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Performance Optimization of Dual-Feed UWB Annular Ring
Antenna with Circular DGS and EBG for SAR Reduction
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Abstract—The article presents the design of an Ultra-Wideband (UWB) annular ring antenna which
operates over 1.5GHz to 12GHz and covers most of the bands of mobile communication (GSM 1800,
1900 and 2100, UMTS, Bluetooth (2.4GHz), WLAN 2.4/3.5/5GHz, and WiMAX 2.5/3.5/5.5GHz).
The antenna size is 40× 36.67× 1.6mm3, and an FR-4 substrate of permittivity 4.3 with loss tangent
of 0.025 is used for fabrication. Circular defect in ground plane of annular ring is used to achieve
UWB characteristics. A wideband mushroom type of Electromagnetic Band Gap (EBG) unit cell is
designed which resonates at 2.3GHz, and 8-unit cells are placed close to feeds of the annular ring patch
where current density is more for 2.4GHz, so as to reduce surface waves and ultimately to lower Specific
Absorption Rate (SAR). SAR is evaluated with dual-feeds for single element and is lowered up to 83.64%
for 1-gram of tissue mass.

1. INTRODUCTION

Antennas are the most prominent parts of any wireless communication system, so they must be
designed with utmost care. Nowadays communication systems use multiple antennas for numerous
applications which would cost more; also, there is often an issue with a specific absorption rate (SAR)
diversity antenna operation, so the need has arisen to design single antenna that could serve multiple
purposes. Multiband and ultra-wideband (UWB) antennas make carrier aggregation possible to increase
transmission bandwidth which is the need of today [1]. Electromagnetic radiation absorbed by human
tissue has to be given attention, since stringent guidelines are laid down by FCC, IEEE, and ICNIRP [2–
4]. Guidelines are given for six minutes usage of mobile phones in talking mode, but humans are not
restricting it, as cellular phones have become a vital part of our lives. Even though SAR value is
1.6W/kg averaged in 1-gram of tissue and 2W/kg averaged in 10-gram of tissue mass as per guidelines,
for prolonged usage of mobile phone in talking mode it is advisable to have lower values of SAR. Also,
multiple elements used simultaneously give rise to misleading SAR values, if SAR to peak location
spacing ratio is not calculated and must be less than 0.3 if the spacing between elements is smaller than
5 cm [5].

Sievenpiper et al. were the first to propose high impedance surfaces characterized by LC equivalent
circuit to minimize surface waves [6]. Zhu et al. proposed novel methods to evaluate the surface
impedance of a mushroom type EBG unit cell [7]. Sarrazin et al. proposed an analytical model to
predict reflection of incident waves in-phase. The reflected phase response of high impedance surface
depends on the size of patches and gaps between them [8, 9] and offers zero reflection phase at resonant
frequency [10]. Alam et al. proposed parasitic element and defective ground structure (DGS) for
wideband antennas, and also used metamaterials for SAR reduction [11, 12]. Lee and Choi reduced back
lobes using partial ground and improved radiation characteristics and front to back ratio of microstrip
antenna [13]. Elsadek et al. used two spiral electromagnetic band gap (EBG) structures in the ground to
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achieve multiband operation. Also, surface waves were suppressed using four different shapes, and the
size reduction achieved is 70% [14, 15]. Prakash et al. used an EBG structure with rectangular defect in
ground to achieve wide stopband [16]. Sultan et al. proposed a planar monopole and meander line to
cover most of bands of handheld devices and used the EBG structure in [17], meander line and partial
ground in [18] to reduce SAR. Ashyap et al. employed EBG and DGS for isolating human body from
the wearable antenna and to broaden the bandwidth [19]. Chew presented an annular ring antenna and
studied resonant modes, and TM12 mode gives good radiation, low Q factor, and high directivity [20].
El-khamy et al. varied ratio of outer to inner radii of the annular ring for exciting different modes [21].
Rawat and Sharma studied the behavior of an annular ring antenna over circular one and achieved
better impedance bandwidth using partial ground [22]. Antonino-Daviu et al. used double feed for
evading horizontal currents and improved bandwidth and polarization [23].

