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Radiation of Electromagnetic Waves by an Arbitrarily Oriented Slot
at the End Wall of a Rectangular Waveguide

Mikhail V. Nesterenko*, Victor A. Katrich,
Victor I. Kijko, and Svetlana V. Pshenichnaya

Abstract—A problem of electromagnetic waves radiation diffracted at a narrow rectilinear arbitrarily
oriented slot cut in an end wall of a semi-infinite rectangular waveguide is solved by an asymptotic
averaging method. The slot radiates into a half-space over an infinite perfectly conducting plane.
An influence of slot inclination angle upon energy and spatial characteristics is numerically studied.
Theoretical results are compared with experimental data. A numerical-analytical problem of a narrow
rectilinear slot radiating into the space above an infinite impedance plane is also presented. The
asymptotic solution for the slot magnetic current was obtained by a generalized method of induced
magnetomotive forces (MMF) by using Green’s functions of a space above the impedance plane. The
effect of the plane with impedance coating on the slot is reduced taking into account an additional term
to the slot external conductivity, for which the expressions were obtained in an analytical form.

1. INTRODUCTION

At the present time, narrow slots cut in rectangular waveguide end walls whose longitudinal axis
is parallel to one of the coordinate system axes are widely used in microwave antenna-waveguide
technology. The slots can serve as radiators which radiate into a half-space above an infinite screen [1–
3], as coupling elements between various electrodynamic volumes [4–6] and as structural components
of combined radiating structures [7]. A control of electrodynamic characteristics of the radiators and
coupling slots can be realized, first of all, by varying slot geometric dimensions and positions relative
to the waveguide walls under conditions that the coordinate system axes associated with the slot and
waveguide are parallel. One of the ways to achieve required frequency-energy and spatial characteristics
of slot radiators consists in varying an inclination angle of a longitudinal slot axis relative to coordinate
waveguide axes [8–12]. In this case, the single slot cut in the waveguide end wall, in contrast to the one
located on its side walls, can radiate up to 100% of the supplied power.

In this paper, the problem of electromagnetic wave radiation into a half-space above an infinite
perfectly conducting plane by a narrow rectilinear inclined slot cut in the end wall of a semi-infinite
rectangular waveguide is solved in a strict self-consistent formulation. The obtained approximate
analytical expressions were applied to studying energy and spatial field characteristics of the structure
in near and far zone. The approximate analytical expressions obtained by this approach have allowed us
to find energy and spatial characteristics of the structures. A technique of numerical-analytical solution
of the problem concerning radiation by the narrow rectilinear slot into space above the infinite plane,
characterized by a distributed surface impedance, is also presented. This approach makes it possible to
use solutions obtained for slots radiating into space above perfectly conducting planes as basis functions.
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2. PROBLEM FORMULATION AND SOLUTION

Consider the waveguide-slot structure shown in Fig. 1. The narrow rectilinear slot is cut in the end wall
of the semi-infinite rectangular waveguide whose cross-section is {a× b}. The slot length 2L and width
d satisfy the following inequalities d/(2L) � 1, d/λ � 1 (λ is the wavelength in free space). The angle
between the longitudinal slot axis {0s} and the axis {0x} of the Cartesian coordinate system associated
with the waveguide cross-section is ϕ. The coordinates of the slot center are (a/2, y0, 0).

Figure 1. The radiation structure geometry and accepted notations.

Let fields and currents depend on time as eiωt (t is the time, and ω is the angular frequency). Under
condition |ξ−ξ′| ≈ d/4 (ξ, (ξ′) are local transverse coordinates), the equivalent magnetic current J(s) in
the coupling slot between the two electrodynamic volumes satisfies the following quasi-one-dimensional
integral equation [13](

d2

ds2
+ k2

) L∫
−L

J(s′)
[
GWg

s (d; s, s′) + GHs
s (d; s, s′)

]
ds′ = −iωH0s(s) (1)

where k = 2π/λ, GWg
s , and GHs

s are the s-components of magnetic tensor Green’s functions for the
vector Hertz potentials for a semi-infinite rectangular waveguide (index Wg) and half-space (index Hs);
H0s(s) is the projection of magnetic fields of external sources on the slot axis.

