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Electromagnetic Environments and Wireless Channels
for Through-the-Earth (TTE) Communications in an Underground

Coal Mine: Modeling and Measurements

Chenming Zhou* and Nicholas Damiano

Abstract—Through-the-earth (TTE) communication systems are useful for post-disaster emergency
communications due to their likelihood of surviving a mine disaster. The wireless channel and
electromagnetic environment (EME) are two primary factors that affect the performance of a TTE
system and have not been well understood in a mining environment. This paper reports our recent
measurements conducted in an active coal mine to characterize the wireless channel and EME of a TTE
system. TTE transmissions were successfully demonstrated in a mine location with a depth of 567 m
(1,860 ft) by using ground rods installed on the surface and existing roof bolts in the underground.
The results show that the EME in the mine is dominated by the 60-Hz signal and its harmonics for
both surface and underground environments. The signal attenuation caused by the channel increases
for frequencies greater than 90 Hz, which appears to be an optimum frequency point showing the
smallest attenuation. An analytical path loss model for TTE channels is developed and validated
using measurement results. This paper provides a measured data set as well as a model that an electric-
field TTE system operator or system designer can reference when implementing TTE technologies in a
mining environment.

1. INTRODUCTION

Through-the-earth (TTE) communications (sometimes also called sub-surface communications [1]) use
extremely low frequency (ELF) or low-frequency (LF) waves to communicate directly through the
earth overburden which is generally opaque to higher-frequency conventional radio signals [2–6]. TTE
communication systems require less infrastructure that can be exposed to damage in the case of fire,
explosion or large ground-fall. As a result, TTE systems are more likely to survive from a mining
disaster during which conventional communication systems might be impaired.

A TTE system can be categorized as either a magnetic-field system or an electric-field (E-field)
system, based on the fields that the system uses for communicating messages. A magnetic-field-based
system typically uses a current loop at the transmitter side to generate strong magnetic fields and then
another loop or ferrite coil to receive the fields [7]. An E-field TTE system, which is the focus of this
paper, uses one set of electrodes to inject electric currents into the earth and another set of electrodes on
the other end of the overburden to receive the E-field signals. Fig. 1 illustrates an E-field TTE system
deployed in a mine where ground rods (shown as an inset) are used to inject current into the earth.

One of the major challenges for TTE communications is the severe signal attenuation caused by
the earth overburden as signals travel through the earth overburden. This signal attenuation can be
characterized by the path loss of the TTE channel. While the path loss of a wireless channel has been
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Figure 1. An electrode-based TTE communication system used in a coal mine. The inset shows an
example of the installed ground rods on the surface.

well understood at conventional frequency bands, there has been limited research concerning a wireless
TTE channel in the ELF and LF bands, particularly in an underground mining environment. In 2001, a
frequency domain channel sounding method was employed to characterize the wireless channel for E-field
TTE communications on the surface in a public park environment [8]. TTE channel characterization
and system design were also discussed by Gibson in his Ph.D. dissertation [9].

In addition to the channel, the performance of a TTE system is also greatly impacted by the
electromagnetic environments (EMEs) where the system is operated [10, 11]. Historically extensive
electromagnetic noise surveys have been conducted in different mines by the U.S. Bureau of Mines in
the 1970s [11–15]. Changes in the design and operation of electrical equipment used in mining since
then have resulted in changes in the EME. Consequently, there is a need to evaluate the EME in a
current representative mining environment to ensure that TTE systems will operate under emergency
conditions when they are needed the most.

In this paper, we report our recent measurement results on characterizing the communication
channel and EME for an electric-field-based TTE system in an active coal mine. We demonstrated
that TTE signals can penetrate 567 m (1,860 ft) of earth overburden and still be detectable in the
underground. Additionally, we developed an analytical model to approximate the path loss of a TTE
channel and validated the model with measurement results.

It should be noted that, to our best knowledge, this paper is one of the few papers reporting TTE
measurements in a relatively deep (depth > 1, 000 ft) underground coal mine, as the depth of the mines
reported in the literature is typically less than 1,000 ft [16].

The rest of the paper is organized as follows: Section 2 introduces the model for characterizing
TTE channels. Section 3 describes the measurement system and set up for characterizing TTE channel
and EME in an active coal mine, with the corresponding results being discussed in Section 4. Finally,
Section 5 presents our conclusions.

