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Human Multicomponent Micro-Doppler Signals Separation Based on
a Novel Local Time-Frequency Sparse Reconstruction Method
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Abstract—The use of radar micro-Doppler (m-D) signatures for human activities classification,
surveillance and healthcare has become a hot topic in recent years. While m-D signals are always
multicomponent, it is necessary to separate them into mono-components signals associated with
individual body parts for easier features analysis and extraction. In this paper, a novel method called
local time-frequency sparse reconstruction (LTFSR) is proposed to iteratively extract and separate m-D
components one by one in a descending intensity order from a time-frequency (T-F) representation. For
the current strongest m-D component, we first estimate its instantaneous frequency (IF) by dividing the
signal into short overlapping time intervals and selecting the best matching chirp atom to approximate
the local frequency in each time interval based on matching pursuit. Then, a T-F filtering is used
to extract and remove the strongest component from the multicomponent signal. Repeat the above
steps until all m-D components are separated. Simulations are given to validate the effectiveness and
robustness of the proposed method.

1. INTRODUCTION

Much research in recent years has been focused on sensing, classification, and recognition of human
motions using radar sensors, due to many attractive attributes such as proven technology, nonobstructive
illumination, nonintrusive sensing, insensitivity to lighting conditions, and privacy preservation, in
competition with cameras and other sensing devices. The movement of different parts of the human
body in the presence of radar illumination generates unique micro-Doppler (m-D) signature which can
be extracted effectively using joint time-frequency (T-F) analysis [1, 2] and used to analyze the motion
characteristics of activities.

Most existing relevant research involving human activity recognition is focused on classification
and recognition of different activities such as walking, running, and jogging using machine learning
(ML) techniques or deep learning based on the m-D spectrograms obtained by Short-Time Fourier
Transform (STFT) [3–8]. In many applications, however, fine-grained analysis of human motion state
is needed rather than recognition of different activities. For example, in application of assessing the
rehabilitation state of a patient recovering from a physical injury, m-D components of interested body
parts, such as arms and legs, are required to be extracted for fine-grained analysis [9, 10]. Besides, for
gait-based individuals identification, it is the key to detect the minor variability in m-D signatures across
individuals [11–14]. Since m-D components from different human body parts are usually overlapped in
T-F domain and have large dynamic range, it is almost impossible to extract such fine-grained and very
informative m-D features from linear and bilinear T-F distributions due to the limited T-F resolution
and cross-term interference, which severely restrict the m-D frequencies estimation accuracy and m-D
components separation.
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To improve the ability of fine-grained m-D features extraction and further detail the human
status identification, several human m-D components separation methods have been proposed in recent
years. These methods can be divided into two classes, i.e., range-assisted separation methods and
direct m-D components separation methods. Range-assisted separation method typically separates m-
D components associated with different body parts in conjunction with target high-resolution range
information [15–17]. The large bandwidth required to achieve high range resolution, however, will
undoubtedly increase the cost of radar hardware and the complexity of processing large amounts of
data. The second type of methods directly separates the m-D signals measured by low-cost Doppler
radar. In [18], a modified high-order ambiguity function and CLEAN algorithm were jointly utilized
to estimate and extract human m-D trajectories. However, there was no quantitative guideline for
determining the order of the polynomial-phase. In [19], principal component analysis (PCA) method
was utilized to decompose the whole human echo into a series of basis functions followed by a clustering
process to cluster the principal components to three groups, i.e., the bulk motion, the movements of
limbs except the lower legs, and the movements of lower legs and feet. This method, however, is difficult
to separate multicomponent m-D signals into meaningful mono-components corresponding to physical
parts of the body. The 1-D block processing algorithm was investigated in [20] to distinctly track specific
limb joints. However, results showed that it was hard to clearly extract m-D signatures of upper body
parts. In addition, in [21], Hilbert-Huang transform and analytical mode decomposition (HHT-AMD)
was proposed to decompose multicomponent m-D signals into mono-component signals. However, since
the extraction criteria of this algorithms are essentially based on echo frequency property rather than
target scattering property, there can be great deviation of the extraction results from the true scattering
components. Most recently, method based on Short-time fractional Fourier transform (STFrFT) and
morphological component analysis (MCA) was used to separate the m-D signatures of human torso and
limbs [22]. However, this method is still hard to further separate the overlapped m-D signatures of
limbs.