In general form, i.e., when the exciting field and slot location are not specified, the solution of
Equation (1) can be obtained by the asymptotic averaging method after introducing a natural small
parameter α = 1/(8 ln(d/(8L))) [13]

J(s) = Ā(−L) cos ks + B̄(−L) sin ks + α

s∫
−L

{
iω

k
H0s(s′) + F̄N [s′, Ā, B̄]

}
sin k(s − s′)ds′, (2)

where
F̄N [s, Ā, B̄] =

[
Ā(+L) sin kL − B̄(+L) cos kL

]
GΣ

s (s, L)

+
[
Ā(−L) sin kL + B̄(−L) cos kL

]
GΣ

s (s,−L) (3)

is the averaged slot eigenfield, GΣ
s (s, s′) = GWg

s (d; s, s′) + GHs
s (d; s, s′); Ā(±L) and B̄(±L) are the

arbitrary constants which are defined by the slot excitation method and slot position relative to the
waveguide walls. Assuming that the H10-wave propagates in the waveguide from the direction z = −∞,
the following expression can be written

H0s(s) = 2H0 cos ϕ cos k̃s, k̃ = (π/a) cos ϕ, (4)
where H0 is the incident field amplitude. When the constants Ā(±L) and B̄(±L) are defined using
the expressions (4), geometry structure, and boundary conditions for the current J(±L) = 0, the final
expression for current can be written as

J(s) = −α2H0 cos ϕ

(
iω

k2

) 2 sin kL
(
cos ks cos k̃L − cos kL cos k̃s

)
[
1 − (k̃/k)2

]
{sin 2kL + α [2P0(kd, 2kL) + W0(kd, 2kL)]}

. (5)
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In Equation (5), P0(kd, 2kL) and W0(kd, 2kL) are the functions of the slot eigenfield determined by the
corresponding components of the Green’s functions which according to Eq. (3) are equal

P0(kd, 2kL) = sin 2kL[Cci(kd, 2kL) − iSc(kd, 2kL)]
+(1 − cos 2kL)[Cs(kd, 2kL) − iSs(kd, 2kL)], (6a)

W0(kde, 2kL) =
4π
ab

∞∑
m=0

∞∑
n=0

εmεn

kz

〈
cos2 ϕ

{
sin kL

[
Φs(kxx0)Φc(kyy0)(cos k1L + cos k2L)I+

1 (k1,2L)

+Φc(kxx0)Φs(kyy0)(cos k1L − cos k2L)I−1 (k1,2L)
]

+
1
2

cos kL sin 2kyy0

[
Φs(kxx0)(cos k1L + cos k2L)I−2 (k1,2L)

−Φc(kxx0)(cos k1L − cos k2L)I+
2 (k1,2L)

]}

+ sin2 ϕ

{
sin kL

[
Φs(kxx0)Φc(kyy0)(cos k1L − cos k2L)I−1 (k1,2L)

+Φc(kxx0)Φs(kyy0)(cos k1L + cos k2L)I+
1 (k1,2L)

]

+
1
2

cos kL sin 2kyy0

[
Φs(kxx0)(cos k1L − cos k2L)I+

2 (k1,2L)

−Φc(kxx0)(cos k1L + cos k2L)I−2 (k1,2L)
]}〉

. (6b)

In formulas (6), the following notations are adopted:

I1(k1,2L) =
k sin kL cos k1,2L − k1,2 cos kL sin k1,2L

k2 − k2
1,2

,

I2(k1,2L) =
k1,2 sin kL cos k1,2L − k cos kL sin k1,2L

k2 − k2
1,2

,

Φ{
s
c

}(kxx0) =
{

sin(kxxϕ
0 )

cos(kxxϕ
0 )

}
×
{

sin(kxx0)
cos(kxx0)

