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The Analytical Formula for Calculating the Self-Inductance

for the Circular Coil of the Rectangular Cross-Section
with a Nonuniform Current Density

Slobodan Babic1, *, Matthew Smith2, Nikiforos Fokas2,
Yuriy Langer2, and Jerry Selvaggi3

Abstract—In this article we give an analytical formula for calculating the self-inductance for circular
coils of rectangular cross-section which has a nonuniform current density. Recently, the formula for
calculating this important electromagnetic quantity was published in the form of the single integral
whose kernel function was a sum of elementary functions. However, a new formula is obtained in the
form of elementary functions, single integrals, and the complete elliptic integral of the first, second,
and third kind. Although its development looks tedious, we obtain a rather user-friendly expression for
the calculation. From the general case, the self-inductance of the thin disk coil (pancake coil) with the
nonuniform current is obtained in a remarkably simple form. The results of this work are compared
with different known methods, and all results are in the excellent agreement. Our approach has not
been found in the literature.

1. INTRODUCTION

The computation of the electromagnetic quantities (magnetic field, self-inductance, mutual inductance,
magnetic force, etc.) for the conventional circular coaxial coils with the constant azimuthal current
density has been presented in many papers, books, monographs, and studies [1–16]. The analytical,
semi-analytical, and numerical methods have been used to calculate these electromagnetic quantities.
These calculations are used in many electromagnetic applications (tubular linear motors, magnetically
controllable devices and sensors, current reactors, cochlear implants, defibrillators, instrumented
orthopedic implants, in magnetic resonance imaging (MRI) systems, superconducting coils, and
tokamaks, etc.). Also, there are nonconventional circular coils with nonuniform density current which
are used in many technical applications such as superconducting coils and the homopolar motors [17–
30]. Coils with rectangular cross-section and the nonuniform current density, which changes inversely
with the cylindrical coordinate r known as Bitter coils, can produce extremely high magnetic fields up
to 45 T. In this paper, we give a new formula for calculating the self-inductance of the circular thick coil
of the rectangular cross section with nonuniform current density. In [28], the formula for calculating
the self-inductance of the thick circular coil of rectangular cross section and with a nonuniform current
density is obtained as a single integral whose kernel function is a combination of elementary functions.
The formula is obtained over the complete elliptic integrals of the first, second, and third kind. It is
possible to obtain the self-inductance of the thin disk coil (pancake coil) with the nonuniform current
density by finding the limit in the general formula when the height of the coil tends to zero [23]. All
integrals, which have been solved, are the integrals which appear in the electromagnetics for calculating
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the magnetic field, magnetic force, mutual inductance, self-inductance, and electromagnetic energy
of circular coils with different cross-sections. The new formula presented in this article is verified
by employing other known methods such as semi-analytical methods and various numerical methods
including Finite Elements. Examples are introduced in order to confirm the validity of the presented
method.

2. BASIC EXPRESSIONS

Let us consider the circular coil of the rectangular cross-section, as shown in Figure 1, where
R1 — the inner radius (m),
R2 — the outer radius (m),
I — the current in coil (A),
J — the nonuniform current density (A/m2),
r1, r2 — the coordinates which determine any radial position inside the coil (m),
z1, z2 — the coordinates which determine any axial position inside the coil (m),
l = z2 − z1 — the height of the coil (m).

R1 

R2

R12 dz2

dr1

dr2

dz1

Figure 1. Circular thick coil of the rectangular cross section.

The nonuniform current density and the corresponding self-inductance of the coil of rectangular
cross section are given by [18–21].

