4a)
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U (g, k) = V0 (g, k) + U+ (g, k) = V0 (g, k) +
∞∑

n=−∞
U+

n (g, k)

= exp
(−iΓ+

0 y
)
ϕ0 (z) +

∞∑
n=−∞

Rn (k) exp
(
iΓ+

n y
)
ϕn (z); g ∈ A, (4b)

U (g, k) =
∞∑

n=−∞

[
an (k) exp

(−iΓ−
n (y + h)

)
+ bn (k) exp

(
iΓ−

n (y + h + d)
)]

ϕn (z); g ∈ B, (4c)

U (g, k) = U− (g, k) =
∞∑

n=−∞
U−

n (g, k) =
∞∑

n=−∞
Tn (k) exp

(−iΓ−
n (y + h)

)
ϕn (z); g ∈ C. (4d)

The method of generalized scattering matrices connects the sets of amplitude coefficients I = {δn
0 }∞n=−∞

(δn
0 — is Kronecker symbol), R = {Rn}∞n=−∞, T = {Tn}∞n=−∞, a = {an}∞n=−∞ and b = {bn}∞n=−∞ via

the system of operator equations ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R = RAAI + TABEBb

a = TBAI + RBBEBb

b = RBBEBa

T = TABEBa

, (5)

In Eq. (5), all stages of the formation of the response of a structure to excitation by a wave V0(g, k),
corresponding to a set of amplitude coefficients I, are clearly presented. So, for example, the first of the
equations of system in Eq. (5) can be read as follows: the field of the wave U+(g, k) in reflection domain
(it corresponds to a set of amplitudes R) is the sum of the fields, the first of which is formed as a result
of wave V0(g, k) reflection by the boundary Σε,μ

x (operator RAA), and the second is determined by the
field of a wave leaving an imaginary boundary y = −(h + d) (a set of amplitudes b corresponds to this
wave), influenced by a regular region B (operator EB) and transforming boundary Σε,μ

x (operator TAB).
The system in Eq. (5) is reduced to the Fredholm operator equation

a = TBAI + RBBEBRBBEBa (6)

(the operator EB = {δp
n exp(iΓ−

n d)}∞n,p=−∞, Im Γ−
n ≥ 0 is compact [13, 14, 16, 21] on a pair of spaces

l̃2 → l̃2) and further simple recalculating formulas, defining the sets of complex amplitudes b, R, and T

in the space of infinite sequences l̃2. Truncation of Equation (6) reduces the solution of problem (4) to
inversion of the finite (of the order 2N + 1) well-conditioned system of linear algebraic equations. The
error of the solutions obtained in the implementation of such a computational scheme, estimated by the
norm of the space l̃2 [16], is of the order of magnitude exp(−Nd/l).

3. A PERIODIC COAT OF DISPERSIVE MATERIAL BACKED WITH A METAL
SUBSTRATE. EIGEN WAVES

Information about the eigen waves of the periodic structures is important for the correct analysis of the
physical nature of the diffraction radiation processes [13]. Below, the focus is on the differences in the
spectra of eigen waves of a semi-infinite structure (see [1–3] and Fig. 1) and structures of finite thickness,
and the examples of such a geometry are presented in Fig. 2. These differences are mainly due to the
reflection of waves from the boundaries separating layers with different constitutive parameters. Their
characteristic features are most easily noted by considering one specific structure. Let it be a periodic
dielectric coat backed with the metal substrate (left fragment of Fig. 2(b)). The boundary value problem
describing the scattering of a plane H-polarized wave V0(g, k) = H i

x(g, k) = exp(−iΓ+
0 y)ϕ0(z) arriving
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at such a structure from a half-space y > 0 can be written in the following form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
∂2

y + ∂2
z + ε (g, k)μ (g, k) k2

]
U (g, k) = 0; g = {y, z} ∈ Ωint

Etg (q, k)|y=−h−d = 0 and Etg (q, k) , Htg (q, k) are continuous when crossing

Σε,μ and virtual boundaries y = 0, y = −h

U {∂z U} (y, l, k) = exp (2πiζ)U {∂z U} (y, 0, k) for − h ≤ y ≤ 0

, (7a)

U (g, k) = V0 (g, k) + U+ (g, k) = V0 (g, k) +
∞∑

n=−∞
U+

n (g, k)

= exp
(−iΓ+

0 y
)
ϕ0 (z) +

∞∑
n=−∞

Rn (k) exp
(
iΓ+

n y
)
ϕn (z); g ∈ A, (7b)

U (g, k) =
∞∑

n=−∞

[
an (k) exp

(−iΓ−
n (y + h)