}
, Φ{

s
c

}(kyy0) =
{

sin(kyy
ϕ
0 )

cos(kyy
ϕ
0 )

}
×
{

sin(kyy0)
cos(kyy0)

}
,

I±1,2(k1,2L) = I1,2(k1L) ± I1,2(k2L); k1,2 = kx cos ϕ ± ky sin ϕ; xϕ
0 = (a/2) − (d/4) sin ϕ; yϕ

0 =
y0 + (d/4) cos ϕ, εm,n = 1 if m,n = 0, εm,n = 2 if m,n �= 0, kx = mπ/a, ky = nπ/b (m,n are

integers), kz =
√

k2
x + k2

y − k2, and Cci, Sc, Cs, Ss are generalized integral functions related to the
integral sine Si and cosine Cin [14]:

Cci (A,u) =

u∫
0

cos W

W
cos udu = ln

W + u

A
− 1

2
[Cin (W + u) − Cin (W − u)],

Sc (A,u) =

u∫
0

sinW

W
cos udu =

1
2

[Si (W + u) − Si (W − u)] ,

Cs (A,u) =

u∫
0

cos W

W
sin udu =

1
2

[Si (W + u) + Si (W − u)] − SiA,

Ss (A,u) =

u∫
0

sinW

W
sin udu =

1
2

[Cin (W + u) + Cin (W − u)] − CinA.
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Here W =
√

u2 + A2, Si(u) =
u∫
0

sinu
u du, Cin(u) =

u∫
0

1−cos u
u du.

The expression for the slot current (5) completely determines the fields scattered by the slot in the
intrinsic and extrinsic spaces, rectangular waveguide and half-space over an infinite plane. Hence, it
allows us to obtain the electrodynamic characteristics of the waveguide-slot structure. Thus, the field
reflection coefficient S11, voltage standing wave ratio VSWR = 1+|S11|

1−|S11| , and power radiation coefficient
|SΣ|2 = 1 − |S11|2 can be easily defined. The expression for S11 can be written as

S11 =

{
1 − α

16πγ(cos2 ϕ)f(kL, k̃L)
iabk3[1 − (k̃/k)2]{sin 2kL + α[2P0(kd, 2kL) + W0(kd, 2kL)]}

}
e2iγz, (7)

where

f(kL, k̃L) = 4 sin kL cos k̃L
sin kL cos k̃L − (k̃/k) cos kL sin k̃L

1 − (k̃/k)2
− sin 2kL

sin 2k̃L + 2k̃L

2(k̃/k)
,

γ =
√

k2 − (π/a)2 is the propagation constant of the H10-wave.
The slot radiation field in the spherical coordinate system ρ, θ, φ (θ is the angle measured from

the slot axis) contains the components Hρ, Hθ, and Eφ. Here, only the electrical component will be
presented in the form

Eφ(ρ, θ) =
2ik2 sin θ

ω

L∫
−L

J(s)
e−ikR(s)

R2(s)

[
1 +

1
ikR(s)

]
ρds, (8)

where R(s) =
√

ρ2 − 2ρs cos θ + s2. In the far zone (ρ → ∞, ρ � 2L), expression (8) determines the
field radiation pattern F̄ (θ) of the slot radiator normalized to F (π/2) which can be written as

F̄ (θ) =

sin kL cos qL cos k̃L − cos kL

⎛
⎜⎜⎜⎝

k2 − k̃2

q2 − k̃2
cos θ sin qL cos k̃L

+
kk̃

q2 − k̃2
sin2 θ cos qL sin k̃L

⎞
⎟⎟⎟⎠

sin θ[sin kL cos k̃L − (k/k̃) cos kL sin k̃L]
, (9)

where q = k cos θ.
The finite thickness h of the waveguide end wall can be taken into account by replacing d → de

in formulas (5)–(8) using an approximate relation de = d exp(−πh/(2d)) [13, 14], which is valid up to
terms {(hd)/λ2} if the condition (h/λ) � 1 is fulfilled.