J =
NI

l · ln R2

R1

· 1
r
, R1 ≤ r ≤ R2 (1)

L =
μ0N

2

l2ln2 R2

R1

l∫
0

l∫
0

R2∫
R1

R2∫
R1

π∫
0

cos(θ)dz1dz2dr1dr2dθ

R12
(2)

where
R12 =

√
r2
1 + r2

2 − 2r1r2 cos (θ) + (z2 − z1)
2

R12 is the distance between two differential elements dz1dr1 and dz2dr2.
The self-inductance does not depend on the current. If the emf is induced across the coil, it does

depend on how the current changes with time that is not our case.
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3. MATHEMATICAL DEVELOPMENT

Introducing the substitution θ = π − 2β, r1 = xR1, r2 = yR1, z1 = vR1, z2 = zR1, l = bR1, R2 = αR1,
l = bR1 in Eq. (2), one obtains

L = −2μ0N
2R1

b2ln2(α)

α∫
1

α∫
1

b∫
0

b∫
1

π
2∫

0

cos(2β)dydxdvdzdβ

r12
(3)

where

r12 =
√

y2 + x2 + 2yx cos (2β) + (v − z)2 =
√

y2 + x2 + 2yx cos (2β) + t2, t = v − z

1 ≤ x ≤ α, 1 ≤ y ≤ α, 0 ≤ z < b, 0 ≤ v < b, b > 0 and α > 1 are dimensionless parameters.
In [28], the order of integrations is over the variables x, y, v, z, and β. In this paper, the order of

integration is over v, z, y, x, and β. It will be interesting to compare the last expression before the last
integration regarding the variable β.

The first integration in Eq. (3) gives the following:

I1 =

b∫
0

dv

r12
= asinh

b − z√
y2 + x2 + 2yx cos (2β)

+ asinh
z√

y2 + x2 + 2yx cos (2β)

The second integration in Eq. (3) gives,

I2 =

b∫
0

I1dz

= basinh
b√

y2 + x2 + 2yx cos (2β)
−

√
y2 + x2 + 2yx cos (2β) + b2 −

√
y2 + x2 + 2yx cos (2β)

The third integration in Eq. (3) gives,

I3 =

α∫
1

I2dy = 2bα asinh
[

b

r0(x, α)

]
+ 2bx cos (2β) atanh

[
r (x, α)

b

]

−2bx sin (2β) atan
[
b (α + x cos (2β))
x sin (2β) r (x, α)

]
+

(
b2 − x2sin2 (2β)

)
asinh

[
α + x cos (2β)√
x2sin2 (2β) + b2

]

+x2sin2 (2β) asinh
[
α + x cos (2β)

x sin (2β)

]
− [α + x cos (2β)] r (x, α) + [α + x cos (2β)] r0 (x, α)

−2basinh
[

b

r0 (x, 1)

]
− 2bx cos (2β) atanh

[
r (x, 1)

b

]

+2bx sin (2β) atan
[
b (1 + x cos (2β))
x sin (2β) r (x, 1)

]
− (

b2 − x2sin2 (2β)
)
asinh

[
1 + x cos (2β)√
x2sin2 (2β) + b2

]

−x2sin2 (2β) asinh
[
1 + x cos (2β)

x sin (2β)

]
+ [1 + x cos (2β)] r (x, 1) − [1 + x cos (2β)] r0 (x, α)

where

r (x, α) =
√

x2 + 2αx cos (2β) + α2 + b2, r (x, 1) =
√

x2 + 2x cos (2β) + 1 + b2

r0 (x, α) =
√

x2 + 2αx cos (2β) + α2, r0 (x, 1) =
√

x2 + 2x cos (2β) + 1+
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The fourth integration in Eq. (3) gives,

I4 =

α∫
1

I3dx =
8
3

(
α3 + 1

)
cos3 (β) − 4

3
cos2 (β)

(
α2r2 + r1

)
+

2
3

[(
α2 + 1

)
cos (2β) 2α

]
(r − r0)

+2bαasinh
[

b

2αcos(β)

]
+ 2basinh

[
b

2 cos(β)

]
− 4bαasinh

[
b

r0

]

+
2
3
α

[
3b2 − α2sin2 (2β)

]{
asinh

[
α + α cos (2β)√
α2sin2 (2β) + b2

]
− asinh

[
1 + α cos (2β)√
α2sin2 (2β) + b2

]}

+
2
3

[
3b2 − sin2 (2β)