This article presents an extended work for optimizing size, achieving percentage reduction in SAR,
and enhancing bandwidth to cover multiple bands for the work presented in [24, 25]. It aims at designing
a small, compact UWB annular ring antenna. Wideband characteristics are achieved through an annular
ring and better impedance matching through a circular defect in the ground. An EBG unit cell with
2.3GHz resonant frequency is designed and placed on both sides of the stripline feed to minimize surface
waves and reduce SAR considerably.

2. DESIGN OF DUAL-FEED UWB ANNULAR RING

The annular ring antenna uses TMmn mode as field variations in Neumann’s and Bessel’s functions of
order m are absent. The dominant mode is TM11, and higher modes are excited to attain multiband
resonance. The resonant frequency of circular antenna is given, referring to Eq. (1) [20, 21].
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where Fmn is the resonant frequency, Xmn the root for first order Bessel function, c the speed of light
in free space, r the radius of the patch, and εeff the effective dielectric constant.

Equation (2) reveals resonant frequency for TM11. Equation (3) gives εeff , and Equation (4) gives
effective radius (re) considered due to fringing fields [26, 27].
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where εr is the relative permittivity, h the substrate height, and w the width.
Annular ring antenna is significantly smaller than circular or rectangular antenna and shows greater

input impedance, if it is operated in fundamental mode. The ratio of outer and inner radii regulate
separation among the modes. An appropriate choice of the radii broadens bandwidth [21]. The basic
approximation of Bessel function gives rectified radius revealed by Equation (5) and is substituted in
Equation (6) to get resonant frequency for the dominant mode [27]. Real radius of an annular ring is
‘(b− a)’, and b and a are outer and inner radii, respectively.
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fr is the resonant frequency, and (b− a)e is the rectified radius.
Performance of antenna is improved by varying width of the annular ring. The ratio of radii is

varied in the range of 2.5 to 3 and is optimized at 2.7, so broadening of the bands occurs, and defect
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Figure 1. Designed UWB annular ring antenna. All dimensions depicted in figure are in mm.

Figure 2. Fabricated UWB annular ring antenna.

in the ground produces further widening of the bands. Designed and fabricated dual-feed annular
ring antennas with a circular defect in ground are shown in Fig. 1 and Fig. 2. Dual-feed facilitates
enhancing gain and reducing SAR value, and single feed with 1W input power produces higher SAR.
When dual-feeds on opposite sides are used with half (0.5W) input power at each port with opposite
phase excitation, the gain adds constructively. Hence, isolation among ports as in MIMO is not required;
also, it produces lower SAR value as discussed in detail and presented in [24].

Figure 3 shows simulated and measured S-parameters for antenna over 1.5GHz–12GHz, when both
the ports are excited simultaneously with 0.5W input power keeping the amplitude same and phase
0◦ at port 1 and 180◦ at port 2. The antenna gives reflection coefficient (S11 < −10 dB) for all the
desired bands. Measured and simulated results show variation due to fabrication accuracy and excessive
soldering material on the microstrip feed.

3. SAR EVALUATION

Figure 4 presents SAR evaluation method for dual-feed UWB annular ring antenna in which a human
head along with handset case and hand model from CST-MW studio are used. The annular ring antenna
is fixed in mobile handset case, and the port is fed with 1W of power as an excitation signal, as in
transmit mode the antenna uses power up to 1W. The evaluated value of SAR will be the peak value.
The detailed information on properties used by SAM phantom model [28] with hand and handset is
listed in Table 1 [29].
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Figure 3. Reflection coefficient v/s frequency for antenna without EBG.

Figure 4. Antenna fixed in handset along with hand and head.

UWB antennas are operated over a large range of frequencies and support different applications,
but when being used for mobile handset they must comply with the guidelines given by FCC and
IEEE C95.3. The dual-feed UWB annular ring antenna gives higher value of SAR than the value set
in guidelines at 2.4GHz band which is presented in Table 2. Surface current distribution is analyzed
at 2.4GHz by providing input at port 1 and terminating port 2 with 50Ω. It is evident that due to
surface current, surface waves are generated near the feed line strips for all the desired bands, but the
surface current is eventually more for 2.4GHz frequency which is depicted in Fig. 5. EBG structure
when incident with waves at any angle and any polarization will reflect waves at that frequency where
reflection phase is zero degrees, and consequently waves are reflected from ground and are radiated at
an angle of 90◦.
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Table 1. Parameters of phantom model with hand and handset.