3. NUMERICAL AND EXPERIMENTAL RESULTS

The plots of the power radiation coefficient |SΣ|2 and phase of the reflection coefficient arg S11 [rad]
as functions of the slot inclination angle ϕ are shown in Fig. 2. As can be seen, the Q-factor of the
resonance curves increases, while the radiation coefficient decreases, as the slot axis in the waveguide
cross-sectional plane is increased. When the angle ϕ is increased, the resonant slot wavelength λres

determined by the equality arg S11 = 0 [13] first shifts to the short-wavelength part of the wavelength
range, and then, it increases starting from ϕ ≈ 30◦ ÷ 40◦. Thus, the slot lengthening or shortening as
compared to the tuned slot length [13] can be observed. Note that the best waveguide matching with
the slot is observed if the angle ϕ is small (ϕ ≈ 10◦).

As can be seen, the plots in Fig. 3 allow us to trace how dispersion properties of the waveguide
affect the structure of the diffraction characteristics. The slot is cut in the end wall of a rectangular
waveguide along its diagonal. It can be seen that the slot resonates at different values of its electrical
length 2L/λ depending on the operating wavelength λ.

The numerical simulation has shown that the angle ϕ does not significantly affect the parameters
of the electromagnetic field radiated by the slot in the far and near zones. Typical curves of the field
spatial distribution are shown in Fig. 4.
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Figure 2. The radiation coefficient |SΣ|2 and phase of the reflection coefficient, arg S11 [rad], as
wavelength λ [mm] functions. The radiator parameters: {a × b} = 23.0 × 10.0 mm2, 2L = 18.0 mm,
d/b = 0.1, h/a = 0.1, y0/b = 0.5.
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Figure 3. The radiation coefficient |SΣ|2 and phase reflection of the coefficient, arg S11 [rad], as
electrical length functions. The radiator parameters: {a× b} = 23.0× 10.0 mm2, d/b = 0.1, h/a = 0.05,
y0/b = 0.5, ϕ = 23.5◦.

Good agreement of theoretical and experimental data shown in Fig. 6 allows us to conclude that the
proposed approach to the diffraction problem solution is valid (the experimental model of the radiator
is shown in Fig. 5). It also confirms the sufficient accuracy of the formulas used in the simulation. Slight
differences between the theoretical and experimental values of the VSWR are explained by the fact that
an approximate analytical method was used to solve the problem.

4. RADIATION OF A SLOT INTO HALF-SPACE ABOVE THE IMPEDANCE
PLANE

In modern practice, projects to create new models of mobile objects allowing to reduce levels of reflected
electromagnetic fields are being actively promoted. One of the main methods of reducing the field level
scattered by objects in the microwave and EHF ranges consists in using coatings made of natural and
artificial radio-absorbing materials, including metamaterials [15]. In this case, non-protruding slotted
structures are often used as antennas. One alternative to radio-absorbing coatings can be slot impedance
loads [16] consisting of slotted elements cut into the screen and strip conductors located in the slot
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Figure 5. The experimental layout of the
radiator.
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apertures. In contrast to absorbing coatings, the impedance loadings are connected to a local area of
reflecting object surface whose sizes are much smaller than its characteristic dimensions. However, in
any variants of the impedance loads using slots as their electrodynamic model aperture-type elements
are used which radiate into the space above an infinite screen with extrinsic impedance distributed over
its surface. It should be noted that formulas or algorithms for determining external surface impedances
for various types of structural coatings are now known [17, 18].