]{
asinh

[
1 + cos (2β)√
sin2 (2β) + b2

]
− asinh

[
α + cos (2β)√
sin2 (2β) + b2

]}

+
2
3

(
α3 + 1

)
sin2 (2β) asinh [cot(β)] − 2

3
α3sin2 (2β) asinh

[
1 + α cos (2β)

α sin (2β)

]

−2
3
sin2 (2β) asinh

[
α + cos (2β)

sin (2β)

]
− 2bα2 sin (2β) atan

[
b (α + α cos (2β))

α sin (2β) r2

]

−2b sin (2β) atan
[
b (1 + cos (2β))

sin (2β) r1

]
+ 2bα2 sin (2β) atan

[
b (1 + α cos (2β))

α sin (2β) r

]

+2b sin (2β) atan
[
b (α + cos (2β))

sin (2β) r

]
+ bα2 cos (2β) ln

[
r2 + b

r2 − b

]
+ b cos (2β) ln

[
r1 + b

r1 − b

]

−b
(
α2 + 1

)
cos (2β) ln

[
r + b

r − b

]
+

b3

3 sin (2β)

{
2atan

[
αsin2 (2β) − b2 cos (2β)

b sin (2β) r

]

−atan
[
sin2 (2β)−b2 cos (2β)

b sin (2β) r1

]
− atan

[
α2 sin2 (2β)−b2 cos (2β)

b sin (2β) r1

]}

where

r =
√

α2 + 2α cos (2β) + 1 + b2, r0 =
√

α2 + 2αcos (2β) + 1

r1 =
√

2 + 2 cos (2β) + b2, r2 =
√

2α2 + 2α2 cos (2β) + b2

The self-inductance is

L = −2μ0N
2R1

b2ln2(α)

π/2∫
0

cos (2β) I4dβ = − 2μ0N
2R1

b2ln2(α)

22∑
i=1

Ji (4)

where I4 is previously given. Comparing the kernel functions I4 in Eq. (4) and Tn in [28], one can see
that they differ in some terms. It is possible because we changed the order of the integration. Even
though the self-inductance is a physical quantity, the different orders of integration must give the same
result. All expressions before the last integration regarding the variable β are analytical functions, and
the numerical integration is simple. All expressions will be verified numerically.

Doing the last integration in Eq. (4), one obtains

J1 =
8
3

(
α3 + 1

) π/2∫
0

cos(2β)cos3 (β) dβ =
16
15

(
α3 + 1

)

J2 = −4
3

π/2∫
0

cos(2β)cos2 (β)
[
α2r2 + r1

]
dβ = − 8α3

45k5
2

{[
7k4

2 − 11k2
2 + 4

]
K (k2)
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+
[
k4
2 + 9k2

2 − 4
]

E (k2)} − 8
45k5

1

{[
7k4

1 − 11k2
1 + 4

]
K (k1) +

[
k4
1 + 9k2

1 − 4
]

E (k1)}

J3 =
2
3

π
2∫

0

cos (2β)
[
(α2 + 1) cos (2β) + 2α

]
[r − r0] dβ =

4α
45k5

√
α

{[
(4{α}2 + 20α + 4)k4

− (
12α2 + 20α + 12

)
k2 + 8

(
α2 + 1

)]
K (k) +

[(
7α2 − 10α + 7

)
k4 +

(
8α2 + 20α + 8

)
k2

−8
(
α2 + 1

)]
E (k)} − 4α

45k5
0

√
α

{[(
4α2 + 20α + 4

)
k4
0 − (

12α2 + 20α + 12
)
k2
0

+8(α2 + 1 )]]K (k0) +
[(

7α2 − 10α + 7
)
k4
0 +

(
8α2 + 20α + 8

)
k2
0 − 8

(
α2 + 1

)]
E (k0)}

J4 = 2bα2

π/2∫
0

cos(2β)asinh
b

2αcos(β)
dβ = −αb2

k2
[K (k2) − E (k2)]