Up to now, how to effectively separate human m-D signatures into mono-components that associate
with body parts and how to estimate m-D frequencies accurately is still a challenging task. In this
article, we aim to introduce a novel local time-frequency sparse reconstruction (LTFSR) method to
separate multicomponent human m-D signal into mono-components associated with different body
parts and to obtain accurate m-D frequencies estimation simultaneously. Exploiting the intensities
difference of radar echoes from different body segments, we separate m-D components by extracting
them one after another in a descending intensity order. Starting from the strongest component, we first
estimate its m-D frequency by dividing the signal into short overlapping time intervals and selecting
the best matching chirp atom to approximate the local frequency in each time interval based on chirp
dictionary matching pursuit method, which is essentially a piece-wise linear approximation to the true
instantaneous frequency (IF) trajectory. By choosing an appropriate time window length, we can get
a high-precision estimation of the true m-D frequency. Then, the estimated m-D frequency is used to
extract and remove the strongest component from the multicomponent signal by T-F filtering. Repeat
above procedures till the energy ratio of the residual signal to the original m-D signal falls below a
preselected threshold, completing the extraction and separation of all m-D components. Through this
method, we can separate multiple m-D components successfully and obtain accurate m-D frequency
estimation of each component simultaneously.

This paper is organized as follows. The following section gives a m-D signal model of a moving
human. Section 3 describes the proposed LTFSR method to accurately estimate m-D frequencies and
properly separate m-D components. Section 4 conducts a series of simulations to illustrate the validity
and performance of the proposed approach. Finally, Section 5 presents the conclusion and future work.

2. SIGNAL MODEL

The composite echo from a walking human target can be expressed as the summation of echoes from
multiple moving body parts of the human, such as torso, arms, and legs. For the monostatic continuous-
wave (CW) Doppler radar observation scenario, the baseband echo from the human can be expressed
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as

s(t) =
K∑
k=1

ρk(t) exp
(
−j 4πRk(t)

λ

)
+ z(t)

=
K∑
k=1

ρk(t) exp (jφk(t)) + z(t), t ∈ [0, T ]

(1)

whereK is the total number of human body parts or scattering centers; ρk(t) andRk(t) are instantaneous
amplitude and line-of-sight (LOS) range of the k-th scattering center, respectively; λ is the wavelength
of the transmitted electromagnetic waves; z(t) is an additive complex white noise; and T is the total
observation interval.

The IF, i.e., the m-D frequency of the k-th moving body parts can be defined as

fDk
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2π
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dt

= − 2
λ

dRk(t)
dt
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Note that the superimposed signal s(t) is a multicomponent and non-stationary signal composed of
multiple components with different intensities due to the RCS difference of body parts. In general, the
torso has the strongest scattering intensity which is much stronger than those of legs and arms.

In practical processing, the continuous-time signal s(t) is first discretized with a sampling frequency
Fs. The discrete-time signal is

s(n) =
K∑
k=1

ρk(nTs) exp (jφk(nTs)) + z(n), n = [0, N − 1] (3)

where Ts = 1/Fs is the sampling period, z(n) the discrete version of complex white noise z(t), and
N = �T/Ts� the length of signal.

3. PROPOSED METHOD

This section presents a novel local time-frequency sparse reconstruction (LTFSR) method to separate
the m-D signatures. As echoes from different body parts vary in intensity, the proposed method extracts
and separates m-D components one by one in a descending intensity order.

3.1. M-D Frequency Estimation

Unlike conventional IF estimation methods which first obtain a 2D joint time-frequency distribution
images of signals and then extracts ridges to estimate IF laws, we propose a direct IF estimation
method by sequentially selecting the best matching chirp atom in each short time window based on chirp
dictionary matching pursuit to linearly approximate the real IF trajectory, as illustrated in Figure 1.

By using a sliding time window, the m-D signal can be divided into overlapping short time intervals,
and the local signal over the m-th window can be approximated by a series of chirp atoms as

sm(n) =
K∑
k=1

ρk,m(n) exp (jφk,m(n)) + zm(n), n = [0, Nw − 1] (4)

where sm(n) = s(mL + n) and zm(n) = z(mL + n) are windowed signal and noise with L being the
shift between two consecutive windows, and Nw is the window length.