Thus, the development of effective methods intended for analyzing the slot radiation into the
half-space above the impedance plane is relevant and demanded. As is known, the effectiveness
of mathematical modeling is determined by rigorous formulation and solution of the corresponding
boundary value problems, the time required for computational algorithm execution, and minimum
computer RAM needed. The effectiveness of the approach directly depends on the degree of algorithm
working out. Bellow, a technique for the numerical-analytical solution of the problem concerning the
thin rectilinear slot exciting the space above the impedance screen by the generalized method of induced
magnetomotive forces (MMF) is presented. The technique allows us to find the asymptotic expression
for the magnetic current in the slot using the Green’s functions for the vector potentials in the half-space
above the impedance plane.
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4.1. Green’s Functions for Half-Space over an Impedance Plane

Let us construct the Green’s functions for vector potentials in free space above the impedance plane.
Assume that the plane {x0y} in the Cartesian coordinate system (x, y, z) is characterized by constant
distributed impedance Z̄S = ZS/Z0 (Z0 = 120π [Ohm] is the impedance of free space). Based on the
general postulates of the electrodynamics theory [17, 18], the components of the tensor Green’s functions
of electric Ĝe(r,r′) and magnetic Ĝm(r,r′) types for vector Hertz potentials can be written in the form:

Ge(m)
xx (r,r′) =

1
4π2

∞∫
−∞

∞∫
−∞

e−ikx(x−x′)−iky(y−y′)f e(m)
χ (z, z′)dkxdky,

Ge(m)
yy (r,r′) =

1
4π2

∞∫
−∞

∞∫
−∞

e−ikx(x−x′)−iky(y−y′)f e(m)
χ (z, z′)dkxdky,

Ge(m)
zz (r,r′) =

1
4π2

∞∫
−∞

∞∫
−∞

e−ikx(x−x′)−iky(y−y′)he(m)
χ (z, z′)dkxdky,

(10)

where χ2 = k2 − k2
x − k2

y , kx(y) are the wavenumbers, and f
e(m)
χ (z, z′) and h

e(m)
χ (z, z′) are unknown

functions. In a special case, when field sources are located directly on the impedance plane, the
functions f

e(m)
χ (z, z′) can be unambiguously defined. This possibility is based on the fact that the

boundary conditions of the impedance type [17, 18] are consistent both for surface currents and for the
fields that they excite. Thus, the excitation currents on the impedance plane can be specified only
as a ratio [3, 19–21] between the magnetic current Jm and equivalent electric current Je related by
the formula Jm = −Z̄S [n, Je], where n is the normal to the surface directed inside the impedance
coating. Taking into account this ratio and the impedance condition for the tangential field components
[n, E] = −Z̄S[n, [n, H ]] at any point on the outer plane surface {x0y}, the following relation can written:[

Z̄S(k2 + χ2)
k

+ i
d

dz

]
fm

χ (z, z′) = i
df e

χ(z, z′)
dz

∣∣∣∣
z=z′=0

,

f e
χ(z, z′) = −Z̄2

Sfm
χ (z, z′)

∣∣
z=z′=0

.

(11)

From relations (11), it is not difficult to obtain expressions for the unknown functions in explicit form

f e
χ(z) = −Z̄2

SCχe−iχz, fm
χ (z) = Cχe−iχz, (12)

where Cχ = 4π
iχ

χk(1+Z̄2
S)

χk(1+Z̄2
S)+Z̄S(k2+χ2)

.
Then the components of the Green’s functions can be represented as sums of two terms, the first

of which is the Green’s function of the half-space over perfectly conducting plane. These terms can be
written as:

Gm
xx(x, y, z;x′, y′, 0) =

1
4π2

∞∫
−∞

∞∫
−∞

Cχe−ikx(x−x′)−iky(y−y′)−iχzdkxdky

= 2
e−ik

√
(x−x′)2+(y−y′)2+(z)2√

(x − x′)2 + (y − y′)2 + (z)2

+
1

4π2

∞∫
−∞

∞∫
−∞

(
Cχ − 4π

iχ

)
e−ikx(x−x′)−iky(y−y′)−iχzdkxdky, (13a)
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Ge
yy(x, y, z;x′, y′, 0) = − Z̄2

S

4π2

∞∫
−∞

∞∫
−∞

Cχe−ikx(x−x′)−iky(y−y′)−iχzdkxdky

= 2
e−ik

√
(x−x′)2+(y−y′)2+(z)2√

(x − x′)2 + (y − y′)2 + (z)2

− 1
4π2

∞∫
−∞

∞∫
−∞

(
Z̄2

SCχ +
4π
iχ

)
e−ikx(x−x′)−iky(y−y′)−iχzdkxdky. (13b)