J5 = 2b

π/2∫
0

cos(2β)asinh
b

2cos(β)
dβ = − b2

k1
[K (k1) − E (k1)]

J6 = −4bα

π
2∫

0

cos (2β) asinh
b

r0
dβ =

b2

2k
√

α

[
(
(
α2 + 1 − 2α

)
k2 + 4α)K (k) − 4αE (k)

]

− kb2

2
√

α
(α − 1)2 Π(h, k)

J7 =
2
3
α

π
2∫

0

cos (2β)
[
3b2 − α2sin2 (2β)

]
asinh

[
α + α cos (2β)√
α2sin2 (2β) + b2

]
dβ

=
8α3

135k5
2

{
[150 k6

2 − 289k4
2 + 127k2

2 + 12] K (k2) +
[−157k4

2 + 167k2
2 − 12] E (k2)}

−5b2k2

9a

[(√
α2 + b2 − α

)2
Π(m1, k2) +

(√
α2 + b2 + α

)2
Π(m2, k2)

]

J8 =
2
3

π
2∫

0

cos (2β)
[
3b2 − sin2 (2β)

]
asinh

[
1 + cos (2β)√
sin2 (2β) + b2

]
dβ

=
8

135k5
1

{
[150 k6

1 − 289k4
1 + 127k2

1 + 12] K (k1) +
[−157k4

1 + 167k2
1 − 12] E (k1)}

−5b2k1

9

{(√
1 + b2 − 1

)2
Π(m3, k1) +

(√
1 + b2 + 1

)2
Π(m4, k1)

}

J9 = −2
3
α

π
2∫

0

cos (2β)
[
3b2 − α2sin2 (2β)

]
asinh

[
1 + α cos (2β)√
α2sin2 (2β) + b2

]
dβ

= − k

540α2
√

α

{[
4α2

(
150b4 + α2 + 141b2α2 − 9α4

)
K (k) − 2α2(−2 + 3b4 + 7α2

+3α4 − 149b2 + 6b2α2)
[(

b2 + (1 + a)2
)

E (k) − (
1 + b2 + a2

)
K (k)

]}
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+
5b2k

9
√

α

{(√
α2 + b2 − α

) (√
α2 + b2 − 1

)
Π(m1, k) +

+
(√

α2 + b2 + α
) (√

α2 + b2 + 1
)

Π(m1, k)
}

J10 = −2
3

π
2∫

0

cos (2β)
[
3b2 − sin2 (2β)

]
asinh

[
α + cos (2β)√
sin2 (2β) + b2

]
dβ

= − k

540a2
√

α

{[
4a2

(−9 + 141b2 + 150b4 + a2
)
K (k) − 2(3 + 3b2 + 7a2 − 2a4

+6b2 − 149a2b2)
[(

b2 + (α + 1)2
)

E (k) +
(
1 + α2 + b2

)
K(k)

]
}

+
5b2k

9
√

α

{(√
1 + b2 − α

) (√
1 + b2 − 1

)
Π(m3, k) +

(√
1 + b2 + α

) (√
1 + b2 + 1

)
Π(m4, k)

}

J11 =
2
3

(
α3 + 1

) π/2∫
0

cos(2β)sin2 (2β) asinh [cot(β)] dβ =
16
135

(
α3 + 1

)

J12 = −2
3
α3

π
2∫

0

cos (2β) sin2 (2β) asinh
[
1 + α cos (2β)

α sin (2β)

]
dβ

= − 4α3

135
√

αk5
0

{[(10α + 8) k4
0 − (10α + 24) k2

0 + 16] K (k0) + [− (5α + 1) k4
0

+ (10α + 16) k2
0 − 16] E(k0)}

J13 = −2
3

π
2∫

0

cos (2β) sin2 (2β) asinh
[
α + cos (2β)

sin (2β)