2. MODELING WIRELESS CHANNELS FOR TTE COMMUNICATIONS

For TTE communications in mining applications, the separation distance between a transmitter and
a receiver is generally much less than one wavelength. As a result, only the channel loss will be
studied, and the phase associated with the channel is neglected. To study the channel loss, the voltage
signal induced in the receiver antenna for a given transmitted power needs to be determined. This
voltage signal at the receiver can be obtained by integrating the E-field over the length of the receiver
antenna. Consequently, the problem of characterizing a TTE channel becomes the problem of solving
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Figure 2. The transmitter antenna of a TTE system is modeled as a grounded line source on a
homogeneous conducting half-space (i.e, the earth).

the subsurface fields of a finite line source.
As shown in Fig. 2, the transmitter antenna which is assumed to be a straight insulated current

carrying cable can be modeled as a line source with a finite length of 2ltx. The two ends of the cable are
grounded through electrodes to the earth which is assumed to be a homogeneous conducting half-space
with a conductivity of σ. For mathematical convenience, the origin of the Cartesian coordinate is placed
in the center of the cable with the x-axis being oriented along the same direction of the cable. Assuming
that the cable carries a constant current I and lies directly above the ground (i.e., the distance between
the cable and the ground is negligible), the E-field components of an underground observation point
located at (x, y, z) caused by the line source have been solved by Hill and Wait [1], and are given by:
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the system operating frequency. After some mathematical manipulations, partial derivatives of P and
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The received signal, i.e., the voltage in the receiver antenna, can be obtained by integrating the E-field
over the length of the receiver antenna as:

Vrx =
∫

�E · d �lrx (4)

For deep mines (i.e., z is large) where E-fields do not vary significantly over the length of the receiver
antenna, Eq. (4) can be approximated as

Vrx ≈ 2Elrx cos θ (5)

where 2lrx is the length of the receiver antenna, and θ is the angle between the E-field and the receiver
antenna. The corresponding E-field strength then can be calculated by:
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√

E2
x + E2

y + E2
z (6)

Let PL = 20 log10(|Vtx|/|Vrx|) denote the path loss of a TTE channel, where Vtx = IZtx is the
voltage signal at the transmitter antenna, substituting Eqs. (1)–(3) into Eq. (5) which leads to
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It can be found from Eq. (7) that the path loss of a TTE channel is determined by the following
controlling factors:

• Tx and Rx antenna lengths (i.e, ltx and lrx).
• Conductivity (σ).
• Frequency (f).
• The orientation of the Rx antenna relative to the E-field (θ).
• Impedance between electrodes for TX (|Ztx|).
• The location of Rx relative to Tx (R).

It should be noted that in this paper the frequency is assumed to be sufficiently low so that displacement
currents can be neglected. This assumption is well justified for TTE communications where the length
of the cable (i.e., the antenna length) and the communication range are typically much less than one
wavelength.
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3. MEASURING WIRELESS CHANNEL AND ELECTROMAGNETIC NOISE IN
MINING ENVIRONMENTS

3.1. Experimental Setup

To characterize TTE communication channels and EMEs in a mining environment, four researchers
from the National Institute for Occupational Safety and Health (NIOSH) made TTE measurements
in an active coal mine located in the southern U.S. in November 2019. To prepare for the tests, two
ground beds were installed on the surface in a relatively flat and open area covered by grass. As shown
in Fig. 3, the two constructed ground beds were separated by 73.8 m (242 ft) with each consisting of
an array of 24 four-foot-long copper-clad ground rods. Connections to each electrode were made using
stranded 10-gauge copper wire. The inset in Fig. 1 shows an example of the ground rods installed on
the surface. In the underground, no ground rods were installed. Instead, existing roof bolts were used
to demonstrate that roof bolts may be used as the required electrodes for a TTE transmission. Fig. 4
shows pictures of the mine entry and an example of the roof bolts that were used in the underground.
The separation distance between the two roof bolt arrays in the underground is about 12.1 m (40 ft).
The overburden of the mine is about 567 m (1860 ft) and there is a horizontal offset of about 152.4 m
(500 ft) between the surface ground beds and the underground TTE electrodes. It should be noted that

offset

Figure 3. A satellite image depicting the approximate locations of the surface and underground
electrodes.

(a) (b)

Figure 4. TTE measurements in an underground coal mine. (a) shows a picture of the mine entry in
the underground, and (b) shows one of the roof bolts used as the electrode for TTE signaling.
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accurately measuring the horizontal offset between the antenna on the surface and the antenna in the
underground is not very practical, so the offset reported in the paper is based on our best estimation.