The proposed method basically uses a chirp dictionary and selects the atoms which best match the
local structure of the signal in each short time interval. Since we extract m-D components one by one
and only extract the current strongest component in each iteration, the best matching chirp atom in the
m-th window can be selected from the first iteration of matching pursuit algorithm [23], represented as

ψp = arg max
ψi

〈sm,Ψ〉 (5)
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Figure 1. IF estimation using piece-wise chirp approximation.

where sm = [sm(0), . . . , sm(Nw − 1)]T is the signal vector over the m-th window; Ψ is the chirp
dictionary that can be constructed by discretizing the 2D parameter space Ω = {(α, β)||α| ≤
Fs/2, |α + βTw| ≤ Fs/2}; ψm is the chirp atom that best matches the signal sm; and 〈•, •〉
denotes the inner product. Specifically, the chirp dictionary Ψ = [ψ1, . . . ,ψi], where the i-th atom
ψi = [ψi(0), . . . , ψi(Nw − 1)]T is given by

ψi (n) = exp
(
j2π

(
αin+

1
2
βin

2

))
(6)

where αi and βi are the initial frequency and chirp rate.
Thus, the strongest component over the m-th window can be expressed as

sp,m(n) ≈ ρp,m(n) exp
(
j2π

(
αp,mn+

1
2
βp,mn

2

))
(7)

and its local frequency can be approximated by f̂p,m(n) = αp,m+βp,mn. Sliding the short time window
along the signal, we can accurately track and construct the entire m-D frequency trajectory sequentially.
It should also be pointed out that since overlapping windows generate overlapping local lineal frequency
segments, a frequency averaging process is used to render unique values at each time sample.

3.2. M-D Component Extraction

Once the m-D frequency of the strongest component is estimated, it can be used to design a T-F
filter [24] to extract and remove this component from the mixture m-D signal s(t). Using the estimated
m-D frequency f̂p(t) of the strongest component, we can estimate the phase of the signal as

ϕ̂p(t) =

T∫
0

f̂p(τ)dτ (8)



Progress In Electromagnetics Research C, Vol. 113, 2021 141

which can be further used to de-chirp the strongest signal, i.e., sp(t) = s(t) exp(−jϕ̂p(t)). When
ϕp(t) − ϕ̂p(t) ≈ 0, we have

s(t) =
K∑
k=1

ρk(t) exp(jϕk(t)) exp(−jϕ̂p(t))

= ρp(t) +
K∑
k=1
k �=p

ρk(t) exp(jϕk(t)) exp(−jϕ̂p(t)).
(9)

ρp(t) can be extracted by using a low-pass filter. Then, we can get the strongest component as

sp(t) = ρp(t) exp(jϕ̂p(t)). (10)

3.3. Summary of the Proposed Method

The main steps of the proposed LTFSR method can be summarized as follows.

1) Calculate the energy of the original signal s(t), denoted as Es.
2) Initialize the residual signal as sres(t) = s(t).

3) Estimate the m-D frequency of the strongest component in the residual signal, i.e., f̂p(t), using the
method described in Section 3.1.

4) Use the estimated m-D frequency, i.e., f̂p(t), to extract the strongest component sp(t) using the
T-F filtering method described in Section 3.2.

5) Remove the extracted signal sp(t) from the residual signal sres(t), i.e., sres(t)=sres(t)−sp(t). Then
calculate the energy ratio of the residual signal sres(t) to the original signal s(t), i.e., γ=Eres/Es.

6) Repeat the steps from 3) to 5) till the energy ratio γ falls below a preselected threshold ξ, i.e.,
γ < ξ, which indicates that all m-D components are extracted and separated.

4. EXPERIMENTAL RESULTS

This section demonstrates the performance of the proposed LTFSR method to separate multicomponent
m-D signatures into mono-components corresponding to different body parts. We extract m-Ds of a
walking human from the motion-capture (MoCap) data available on the Carnegie Mellon University
website [25], which gives a quite realistic simulations compared with the traditional Boulic model.

In simulations, each body segment is represented by a scattering point at the midpoint of two
joints defining it. The human model composed of multiple scattering points walks radially from an
initial relative distance of 10 m to a monostatic Doppler radar with carrier frequency 10 GHz. We
interpolate the MoCap data to obtain a sampling frequency of 512 Hz. Then, radar echoes from a walking
human target can be simulated. It should be mentioned that no shadowing or multiple interactions are
accounted for in this model.