]
dβ = − 4

135
√

αk5
0

{[(8α + 10) k4
0

− (24α + 10) k2
0 + 16α] K (k0) + [− (α + 5) k4

0 + (16α + 10) k2
0 − 16α] E(k0)}

J14 = −2bα2

π
2∫

0

cos (2β) sin (2β) atan
[
b (α + α cos (2β))

α sin (2β) r2

]
dβ

= −αb2

3k3
2

{[−3 k4
2 + k2

2 + 2
]
K (k2) +

[
4k2

2 − 2
]

E (k2)}

+
k2b

2

4

{(√
α2 + b2 − α

)2
Π(m1, k2) + (

√
α2 + b2 + α)

2
Π(m2, k2)}

J15 = −2b

π
2∫

0

cos (2β) sin (2β) atan
[
b (1 + cos (2β))

sin (2β) r1

]
dβ

= − b2

3k3
1

{[−3 k4
1 + k2

1 + 2
]
K (k1) +

[
4k2

1 − 2
]

E (k1)}

+
k1b

2

4

{(√
1 + b2 − 1

)2
Π(m3, k1) + (

√
1 + b2 + 1)

2
Π(m4, k1)}
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J16 = 2bα2

π
2∫

0

cos (2β) sin (2β) atan
[
b (1 + α cos (2β))

α sin (2β) r

]
dβ

=
b2

48k3
√

α

{[
3
(
α4 − 2α3 + 8α2 + 10α − 1 + 8b2

)
k4 +

(
12α3−60α−32α2

)
k2 +32α2

]
K (k)

− [(
12α3 − 60α − 16α2

)
k2 + 32α2

]
E (k)

} − kb2
(
α2 − 1

)
(α − 1)2

16
√

α
Π(h, k)

− kb2

4
√

α

{(√
α2 + b2 − 1

) (√
α2 + b2 − α

)
Π(m1, k)

+
(√

α2 + b2 + 1
) (√

α2 + b2 + α
)

Π(m2, k)
}

J17 = 2b

π
2∫

0

cos (2β) sin (2β) atan
[
b (α + cos (2β))

sin (2β) r

]
dβ

=
b2

48α2k3
√

α

{[
3
(−α4 + 10α3 + 8α2 − 2α + 1 + 8b2α2

)
k4 +

(
12α − 60α3 − 32α2

)
k2

+32 α2
]
K (k) − [(

12α − 60α3 − 16α2
)
k2 + 32α2

]
E (k)

}
+

kb2
(
α2 − 1

)
(α − 1)2

16α2
√

α
Π(h, k)

− kb2

4
√

α

{(√
1 + b2 − 1

) (√
1 + b2 − α

)
Π(m3, k) +

+
(√

1 + b2 + 1
) (√

1 + b2 + α
)

Π(m4, k)
}

J18 =
bα2

2

π/2∫
0

cos(4β)ln
[
r2 + b

r2 − b

]
dβ =

αb2

6k3
2

{[
4 − k2

2

]
K (k2) −

[
4 + k2

2

]
E (k2)

}

J19 =
b

2

π/2∫
0

cos(4β) ln
[
r1 + b

r1 − b

]
dβ =

b2

6k3
1

{[
4 − k2

1

]
K (k1) −

[
4 + k2

1

]
E (k1)

}

J20 = −b(α2 + 1)
2

π/2∫
0

cos (4β) ln
[
r + b

r − b

]
dβ

= − b2(α2 + 1)
48α2k3

√
α

{[
3
(
α4 − 2α3 + 2α2 − 2α + 1

)
k4 +

(
12α3 + 12α − 32α2

)
k2

+ 32α2
]
K (k) − [(

12α3 + 12α − 16α2
)
k2+ 32α2

]
E (k)} +

kb2(α2 + 1)
2
(α − 1)2

16α2
√

α
Π(h, k)

J21 =
b3

2

π/2∫
0

cos(2β)
sin(2β)