The transceiver used in the measurement (one on the surface and one in the underground) was
a battery-powered prototype system developed by NIOSH. Transmitted signals were generated by a
National Instruments Data Acquisition (NI-DAQ) module (NI-9269). An audio amplifier was used to
boost the transmitted signal. To measure the transmitted current, a 0.1-ohm resistor was added into
the wire connecting the amplifier and the ground bed. The voltage dropped over the 0.1-ohm resistor
was recorded by the same NI-DAC which sampled at 50 k samples/sec. For the receiver, signals from
the wire connected to electrodes were directly fed into one of the analog input ports of the NI-DAC.
More details about the measurement system can be found in [16].

3.2. Experiment Description

First, to characterize the EME in a mining environment, background E-fields were recorded for both
the underground and the surface without transmitting any signal. Second, to characterize the TTE
channel, signals were transmitted across a frequency range of 30–2010 Hz at 34 discrete frequencies with
a frequency spacing of 60 Hz. For each frequency, the signal was transmitted for 3 seconds followed by a
0.1-second gap. These frequencies were chosen to avoid the 60-Hz signal and its harmonics. A 330-Hz
Continuous Wave (CW) pulse was transmitted immediately before and after each channel sounding
for the purpose of synchronization. During the channel sounding process, transmitted currents were
recorded at the transmitter and received voltages were recorded at the receiver.

4. RESULTS AND DISCUSSION

4.1. Measured Electromagnetic Environments

Figure 5 illustrates the power spectrum of the measured E-field noise on the surface, when there is
no target signal transmitted from the underground. The power spectrum was obtained by dividing
the measured time domain waveform into small segments and applying a Fourier transform to each
segment. A windowing (Hanning window) function was applied to reduce spectrum leakage. In Fig. 5,
the maximum and mean value of the power spectrum over different segments are labeled as “Max” and
“Mean”, respectively. As expected, the strongest emission in the environment is the 60-Hz signal caused
by the nearby power system. The harmonics of the 60-Hz signal were noticeable as well. There is about
a 10-dB difference between the mean value and the max value of the noise floor. The difference between
the max and mean value is less for frequency components (e.g., 60 Hz and its harmonics) with a higher
power.

Figure 5. Measured EME on the surface when there is no signal transmitted from the underground.

Figure 6 shows a comparison of the measured power spectrum for the underground and the surface.
To simplify the plots, only mean values are compared. It is interesting to note that emissions from
the 60-Hz signal and its harmonics in the underground seem to be stronger than those measured on
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(a) Surface

(b) Underground

Figure 6. A comparison of the measured EME for different environments: (a) on the surface and (b)
in the underground.

the surface. However, the electromagnetic energy measured on the surface appears to be distributed
in more frequency components. For example, in Fig. 6, more “spikes” are observed between 60 Hz and
180 Hz on the surface than in the underground. For TTE communications, target signals should be
chosen to avoid 60-Hz and its harmonics that exist in the environments.

4.2. Measured Channel Loss and Electromagnetic Interference

Figure 7 shows the spectrogram of the received signal in the underground as the transmitter on the
surface swept across different frequency components. This spectrogram gives a visual representation
of the spectrum of the received signal, as it varies with time. It is clear in Fig. 7 that target signals
at frequencies from 30 Hz to 690 Hz transmitted from the surface can be visually identified from the

Figure 7. A spectrogram plot of the received
signal in the underground with the presence of
background EM noise.
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background noise (interference). The 60-Hz signal and its harmonics are also noticeable in Fig. 7. In
contrast to target signals which were designed to last 3 seconds, the 60-Hz signal and its harmonics are
continuous over time. The synchronization CW pulse at 330-Hz is also clear (as labeled) in Fig. 7.

To further quantify the received power for each frequency component, based on the results in Fig. 7,
the variation of the received power over time for different frequencies can be plotted. Fig. 8 shows an
example of such plots corresponding to the 90-Hz frequency component. It is clear in Fig. 8 that there
is a power peak at around the −65 dB/Hz level which lasts about 3 seconds. The duration of this peak
matches the duration of the transmitted CW pulse so this power peak can be reasonably attributed to
the 3 s transmitted CW pulse at 90-Hz on the surface. As a result, the received power corresponding
to the 90-Hz frequency component can be obtained by averaging the peak power in Fig. 8 over a time
window of 3 seconds. Meanwhile, the interference power at 90-Hz can be obtained by computing the
maximum or mean values of the received power over the full time window, excluding the 3-s time window
in which the transmitter was transmitting a 90-Hz target signal.