The expressions (13a) and (13b) were derived by using the well-known identity

e−ik
√

(x−x′)2+(y−y′)2+(z)2√
(x − x′)2 + (y − y′)2 + (z)2

=
1
2π

∞∫
−∞

∞∫
−∞

e−ikx(x−x′)−iky(y−y′)−iχz

iχ
dkxdky. (14)

The following should also be noted separately. First, Equations (13a) and (13b) have additive
representations. Second, under the condition Z̄S → 0, they transform into expressions for the Green’s
functions of perfectly conducting plane in Eq. (10). Third, the denominators of expressions (13) and
the Green’s functions obtained in [20, 21] coincide, up to notation. Fourth, in contrast to [20, 21] where
an attempt was made to obtain the Green’s functions of a hybrid type based on replacing the equivalent
currents, while here the components of the Green’s functions of the magnetic and electric types are
separated. This approach allows us to avoid a methodological collision [20, 21] when the expressions for
the additive Green’s functions contain components of electromagnetic fields, which must be found using
the same functions.

4.2. Problem Formulation and Its Solution in a General Form

Let extraneous sources of electromagnetic field H in
0 (r), in which r is the radius vector of the point

(xin, yin, zin) in the local coordinate system, be located in the inner area marked in Fig. 7 by the index
in. A narrow rectilinear slot cut in the common wall radiates into a free half-space above an impedance
plane marked by the index ext. The common wall thickness is h, and the slot length and width are 2L
and d. Without the loss of generality let us assume that a longitudinal slot axis {0s} is parallel to the
axis {0x}, and its center is at the coordinate system origin (x = 0, y = 0, z = 0).

Figure 7. The radiation structure geometry and accepted notations.

The initial equation system can be written based on the continuity conditions for the tangential
components of the total magnetic field at the coupling slot apertures Sin and Sext. If the relation for
the equivalent currents on the impedance surface, Jm

x (s′) = Z̄SJe
y (s′), is taken into account, the integral

equation for the magnetic current in the slot can be written as (in contrast to Equation (1), which is
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written at Z̄S = 0)

(
d2

ds2
+ k2

) L∫
−L

Jm
x (s′) [Gm(in)

xx (s, s′) + Gm(ext)
xx (s, s′)]ds′

+ikZ̄S

L∫
−L

Jm
x (s′)

∂

∂z
G̃e(ext)

yy (s, s′)ds′ = −iωH
(in)
0s (s). (15)

Here H
(in)
0s (s) is the projection of extraneous field sources onto the slot axis; G

m(in)
xx (s, s′) are components

of the quasi-one-dimensional magnetic tensor Green’s functions Ĝm(r,r′) for the vector potential of the
corresponding volumes; G

m(ext)
xx (s, s′) = Gm

xx(s, 0, 0; s′, de
4 , 0) ∂

∂z G̃
e(ext)
yy (s, s′) = ∂

∂zGe
yy(s, 0, z; s′, de

4 , 0)|z=0

are obtained from formulas (13a) and (13b) by substituting z = 0 after taking the derivative.
If the slot is excited by an arbitrary field H0s(s) = Hs

0s(s)+Ha
0s(s), i.e., if the slot center is displaced

from the point x = a/2, the magnetic current can be presented by symmetric and antisymmetric
components marked by the indices s and a

Jm
x (s) = Js

0f s(s) + Ja
0 fa(s), (16)

where J
s(a)
0 are the unknown complex amplitudes. If Eq. (16) is substituted into Eq. (15) at

Z̄S = 0, the unknown amplitudes can be obtained as the ratios of the corresponding components
of the magnetomotive force to the sum of the slot intrinsic Y