)
+ bn (k) exp

(
iΓ−

n (y + h + d)
)]

ϕn (z); g ∈ B. (7c)

Here, Ωint = {g ∈ R : −h − d < y < 0}, A = {g ∈ R : y > 0}, B = {g ∈ R : −h − d < y < −h}.
Clearly, in the case of a plane (non-transforming) boundary y = f(z) ≡ 0 (h = 0), homogeneous

problem (7) (problem (7) with V0(g, k) ≡ 0) is reduced to an infinite set of independent homogeneous
systems of linear algebraic equations⎧⎪⎨

⎪⎩
Rn = an + bn exp (iΓ−

n d)

RnΓ+
n = [−an + bn exp (iΓ−

n d)] Γ−
n ε−1 (k)

−an exp (iΓ−
n d) + bn = 0

; n = 0,±1,±2, . . . (8)

with respect to unknown complex amplitudes Rn and an, bn. The equations of systems (8) are obtained
by matching in the plane y = 0 the tangential components of the field {E(g, k),H(g, k)} — the Hx-
component is equal to U(g, k), and the Ez-component is connected with U(g, k) via the relation in
Eq. (2) — and satisfying the condition Etg(q, k) = 0 on the metal substrate. Dispersion equations
follow from Eq. (8)[

1 + exp
(
i2Γ−

n d
)]

Γ+
n = − [

1 − exp
(
i2Γ−

n d
)]

Γ−
n ε−1 (k) ; n = 0,±1,±2, . . . (9)

Non-trivial solutions Φn(ζ̄n) = (n + ζ̄n)2π/l to Equation (9) for each fixed value of k > 0 determine an
infinite set of practically identical eigen waves of a ‘periodic’ structure:

U
(
g, ζ̄n

)
=

{
U+

n

(
g, ζ̄n

)
= l−1/2Rnexp

[
i
(
Γ+

n

(
ζ̄n

)
y + Φn

(
ζ̄n

)
z
)]

; y > 0

l−1/2 exp
[
iΦn

(
ζ̄n

)
z
] [

an exp
[−iΓ−

n

(
ζ̄n

)
y
]
+ bn

[
iΓ−

n

(
ζ̄n

)
(y + d)

]]
; −d < y < 0,

Γ+
n

(
ζ̄n

)
=

√
k2 − Φ2

n

(
ζ̄n

)
, Γ−

n

(
ζ̄n

)
=

√
k2ε (k) μ (k) − Φ2

n

(
ζ̄n

)
, n = 0,±1,±2, . . .

(10)

Here ζ̄n = −n + Φn

(
ζ̄n

)
l/2π are the propagation constants of eigen waves in Eq. (10). The nature of

these waves determines not only the specific value of a complex, in the general case, magnitude of ζ̄, but
also its position on the two-sheeted surface Fn of a two-valued function Γ+

n (ζ) (see details in [1, 2, 13, 22]).
On the real axis Reζ in the first (physical) sheet of this surface, the inequalities ReΓ+

n ≥ 0 and ImΓ+
n ≥ 0

hold.
Since the electrodynamic characteristics of structures are significantly influenced only by eigen

waves, with propagation constants ζ̄ located on the first (physical) sheets of Riemannian surface, which
is the natural region of variation of the corresponding spectral parameter [3], below in analyses of the
dispersion Equation (9), we will dwell precisely on the conditions for the existence of such waves. Let the
range of variation of the frequency parameter k be such that ImΓ−

n (ζ̄n) > 0. Then, for sufficiently large
values of d, Equation (9) almost exactly coincides with dispersion Equation (6) from [2]. This means
that surface ‘true eigen waves’ of the boundary y = 0 separating the vacuum and the half-space filled
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with a dispersive medium will necessarily reveal themselves in the case of the structure of finite thickness
considered here. In particular, when studying the electrodynamic characteristics of the object depicted
on the left fragment of Fig. 2(b), with of plasma-like media of layer, characterized with dispersion law

ε (k) = 1 − k2
ε/k

2 and μ (k) = 1 − k2
μ/k2, (11)

we will certainly see the influence of eigen waves, ‘continuing’ for a periodic boundary the so-called ‘true
eigen waves’

U
(
g, ζ̄±n

)
; Φn

(
ζ̄±n

)
= ± k

kε

√
(k2

ε − k2)
(
k2

ε − k2
μ

)
k2

ε − 2k2
(12)

of plane boundary y = 0, having area of existence that is limited by intervals kεkμ(k2
μ + k2