Model parts Material type Conductivity Relative Permittivity

Hand Normal 1 20

Plastic Case Normal - 2.5

LCD Film Normal - 4.78

Rubber pads Normal 0.005 3.5

SAM Fluid Normal 1.42 40

SAM Shell Normal 0.0016 3.7

(a) (b)

Figure 5. Surface current distribution at 2.4GHz for dual-feed UWB annular ring antenna with and
without EBG. (a) Without EBG. (b) With EBG.

4. UNIT CELL MODELLING AND ANALYSIS

To minimize surface waves for a reduction in SAR, EBG unit cells must be placed near feed lines as
spurious radiations are more near feed. Planar EBG unit cells must be used on ground plane or with the
multi-layer structure for effective suppression of surface waves and spurious backward radiation towards
human head. Mushroom type unit cells can be used on the top surface along with the main radiating
patch to enhance performance in terms of impedance bandwidth. Slotted unit cell with shorting vias
is designed and operated over a wideband. Figs. 6(a) and (b) show the characterization of unit cell by
means of reflection phase method, where periodic boundary conditions are applied in x and y directions
along with plane wave incident in z-direction. This method is more convenient as it analyses reflected
E-field with respect to incident E-field for a perfect magnetic conductor. The result gives reflection
coefficient as one and phase as 0◦. Reflection phase is achieved which is a function of frequency and
varies from +180◦ to −180◦; this also gives stop bandgap bandwidth between +90◦ and −90◦ for plane
wave incidence [30].

Theoretically lumped LC model gives an analysis of EBG unit cell, where vias are represented by
L, and gap between unit cells is represented by C, which are dependent on the geometry of the unit
cell. Fig. 7 shows LC lumped model, and for designing a unit cell at 2.4GHz, λ calculated is 125mm
and acts as a reference for the dimension of unit cell. These values are determined using Equations (7),
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(a) (b)

Figure 6. Reflection phase method for characterization of EBG unit cell.

Figure 7. Lumped LC model.

(8), and (9) below.
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where fr is the resonant frequency of unit cell, L the inductance, C the capacitance, µ the permeability,
h the thickness of substrate, w the width of unit cell, g the gap between unit cells, εr the relative
permittivity, and ε0 the permittivity of free space.

The capacitance between adjacent copper patches is calculated, whereas inductance results from
the current loop. At low frequency, the impedance becomes inductive and assists TM surface waves.
At high frequency, it turns out to be capacitive due to gaps between unit cells and supports TE surface
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waves. At resonant frequency EBG will impose its stopband characteristics as the surface offers the
highest impedance [30].

Design parameters for EBG unit cell required are very small and are in proportion to reference
wavelength; width is 0.048λ; the gap between unit cells is 0.008λ; dielectric constant is 4.3; radius of
via is 0.0048λ; substrate height is 0.012λ.

Figure 8 depicts an EBG unit cell along with dimensions, and Fig. 9 shows the phase reversal of
the unit cell for plane wave incidence at 0◦ which is almost constant for all incident angles. It is evident
that reflection phase crosses 0◦ at 2.328GHz which is close to the 2.4GHz band and exhibits stopband.
The stopband bandwidth computed is 2.29GHz for reflection phase characteristic in between +90◦ and
−90◦ which is very wide. Also in the article [31], reflection phase is estimated in between 90◦ ± 45◦.

Figure 8. EBG unit cell.

Figure 9. Reflection phase characteristic of unit cell for plane wave at normal incidence.

5. DUAL-FEED UWB ANNULAR RING WITH EBG STRUCTURE AND SAR

Figure 10 shows a fabricated prototype of dual-feed UWB annular ring antenna with EBG unit cells
placed on both sides of feeds, so as to minimize surface loss at 2.4GHz band. The center frequency of
the unit cell is 2.328GHz and will offer its stopband feature in the range of 1.17GHz to 3.46GHz.
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Figure 10. Fabricated UWB annular ring antenna with EBG.