4.1. Estimation Accuracy of the m-D Frequency

The key to extract a m-D component from mixture signals is to estimate the m-D frequency accurately,
so we first evaluate the m-D frequency estimation accuracy of the proposed LTFSR method based on
chirp dictionary matching pursuit. Two m-D signals from human torso and low leg, respectively, are
chosen as the interested components, because the m-D frequency of torso is approximately constant,
while that of low leg shows irregular shape and dramatic variation tendency which makes it more difficult
to be precisely estimated. We first give spectrograms of the two m-D signals with a 65-point Hamming
window in Figs. 2(a) and (d), respectively, to clearly show the T-F characteristics.

The proposed method estimates m-D frequency by selecting the best matching atom of a chirp
dictionary to approximate true IF trajectory in each short windowed slice. In simulations, we set
SNR = 0dB and use a 65-point rectangular window to slice the m-D signal with a shift step of 1 between
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(a) (b) (c)

(d) (e) (f)

Figure 2. M-D frequency estimation based on the proposed LTFSR method (SNR = 0dB). (a)
Spectrogram of the torso m-D signal. (b) Estimated torso m-D frequency without averaging. (c)
Comparison of the true and estimated torso m-D frequency with averaging. (d) Spectrogram of the low
leg m-D signal. (e) Estimated low leg m-D frequency without averaging. (f) Comparison of the true
and estimated low leg m-D frequency with averaging.

(a) (b) (c)

Figure 3. (a) Estimation RMSE of the torso m-D frequency against window lengths and SNRs. (b)
Estimation RMSE of the low leg m-D frequency against window lengths and SNRs. (c) Optimal window
lengths against SNRs.

consecutive windows. Figs. 2(b) and (c) show the constructed m-D frequencies of torso without and
with averaging processing, respectively. From Fig. 2(c), one can see that the estimated m-D frequency
(red solid line) agrees well with the true trajectory (blue dashed line). Results of the low leg m-D
component are given in Figs. 2(e) and (f) which also clearly show the superior IF estimation capability
of the proposed method, even at a relatively low SNR of 0 dB.

There are two key parameters, i.e., window length and SNR, closely related to the accuracy of m-D
frequency estimation. Therefore, the root mean square error (RMSE) between the true and estimated
m-D frequencies is used to quantitatively measure the accuracy of the IF estimation. Figs. 3(a) and (b)
give the estimation RMSEs of torso and low leg m-D frequencies against various window lengths and
SNRs, respectively, where 100 trials of Monte Carlo simulations are performed.

From Figs. 3(a) and (b), one can see that the improvement of SNR does favor the m-D estimation
accuracy. Besides, the RMSE curves show a U-shape tendency as the window length increases from
15 to 105, which indicates that there is an optimal window length for each SNR. However, for the
same SNR, the optimal window lengths of the two components from torso and low leg are different,
by comparing Figs. 3(a) with (b). To clearly reveal the difference, we give the optimal window lengths



Progress In Electromagnetics Research C, Vol. 113, 2021 143

at different SNRs of the two m-D components in Fig. 3(c), from which we can find that the optimal
window length of the low leg component is shorter than that of the torso component for the same SNR.
This is reasonable. Because using a linear frequency to approximate a dramatically varied frequency
may be inferior to a steadily varied one for the same window length, a balance is required in selection of
the optimal window length for multicomponent signal containing various time-frequency characteristics.

4.2. Multicomponent m-D Signals Separation

M-D components from multiple moving body parts, e.g., torso and limbs, are overlapped in T-F domain
and with different intensities, making it a challenge to separate these m-D signatures. In this simulation,
we focus on the separation of a walking human’s m-D signals into different components corresponding
to the torso, left low leg, and right low arm, respectively, with an amplitude ratio of 1 : 0.35 : 0.2. Due
to a similar motion status of the left low leg and the right low arm, m-D frequencies of these two parts
are closely distributed and severely overlapped in T-F domain as shown in Fig. 4(a), which makes it
difficult to separate the m-D components properly by traditional algorithms, such as the peak detection
based on T-F imaging and the empirical mode decomposition (EMD) algorithm.

Figure 4 shows the entire separation procedures of the proposed iterative extraction method to
give a more clear understanding. From the spectrogram of the multicomponent m-D signal with SNR
of 15 dB shown in Fig. 4(a), one can clearly see that the component from torso is much stronger than
other two components from low leg and low arm. So we first separate the m-D component from the
torso.