(in)
s(a) (kde, kL) and extrinsic Y

(ext)
s(a) (kde, kL)

conductivities for a perfectly conducting plane [19]. The expression for the additional component to the
partial extrinsic slot conductivities, (Y (ext)

s(a)
(kde, kL) = Y

(ext)
s(a)

(kde, kL)
∣∣∣
Z̄S=0

+ΔY
(ext)
s(a)

(kde, kL)), can be

easily obtained by taking into account the structure of the Equation (15) and represent the Green’s
functions of the outer region as two-component sums in Eq. (13). This expression can be written as

ΔY
(ext)
s(a) (kde, kL) =

Z̄S

2πi

L∫
−L

f s(a)(s)

L∫
−L

f s(a)(s′)

×
∞∫

−∞

∞∫
−∞

χ2k2(1 + Z̄2
S)−(k2 + χ2)(k2 − k2

x)
χ2k2(1 + Z̄2

S)+Z̄S(k2 + χ2)χk
e−ikz(s−s′)−ikx(d/4)dkxdkzds′ds.(17)

Under the condition |Z̄2
S | � 1, expression (17) can be simplified

ΔY
(ext)
s(a) (kde, kL)

∣∣∣|Z̄2
S|�1

=
Z̄S

2πi

L∫
−L

f s(a)(s)

L∫
−L

f s(a)(s′)

×
∞∫

−∞

∞∫
−∞

χ2k2 − (k2 + χ2)(k2 − k2
x)

χ2k2 + Z̄S(k2 + χ2)χk
e−ikz(s−s′)−ikx(d/4)dkxdkzds′ds. (18)

If the slot is symmetrically excited under the condition ϕ = 0◦, the basis function can be determined by
the formula f s(s) = (cos ks − cos kL). Then according to Eq. (5), the additional term to the external
conductivity can be presented as

ΔY (ext)(kde, kL) =
2Z̄S

πi

∞∫
−∞

∞∫
−∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ2k2(1 + Z̄2
S) − (k2 + χ2)(k2 − k2

x)
χ2k2(1 + Z̄2

S) + Z̄S(k2 + χ2)χk

×
[
kkx sin kL cos kxL − k2 cos kL sin kxL

(k2 − k2
x)kx

]2
e−ikz(de/4)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dkxdkz,

(19)
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which, under condition |Z̄2
S | � 1, converts to the following expression

ΔY (ext)(kde, kL) =
2Z̄S

πi

∞∫
−∞

∞∫
−∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ2k2 − (k2 + χ2)(k2 − k2
x)

χ2k2 + Z̄S(k2 + χ2)χk

×
[
kkx sin kL cos kxL − k2 cos kL sin kxL

(k2 − k2
x)kx

]2
e−ikz(de/4)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dkxdkz.

(20)
As can be seen from formulas (17)–(20), the additional component to the external conductivity of the
slot cut in the impedance plane can be expressed as the double infinite integrals over the frequency
parameters kx and kz. Its value depends on the impedance Z̄S which can significantly affect the slot
radiation coefficient. As expected, if the plane is perfectly conducting (Z̄S = 0), additional component
ΔY (ext)(kde, kL) = 0.

4.3. Boundedness of the Integral Equation Kernel for a Current

Without the loss of generality, let us numerically estimate the boundedness of the integral equation
kernel (15) for the magnetic Green’s function specified by expression (13a). Based on formulas (13a)
and (14) under the condition (x = x′, y = y′, z = 0), the following expression can be obtained

Gm
xx = − 1

π

∞∫
−∞

∞∫
−∞

ik(1 + Z̄2
S)

χk(1 + Z̄2
S) + Z̄S(k2 + χ2)

dkxdky. (21)

On the complex kx and ky planes, the integration paths in formula (21) should pass along the real axes
from −∞ to +∞ so that the integrand branch points passed around them in semicircles of infinitely
small radiuses. The conditional intervals −kxmin; +kx min and −ky min; +ky min including these singular
points should be single out in the integration contours. Since the integrand in Eq. (21) is an even
function with respect to kx and ky, the integral can be define as a sum