[2arctg (q) − arctg (q11) − arctg (q22)] dβ

J22 =
b

2

π/2∫
0

[
α2 ln

r2 + b

r2 − b
+ ln

r1 + b

r1 − b
− (

α2 + 1
)

ln
r + b

r − b

]
dβ
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The last two terms must be integrated using numerical integration.

q =
αsin2 (2β)−b2cos(2β)

bsin(2β)r

q1 =
α2sin2 (2β)−b2cos(2β)

bsin(2β)r2
, q2 =

sin2 (2β)−b2cos(2β)
bsin(2β)r1

k2 =
4α

(α + 1)2 + b2
, k2

1 =
4

4 + b2
, k2

2 =
4α2

4α2 + b2
, h =

4α
(α + 1)2

= k2
0

0 < m1 =
2α

α +
√

b2 + α2
< 1, m2 =

2α
α −√

b2 + α2
< 0,

0 < m3 =
2

1 +
√

b2 + 1
< 1, m4 =

2
1 −√

b2 + 1
< 0,

Finally, the simplest form of V in Eq. (5) is,

L = −2μ0N
2R1

b2ln2(α)
V (5)

with

V =
22∑
i=1

Ji

Thus, the new formula for the self-inductance of the circular coil with rectangular cross section and a
nonuniform current density can be obtained by Eq. (5) using the complete integral of the first, second,
and third kind in [31–33]. We believe that this formula appears for the first time in the literature. The
special case of Equation (5) is the self-inductance of the thin disk coil with the nonuniform current [22]
and [23]. This self-inductance can be obtained from Eq. (5) by finding the limit as b → 0, or doing three
integrations such as in [23].

The self-inductance LDISK is obtained in analytical form as follows:

LDISK =
4μ0N

2R1(α + 1)
ln2α

[E (k0) − 1] (6)

where
k2
0 =

4α
(α + 1)2

K(k) and E(k) are the complete elliptical integrals of the first and second kind, respectively. Π(h, k) is
the complete elliptic integral of the third kind [31–33].

4. NUMERICAL VALIDATION

To verify the new formula for the self-inductances, L, we consider the following set of examples. Also,
special cases are discussed. We compare the results of our approach with those which are found in the
known literature.

4.1. Example 1.

Calculate the self-inductance of a thick Bitter circular coil of rectangular cross section. The coil
dimensions and the number of turns are as follows:

R1 = 1 (m) , R2 = 2 (m) , l = 2 (m) , N = 100

Applying single numerical integration in Eq. (4), the self-inductance is

LNew = 17.81533309115452 (mH)
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In [28], the-self-inductance is.
L[28] = 17.81533309115452 (mH)

Thus, we have shown that regardless of the order of the integration, the same result is obtained.
By using the Conway’s method [18], the self-inductance is,

LConway = 17.81533308115452 (mH)
Finally, from the exact analytical expression (5), in the form of the elliptical integrals, we obtained the
same results for the self-inductance as Conway [18].

LNew Elliptic = 17.81533309115452 (mH)

4.2. Example 2.

Calculate the self-inductance of the thick Bitter circular coil of rectangular cross section. The coil
dimensions and the number of turns are as follows:

R1 = 0.025 (m) , R2 = 0.035 (m) , l = 0.04 (m) , N = 100
In [28], the self-inductance is obtained by the single integration,

L[28] = 0.438398854271743 (mH)

From Eq. (4), the self-inductance is,
LNew = 0.438398854271743 (mH)

Again, we have shown that regardless of the order of the integration, the same result is obtained.
From the exact analytical expression, in the form of the elliptical integrals, we obtained the same

results for the self-inductance,
LNew Elliptic = 0.438398854271743 (mH)

By using the Ren’s method [19–21], the self-inductance is,
LRen = 0.4383978 (mH)

This self-inductance is obtained by double integration.
Using the software ANSYS (FEM) [19–21] the self-inductance is,

LRen = 0.44528 (mH)
All results are in good agreement.

4.3. Example 3.

In Table 1, for different α and b, the self-inductance is calculated by our method employing Equations (5)
and (6), and the one found in [28].