Iteration 1: We first construct the m-D frequency trajectory of the torso component sequentially
based on chirp dictionary matching pursuit using a 65-point rectangular window as a compromise to
the estimation accuracy of multiple components with significantly different m-D characteristics. The
estimated m-D frequency trajectories without and with averaging process are shown in Figs. 4(b) and
(c), respectively. It can be seen from Fig. 4(c) that the estimated m-D frequency of the torso is in
good agreement with the real trajectory. After getting the torso m-D frequency, we use T-F filtering to
extract this component and remove it from original multicomponent signal.

It should be noted that the low-pass filter bandwidth is a key parameter which determines the
performance of m-D component extraction and removal. When the bandwidth is too small, the detected
component will not be completely extracted and removed, which will be an interference for other
components. Otherwise, when the bandwidth is too large, part of other components will be extracted
and removed if components are overlapped in T-F domain. A relative narrow bandwidth of 4 Hz is
chosen in this simulation.

With the separation of the first strongest component, SNR of the residual signal after one iteration
drops from the initial 15 dB to 7.4 dB, and the calculated energy ratio of the residual signal to the
original signal is 40.6%, exceeding the preselected threshold which is set to 20% (determined by SNR).
So we repeat the above procedure to separate the strongest component of the residual signal.

Iteration 2: Spectrogram of the residual signal after one iteration is shown in Fig. 4(d), and the
m-D frequencies without and with averaging process of the second separated component are shown
in Figs. 4(e) and (f), respectively, corresponding to the m-D component from low leg. The SNR of
the residual signal after two iterations is further reduced to 3.3 dB, and the calculated energy ratio is
25.6%, still exceeding the preselected threshold, which indicates that the separation procedure should
be continued. In order to see clearly, Fig. 4(g) gives the spectrogram of the residual signal after two
iterations.

Iteration 3: Continuing the above separation processes, the m-D frequencies without and with
averaging process of the third separated component, i.e., m-D of the right low arm, are shown in
Figs. 4(h) and (i), respectively. The calculated energy ratio after three iterations is 18.9%, below the
threshold, which indicates the end of iteration. Spectrogram of the residual signal after three iterations
is shown in Fig. 4(j).

For now, all the three m-D components originally mixed together are extracted and separated
from each other successfully. By showing m-D frequency trajectories of all components in the same
picture shown as Figs. 4(k) and (l), we can get a super-resolution and more detailed m-D signatures
representation than the spectrogram shown in Fig. 4(a), which will certainly offer more information for
the detailed analysis of human gait.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Walking human m-D components separation using the proposed LTFSR method. (a)
Spectrogram of the original multicomponent m-D signal. (b) Separated torso m-D component without
averaging. (c) Separated torso m-D component with averaging. (d) Spectrogram of the residual signal
after one iteration. (e) Separated left low leg m-D component without averaging. (f) Separated left
low leg m-D component with averaging. (g) Spectrogram of the residual signal after two iterations.
(h) Separated right low arm m-D component without averaging. (i) Separated right low arm m-D
component with averaging. (j) Spectrogram of the residual signal after three iterations. (k) All m-D
frequency trajectories without averaging. (l) All m-D frequency trajectories with averaging.

Note that although our experiments did not consider the shadowing effect that can cause additional
attenuation of the radar echoes, it is expected that our method can also work when we incorporate the
shadowing effect because the echo intensity of the torso is definitely higher than that of each limb,
and the echo intensity of the leg is also definitely higher than that of the arm, which makes it possible
to separate these components based on their intensity difference. The performance validation of this
method on real radar measurements with shadowing effect will be left as a future work.



Progress In Electromagnetics Research C, Vol. 113, 2021 145

5. CONCLUSION

In this article, we propose a novel local time-frequency sparse reconstruction (LTFSR) method to
separate multicomponent m-D signals into mono-components associated with individual body parts
in an iterative extraction manner. In each iteration, we extract the current strongest component
by first estimating its instantaneous frequency based on chirp dictionary matching pursuit in short
windowed T-F segments, followed by T-F filtering to separate this component. Compared with
other multicomponent separation methods, such as PCA-based method, HHT-AMD, and STFrFT,
our proposed method directly separates m-D components in a T-F representation, which ensures that
the separated components are associated with specific physical scattering parts of the body rather
than less physically meaningful descriptions, greatly facilitating the more accurate features analysis and
extraction. Simulation results also show the superior separation capability of the proposed method,
especially in cases of low SNR even to 0 dB. The future work will conduct a validation of the presented
method on real radar measurements.
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