Figure 9 shows the calculated received signal power for different target frequencies, normalized to
the associated transmitted current at each frequency. Similarly, the calculated interference power for
each frequency is also plotted for reference. The difference between the signal and the interference power
can be viewed as signal-to-interference ratio (SIR), which is a key factor in determining the quality of
wireless communications. It is shown in Fig. 9 that the channel loss at the tested location ranges
from −102 dB/Hz to −65 dB/Hz, depending on the frequency. Generally, the channel introduces more
attenuation to higher frequency signals. It is interesting to note that there appears to be an optimum
frequency around 90 Hz which shows the minimum attenuation caused by the channel. This finding is
consistent with the finding reported in [16] that was based on the measurement results from a different
coal mine. Similar to the received signal power, the interference power also decreases with frequency.
As a result, selecting low frequencies does not necessarily guarantee higher SIR as the value of SIR
depends on both signal power and interference power in the environment at the selected frequencies.

Figure 9. Signal (normalized to the transmitter current) and interference power received in the
underground for different frequencies.

4.3. Simulated Received Power Distribution

Figure 10 is a heatmap to illustrate the distribution of E-field on the XZ plane directly underneath the
transmitter antenna (i.e., for y = 0). The color at each location in Fig. 10 represents the strength of the
E-field at that location, with yellow and blue representing the strongest and weakest fields, respectively.
The associated contour plot where each point on a contour line has the same E-field is also given on
the right. The E-field at each location on the XZ plane was computed based on (5). Key parameters
used in the simulation, including the length of the transmitter and receiver antennas, overburden depth,
and offset distance, were selected fully based on the actual parameters used in the measurements. The
only exception is the average conductivity of the mine which is a parameter “created” in the simulation
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Figure 10. (a) Simulated E-field distribution on the XZ plane and (b) the associated contour plot.

that cannot be accurately and practically measured. It can be seen from Fig. 10 that the two grounded
electrodes generate a strong E-field around them, and the E-field attenuates as the depth of the mine
increases. The contour lines help visualize the shape of the E-field generated by the antenna. Similar
to magnetic fields generated by a ferrite-rod antenna used in proximity detection systems, the E-field
generated by a TTE linear antenna shows a peanut-like shape in areas close to the antenna and then
gradually transitions to a water melon shape in areas deeper into the underground.

Similarly, Fig. 11 illustrates a simulated E-field distribution on the XY plane (i.e., the horizontal
plane) for z = −1860 feet. This plot helps visualize the power variation that one can expect as a receiver
antenna moves around horizontally inside the mine. It is clear in Fig. 11 that locations right underneath
the transmitter (e.g., for x = 0 and y = 0) has the maximum E-field. It is also interesting to note that,

Figure 11. Simulated E-field distribution on the XY plane (horizontal plane in the mine) at
z = −1860 feet.
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based on the color bar shown in Fig. 11, the variation of the E-field in the XY plane is not significant,
since the E-field variation over an area of 200× 200 m2 is less than 10%. This finding confirms that the
assumption made in Section 2 for the approximation in Eq. (5) is valid.

4.4. Model Validation

Figure 12 shows a comparison between the simulated and measured received power for different frequency
components. Again, the simulation result was computed based on the actual parameters used in the
measurements, except for the conductivity of the earth which has been used as a tuning parameter to
best match the simulation results to the measurement results. It is found that by using a conductivity
of 0.03 S/m, the simulation result shows a good agreement with the measurement results in terms of the
turning point (i.e., at f = 90 Hz) as well as the attenuation slope of the curve. It should be noted that in
reality the conductivity value of the earth typically varies with different mines. The conductivity value
(0.03 S/m) used in the simulation results reported in this paper is very close to the averaged measured
conductivity value of 0.01 S/m reported in [17]. It is interesting to note that in Fig. 12 there appears to
be a constant offset (∼ 20 dB) between the simulated results and the measurement results. This offset
suggests that an additional conversion factor may be needed to directly compare the absolute value of
the simulated received power to the corresponding actual received power at a given frequency.

Figure 12. A comparision between simulated and measured received power for different frequency
components.

5. CONCLUSION

In this study, TTE measurements were conducted in a deep active coal mine with an overburden depth
of 1,860 ft using a customized channel sounding prototype system. The measurement results show that
the channel loss generally increases for frequencies greater than 90 Hz which corresponds to the lowest
path loss. A path loss model that can be implemented through the Matlab program was developed
to predict the signal attenuation caused by a TTE channel. Simulated results based on the developed
model also show an optimum frequency around 90 Hz and a similar power attenuation slope. In addition,
the measured EMEs for both the surface and the underground environments were presented. It is found
that the EME in the mine is dominated by the 60-Hz signal and its harmonics from the nearby power
system. The results and findings in this paper can help better design and operate an E-field TTE system
in a modern mining environment.
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