4.4. Example 4.

Calculate the self-inductance of the thin Bitter disk (pancake) [22]. The coil dimensions and the number
of turns are as follows:

R1 = 0.3 (m) , R2 = 0.4 (m) , N = 100
Equation (6) gives,

LDISK = 12.36243889748211 (mH)
Substituting directly into Eq. (7) [22] with z1 = z2 = 0, R1 = 0.3(m), R2 = 0.4(m), and N = 100
(formula for calculating the mutual inductance between two coaxial thin Bitter thin disk coils). We
have two identical disk coils which overlap, and their mutual inductance becomes the self-inductance,

LDISK = MDISKS-overlap = 12.36243889748207 (H)
In Table 2, we give the self-inductance as b approaches zero, and when it is applied in Eq. (2).

When b = 0, Eq. (5) gives infinity. Thus, finding the limit as b → 0, Eq. (5) gives Eq. (6) or [23].
All results are in exceptionally good agreement with the result obtained in the analytical form in

Eq. (6). The numbers that agree are given in boldface.
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Table 1. The self-inductance obtained by the different calculation (In all calculations R1 = 1m).

α b This Work (5) (mH) This Work (6) (mH) [28] (mH)

1.2 0.1 39.66072688287898 39.66072688287898 39.66072688287898

1.2 0.5 28.23658515441310 28.23658515441310 28.23658515441310

1.2 1.0 21.37780922245035 21.37780922245035 21.37780922245035

1.2 2.0 14.54320327001611 14.54320327001611 14.54320327001611

2.0 0.1 33.94607203219047 33.94607203219047 33.94607203219047

2.0 0.5 28.53208224277337 28.53208224277337 28.53208224277337

2.0 1.0 23.80800600196159 23.80800600196159 23.80800600196159

2.0 2.0 17.81533309115452 17.81533309115452 17.81533309115452

2.5 0.1 33.71444715932103 33.71444715932103 33.71444715932103

2.5 0.5 29.30151236356844 29.30151236356844 29.30151236356844

2.5 1.0 25.16974995917750 25.16974995917750 25.16974995917750

2.5 2.0 19.53694103357572 19.53694103357572 19.53694103357572

Table 2. The self-inductance when b → 0.

b This Work (4) or (5) (mH) [22] (mH) or (6)

10−6 12.36243432318282 12.36243889748211

10−7 12.36243844005104 12.36243889748211

10−8 12.36243885173889 12.36243889748211

10−9 12.36243889290775 12.36243889748211

10−10 12.36243889701627 12.36243889748211

10−11 12.36243889743836 12.36243889748211

10−12 12.36243889749853 12.36243889748211

4.5. Example 5.

Calculate the self-inductance of the thin Bitter disk (pancake coil). The coil dimensions and the number
of turns are as follows:

R1 = 1 (m) , R2 = 2 (m) , N = 1000

Equation (6) gives,
LDISK = 3.569912886724816214467637 (H)

For two thin disk Bitter coils which overlap [22, 23], we obtain,

LDISK = MDISKS-overlap = 3.569912886724815770378427 (H)

Using Eq. (5) or (6) of this work and b = 10−12

LThis Work(5)−(6) = 3.56991288672412196236686038363 (H)

The figures that agree are in boldface. All results are in an excellent agreement.
In these examples, we confirmed the validity of Eqs. (5) and (6) for calculating the self-inductance

of the thick circular cross-section coil with the nonuniform current density.
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5. CONCLUSION

A new analytical self-inductance formula for a circular thick coil of the rectangular cross section and
with a nonuniform current density is given. The formula is obtained in the form of the complete elliptical
integrals of the first, second, and third kind. We believe that this formula appears for the first time
in the literature. The special case of this formula gives the self-inductance for a thin disk coil in a
very simple form. Our method can be helpful to engineers, physicists, and anyone who works in similar
fields. All computations are easily carried out within the Mathematica or MATLAB environment.
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