ε)
−1/2 < k <√

0.5kε = ksing for kε > kμ and
√

0.5kε < k < kεkμ(k2
μ + k2

ε)−1/2 for kε < kμ [2].
Let now the range of variation of the frequency parameter k is such that ImΓ−

n (ζ̄n) = 0.
Equation (9) can be written as follows:

cos
(
Γ−

n d
)
Γ+

n = i sin
(
Γ−

n d
)
Γ−

n ε−1 (k) ; n = 0,±1,±2, . . . (13)

Assuming the value of ReΓ−
n ε−1(k) to be nonnegative (this condition is required only in the case of

a semi-infinite dispersive medium, in the case of structures limited in thickness, the signs of the real
parts of the propagation constants of plane waves in layers can be chosen arbitrarily), we obtain from
Eq. (13) the equation

Γ+
n = itg

(
Γ−

n d
)
Γ−

n ε−1 (k) , tg
(
Γ−

n d
) ≥ 0; n = 0,±1,±2, . . . , (14)

providing easy calculation of points Φn(ζ̄n) and ζ̄n of eigen waves spectra in Eq. (10) from the first sheet
of the surface Fn (here ReΓ+

n ≥ 0 and ImΓ+
n ≥ 0). The waves U(g, ζ̄n) corresponding to these points

are also ‘true eigen waves’, but their field, decreasing exponentially with distance from the structure in
the domain A, freely oscillates with constant and possibly very large amplitudes an and bn in the region
B. It looks like ‘trapped’ in this area.

The spectrum of eigen waves determined by Equation (14) is much richer than the spectrum of ‘true
eigen waves’ of a semi-infinite structure. It is known [1, 13, 23] that the eigen waves of structures with
plane boundaries ‘smoothly transform’ into eigen waves of the corresponding structures with periodic
boundaries with a smooth change in the height of their profiling. Therefore, taking into account the
above conclusion, one should expect that the physics of the processes of scattering of plane waves say,
in the case of the structures shown in Fig. 2, will be much richer in different resonance effects than in
the case of a dispersive half-space. However even in this latter case, quite a few of them were noted [3].

4. A PERIODIC COAT OF DISPERSIVE MATERIAL BACKED WITH A METAL
SUBSTRATE. SMITH-PURCELL RADIATION

Let a plane, density-modulated electron beam flies over the structure shown in the left fragment of
Fig. 2(b). Moreover, let the constitutive parameters of the medium filling the slab −d − h ≤ y ≤ f(z)
be given by relations in Eq. (11). The physics of the process of interaction of the beam with the
periodic metal-backed coat is described by the boundary value problem (7), where in this case [1, 3]
Φ0 = ζ2π/l = k/β, k, and 0 < β < 1 — are the modulation frequency and the relative beam
rate. The modulation frequency sets the wavenumber k = 2π/λ, and λ is the length of the waves
that make up the field of diffraction radiation (Smith-Purcell radiation) into free space y > 0. The
intensity of this radiation is determined by the quantities W+

n (k) = |Rn|2ReΓ+
n |Γ+

0 |−1, W+
n (k) — is the

energy transformed into the spatial harmonics of the periodic structure propagating without damping
(ImΓ+

n = 0). Only negative numbers n can correspond to such harmonics in the above given formula
for Φ0.

Figure 3 shows the electrodynamic characteristics of the structure with parameters kε = 0.5,
kμ = 0.4, h = 0.1, d = 4π. Here, as elsewhere below l = 2π and f(z) = 0.5h(cos z − 1). Electron
flow relative speed is β = 0.12, and the analyzed frequency range is 0.1 ≤ k ≤ 0.36. Within this range
U+

n (g, k), n = −1,−2,−3 harmonics propagate without attenuation in the bands 0.10725 ≤ k ≤ 0.13625,
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Figure 3. Dependences (a) W+
−1(k) and (b) W+

−3(k), characterizing the intensity of diffraction radiation
into free space y > f(z): 1 — metal-backed coat; 2 — semi-infinite structure.

0.2145 ≤ k ≤ 0.2725 and k ≥ 0.3215, correspondingly. In calculations the discretization step of
parameter k is chosen equal to 10−6.

The value W+
−2(k) within the whole frequency band where the harmonic U+

−2(g, k) is propagating
does not exceed 10−5. The quantities W+

−1(k) and W+
−3(k) in the corresponding ranges do not rise

higher than 10−2, with the exception of a finite number of points and their small vicinity, where the
intensity of diffraction radiation can be anomalously high. And in the case of W+

−3(k), these points
almost exactly coincide with the spectral points associated with the ‘true eigen waves’ of a semi-infinite
structure having the same constitutive parameters. These points are localized in the frequency range
from kεkμ(k2

ε + k2
μ)−1/2 ≈ 0.312 to ksing =

√
0.5kε ≈ 0.354 [2], and here, within this range, a structure

limited in thickness and a semi-infinite structure with practically the same efficiency transform the
field of an electron beam into the field of the U+

−3(g, k) harmonic propagating in the region y > f(z)
infinitely far from the structure. As an example confirming this statement, we have presented on the
right fragment of Fig. 3(b), drawn by the red curve, the dependence W+

−3(k) for the corresponding
semi-infinite structure.