Figure 11 depicts measured and simulated S-parameters for the UWB annular ring antenna with
EBG, which is placed inside handset over 1.5GHz–12GHz, and the ports are excited simultaneously
with 0.5W input. The settings used for phase are like those used earlier for the antenna without
EBG. It is evident that the reflection coefficient for the entire UWB is less than −10 dB and has more
variation in values for corresponding stopband. The variation in reflection coefficient can be witnessed
from Fig. 11, and deterioration is almost 75% for 5.5GHz band whereas for other bands of interest
it is around 10%. Fig. 12 depicts measured and simulated gains in dBi for both the antennas (with
and without EBG) over the entire band by exciting port 1 with 1W and terminating port 2 with 50Ω
terminator. Gain attains the maximum value of 4.32 dBi for annular ring antenna without EBG and
4.55 dBi for the annular ring antenna with EBG. It is evident that the gain is slightly enhanced by 6.3%

Figure 11. Reflection coefficient v/s frequency for antenna with EBG.
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Figure 12. Variation in maximum gain for antenna without EBG.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 13. (a)–(h) Simulated and measured radiation patterns of both the antennas (with and without
EBG).

at 2.48GHz when patch is used with EBG. Reflection coefficient and gain of both the configurations
are characterized over the entire band from 1.5GHz to 12GHz, but radiation patterns are depicted for
the specific bands of interest (1.8GHz, 2.4GHz, 3.5GHz, and 5.5GHz).

Figures 13(a)–(d) and (e)–(h) depict simulated and measured radiation patterns of both the
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antennas (with and without EBG) at Φ0 and Φ90, respectively. It is witnessed that in both the cases,
radiation patterns are similar at 1.8GHz, 2.4GHz, and 3.5GHz, whereas slightly differ at 5.5GHz at
Φ0.

It is evident from Table 2 that due to the use of EBG unit cells, SAR values at all desired frequency
bands are reduced drastically for 1 gram and 10 gram of tissue mass except at 3.5GHz. The major
concern is for 2.4GHz band as the value of SAR evaluated which is 1.904 for 1 gram tissue and higher
than the value set in guidelines of FCC, but when EBG structure is employed with a UWB annular ring
antenna the value of SAR is decreased by 82.86%. Comparison of SARs for with and without EBG is
given in Table 2 for all the frequencies. Table 3 presents the comparison of SAR with existing literature,
when the antenna uses frequency selective surfaces.

Table 2. Comparison of SAR [W/kg] for dual-feed UWB annular ring antenna.

Frequency [GHz] Without EBG With EBG % Reduction in SAR

1 g 10 g 1 g 10 g 1 g 10 g

1.8 0.730 0.044 0.12 0.11 83.64 74.60

2.4 1.904 0.966 0.326 0.29 82.86 69.87

3.5 1.277 0.641 0.77 0.62 39.70 3.12

5.5 0.824 0.248 0.188 0.070 77.18 71.77

6. COMPARISON OF PROPOSED WORK WITH EXISTING LITERATURE

Table 3. Comparison of SAR [W/kg] at different frequencies [GHz].

Reference

No. and Year

1.8 2.4 3.5 5.5

1 g 10 g 1 g 10 g 1 g 10 g 1 g 10 g

[32], 2017 0.452 0.237 1.1 0.925 0.67 0.384 0.75 0.249

[33], 2018 - - 2.48 0.7 - - 3.33 0.71

[24], 2020 0.311 0.189 0.218 0.12 0.229 0.099 - -

[34], 2020 0.724 -

[35], 2021 - - 2.49 - 2.49 - 1.645 -

[36], 2021 1.26 - 1.67 - - - - -

[37], 2021 0.25 0.071 0.7 0.171

proposed 0.1195 0.113 0.3262 0.291 0.77 0.621 0.188 0.070

7. CONCLUSION

Band broadening can be achieved by introducing defect in ground plane (DGS). Size reduction and
circular defect converts multiband antenna into UWB antenna operation wise, also reducing SAR to
some extent. Many single band antennas can be replaced by multiband or wideband antenna which
will serve the purpose and reduce the overall cost of the product. When ports 1 and 2 of the dual-feed
annular ring antenna are excited with 0.5W input power, and phase of 0◦ and 180◦ respectively, it
produces low SAR. Mushroom type EBG cells are placed on the top surface near the feed to reduce
surface waves, and additionally SAR is reduced up to 83.64%. Standards quote acceptable value of
SAR must be less than 1.6W/kg for 1-gram averaged tissue mass for 6minutes in talking mode, but
extensive use of mobile phones for prolonged duration in talking mode can severely affect human health;
it is therefore beneficial to have low SAR values.
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