Gm
xx = − 1

π

kx min∫
−kx min

ky min∫
−ky min

ik(1 + Z̄2
S)

χk(1 + Z̄2
S) + Z̄S(k2 + χ2)

dkxdky

− 2
π

∞∫
kx min

∞∫
ky min

ik(1 + Z̄2
S)

χk(1 + Z̄2
S) + Z̄S(k2 + χ2)

dkxdky. (22)

Thus, the two-dimensional integral in Eq. (21) can be represented by the sum of two integral terms in
Eq. (22): the first is a definite integral, hence, it is bounded for any arbitrarily wavelength λ, while the
convergence of the second term (improper integral) determines the boundedness of the modulus Gm

xx.
Therefore, the correct calculation of a definite integral cannot be discussed here.

In the simulation, it was assumed that kx min = ky min = k − k · 10−6 and λ = 0.03 m. The infinite
integration limits in Eq. (21) were replaced by the finite limits kxmax = ky max = kmax. The obtained
moduli of improper integrals multiplied by a coefficient 4π2 are summarized in Table 1 as the function
of kmax and real impedances Z̄S .

Table 1. Modulus of the improper integrals.

Z̄S\kmax kmax = k · 103 kmax = k · 106 kmax = k · 109 kmax = k · 1012

Z̄S = 0.0 4.6 · 106 4.639 · 109 4.639 · 1012 4.639 · 1015

Z̄S = 10−6 4.6 · 106 3.858 · 109 2.973 · 1010 2.947 · 1010

Z̄S = 10−4 4.587 · 106 2.053 · 108 4.868 · 108 2.947 · 108

Z̄S = 10−2 1.151 · 106 3.895 · 106 2.948 · 106 2.948 · 106
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As can be seen from Table 1, in the case of a perfectly conducting plane (Z̄S = 0), the modulus
of the improper integral is unbounded due to the behavior of Green’s functions in the vicinity of the
singular point r = r′. This situation changes radically when the surface impedance of the plane is finite
(Z̄S > 0). In this case, the improper integral becomes conditionally convergent. Moreover, the higher
Z̄S is, the higher the rate of the integral convergence is. In any case, the modulus of the Green’s function
Gm

xx turns out to be bounded if impedance Z̄S is not zero. Note that the simulation results including
those presented here for the Green’s functions Gm

xx and Ge
yy carried out with a wide variation of the

input parameters have led to the same conclusion. That is, the Green’s functions Gm
xx and Ge

yy can be
calculated with any predetermined accuracy. Therefore, it follows from the obtained numerical estimates
that if the parameter Z̄S is finite, the Green’s functions (13a) and (13b) are regularized functions, and
the integral equation (15) is the regularized integral equation.

5. CONCLUSION

In the paper, the approximate analytical expressions defining the slot current distribution function
and fields radiated by the slot can be useful not only for multivariate analysis of the electrodynamic
characteristics of the antenna-waveguide structures, but also in combination with other methods, for
simulating multielement radiating systems, using a narrow oblique slot cut in an end wall of a semi-
infinite rectangular waveguide.

The problem of slot radiating into a half-space over an infinite impedance plane was solved by a
generalized method of induced MMF for arbitrary slot excitation modes and intrinsic region types. To
determine the excitation currents related by the impedance condition at the slot aperture, the Green’s
functions for the half-space over the perfectly conducting plane were used. The Green’s functions
were previously constructed as sums of two terms, one of which is the Green’s function for the half-
space over the perfectly conducting plane. Thus, the effect of the impedance plane coating upon
the slot characteristics was mathematically reduced to including an additional term in the formula
for the external conductivity of the slotted element. This technique allows us to use as basis functions
problem solutions obtained for a slot radiating into a space above a perfectly conducting plane including
solutions which have already become classical. Expressions for the additional terms to the external slot
conductivity were obtained in a closed form. However, simulation by using these terms is associated
with some difficulties concerning the improper integrals calculated on the complex wavenumber plane.
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