The frequencies corresponding to such regimes are close to those for which, in the case of semi-
infinite structures, the existence of the so-called ‘something like leaky waves’ was noted [2]. In general,
the considered example confirms the previously formulated thesis that the physics of plane wave
scattering processes in the case of the structures shown in Fig. 2 will be much richer in different
resonance effects than in the case of a dispersive half-space. Attention should be paid to the Q-factor
of the modes, upon the excitation of which, the efficiency of diffraction radiation reaches its maximum
values. It is very high, and the corresponding high and narrow resonance bursts against the background
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of the surrounding insignificant values of W+
n (k) allow us to hope that such modes can be used in

measuring schemes focused on a very accurate determination of the parameters of the electron beam or
material parameters of artificial plasma-like media.

For kε = kμ = 0.9 and β = 0.2 in the range 0.15 ≤ k ≤ 0.7, considered in Fig. 4, the frequency
intervals, where harmonics U+

−n(g, k), n = 1, 2, 3 propagate without attenuation, do not overlap each
other and are given by such inequalities: 0.16675 ≤ k ≤ 0.24975 for n = 1, 0.33350 ≤ k ≤ 0.49975 for
n = 2 and k ≥ 0.50025 for n = 3. The dependences W+

−n(k) are clipped off here at the level of 0.016,
and the peaks of these dependences with a sampling step of the frequency parameter k equal to 0.00025
have the following values: 1 — W+

−1 ≈ 2.67, 2 — W+
−1 ≈ 36.6, 3 — W+

−1 ≈ 0.17, 4 — W+
−1 ≈ 0.63, 5

— W+
−1 ≈ 140.9, 6 — W+

−1 ≈ 58.1, 7 — W+
−1 ≈ 23.6, 8 — W+

−2 ≈ 1.82, 9 — W+
−3 ≈ 185.6. Some of

these values can be called anomalously high, and as follows from [2], their appearance is not associated
with resonance frequencies inherent in both infinite and limited in thickness periodic structures. All
sharp changes in the characteristics of diffraction radiation here are due to the ‘synchronism’ [3] with
the ‘true eigen waves’ which are supported only by structures limited in thickness.

    nW k+

− 1234 56 7                  8                                                           9 

0.015
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0.005

 0

0.15    0.30 0.45    0.60 k

1n = 2n = 3n = 

(  )

Figure 4. Dependences W+
−n(k), n = 1, 2, 3, characterizing the intensity of diffraction radiation into

free space y > f(z) when kε = kμ = 0.9, h = 0.1, d = 4π, β = 0.2.

(a) (b)

Figure 5. Dependences W+
−1(k), characterizing the intensity of diffraction radiation into free space

y > f(z), kε = 0.5, kμ = 1.0, β = 0.9 and d = 0.01: (a) h = 0.1, (b) h = 0.01.
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In the frequency range 0.46 ≤ k ≤ 0.56 and for kε = 0.5, kμ = 1.0, β = 0.9, only one harmonic —
U+
−1(g, k) — can propagate in the reflection zone of a periodic structure without attenuation — its lower

threshold point is k+
−1 ≈ 0.4737 [1]. The band ksing =

√
0.5kε ≈ 0.354 ≤ k ≤ kεkμ(k2

ε + k2
μ)−1/2 ≈ 0.447,

where the frequencies associated with the ‘true eigen waves’ of a semi-infinite structure of the same
constitutive parameters are localized, does not fall into this range either [2]. Therefore, all resonance
peaks of the curves W+

−1(k) presented in Fig. 5 are caused by the excitation of ‘true eigen waves’ inherent
only in structures limited in thickness.

The curves in Fig. 5 are clipped off at the level W+
−1 = 10. Their peak values when a frequency

parameter k sampling step was chosen equal to 0.0001 are as follows: 1 — W+
−1 ≈ 45.1, 2 — W+

−1 ≈ 441.5,
3 — W+

−1 ≈ 132.6 for h = 0.1 and 4 — W+
−1 ≈ 49.3, 5 — W+

−1 ≈ 51.8, 6 — W+
−1 ≈ 12.8 for h = 0.01. It

turns out that almost flat structure (its height from the substrate to free space is h + d = 0.02, which
is more than 300 times less than the period l = 2π of the structure and more than 600 times less than

Figure 6. Dependences W+
−1(d) and W+

−1(d), characterizing the intensity of diffraction radiation into
half-spaces y > f(z) and y < f1(z), kε = 0.5, kμ = 1.0, β = 0.2, h = 0.128, h1 = 0.001 and k = 0.193965.
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the wavelength λ = 2π/k) is able to very effectively transform the field of an electron flow into a field
of a plane electromagnetic wave outgoing infinitely far into free space.

The regular sequence of very high peaks on the curves W+
−1(d) and W−

−1(d) = |T−1(d)|2ReΓ+
−1/|Γ+

0 |
characterizing the intensity of diffraction radiation at the minus first harmonic of the semitransparent
periodic structure in the half-spaces y > f(z) and y < f1(z) (see Fig. 6; f1(z) = −h − d +
0.5h1(cos z − 1)), allows us to associate their appearance with the excitation of ‘true eigen waves’,
whose field, weakly damping, oscillates in area −h − d < y < −h. The curves W±

−1(d) in Fig. 6 are
clipped off at the level W±

−1 = 1.1, and the maximum values of their magnitude, calculated at the
parameter d sampling step equal to 0.0005, are shown above the upper boundary of the corresponding
fragments.

Results presented in Fig. 6 describe the process of electromagnetic wave scattering with parameters
chosen in such a way that only minus first spatial harmonics U±

−1(g, t) propagate without damping in
free half-spaces y > f(z) and y < f1(z). At that, there are much more such harmonics in the layer.
But, apparently, only one of them — the zeroth one — actively participates in the coupling between
the reflection and transition zones of the periodic structure. This statement is clearly confirmed by the
following evident calculation: the length of the wave inside the slab λlayer = 2π/Γ−

0 is approximately
equal to 2.97; the distance d between the peaks of the curves, the first of which we fix at a point
d ≈ 1.773 (in Fig. 7 — at the point d ≈ 0.296), is constant and equal approximately to 1.48 — this is
half of the wavelength λlayer in the layer. Therefore, we can state that in the case under consideration
the excitation of ‘true eigen waves’, ‘synchronism’ of the electron beam which leads to anomalously
high levels of intensity of diffraction radiation, is associated with so-called half-wave resonance over the
thickness of the layer d.

Figure 7. To Fig. 6. The behavior of W+
−1(d) for small values of slab thickness d.

Rather special situation appears for the thin slabs, which is for small values of d. As this interval of
d is not clearly seen in Fig. 6, the curve W+

−1(d) in extended scale is presented in Fig. 7. For a thin slab,
the origins of resonant peaks in scattering characteristics have another nature. In such a structure,
not only homogeneous (propagating) plane waves but also inhomogeneous (evanescent) waves with
propagation constants Γ−

n , n �= 0, ‘trapped’ in the layer [12, 13, 16, 24], are responsible for the formation
of resonance peaks on the curves W±

−1(d).

5. CONCLUSION

One common problem associated with clarification and explanation of the appearance of anomalously
high levels of diffraction radiation (Vavilov-Cherenkov radiation or/and Smith-Purcell radiation) when
a plane, density-modulated electron beam passes over a periodic boundary separating a vacuum and
some artificial (plasma-like medium) unites four works — this one and three others published a little
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bit earlier [1–3]. A universal nature underlying the implementation of the corresponding effects is found
and specified: that is the ‘synchronism’ of the electron flow with one of the ‘true eigen waves’ of a
structure. That can be a purely surface wave, producing the field decreasing exponentially when it
leaves the periodic boundary in both directions, or a wave, producing the field oscillating in a layer of
finite thickness with very weak damping. If the ‘true eigen wave’ corresponds to the eigen propagation
constant ζ̄, then by ‘synchronism’ we mean the rapprochement of the values Reζ̄ and ζ = kl/2πβ —
the parameters characterizing the phase shift of the field of the eigen wave and the field of the electron
beam along one period of the structure. The closer these values are and the smaller the values Imζ̄ are,
the greater the contributions of terms of the type cm(k)(ζ − ζ̄)m, m = −M,−M + 1, . . . ,−1 of Laurent
series are, and they represent all the electrodynamic characteristics calculated within the framework of
the corresponding model problems [1, 13, 14, 22, 23]. Here M is the order of the pole of the resolvent of
such problems at a point ζ̄. In this regard, it is clear why the above ‘synchronism’ leads to anomalously
high levels of diffraction radiation.
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