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Gain Enhancement Using Modified Circular Loop FSS Loaded

with Slot Antenna for Sub-6GHz 5G Application
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Abstract—In this paper, a modified circular loop Frequency Selective Surface (FSS) loaded on a slot
antenna is proposed for sub-6GHz 5G applications. The proposed FSS reduces the resonant frequency
to lower bands of conventional circular FSS without change in its size. The operating bandwidth
(−10 dB) of the proposed antenna with polarization-insensitive single-layer FSS varies from 3.6 GHz to
6.1 GHz with an average gain of 7–7.5 dB and a maximum realized gain of 7.87 dB. An FSS superstrate
is loaded onto a slot antenna to increase the realized gain up to 4 dB, where the FSS shows desirable
electromagnetic wave reflection characteristics over operating bandwidth and can be used in 5G sub-
6GHz band applications.

1. INTRODUCTION

Frequency selective surface (FSS) structure is used for gain, bandwidth enhancement and grating lobe
reduction in microstrip antenna, which can reflect or pass the EM waves coming from the antenna.
Several gain enhancement techniques have been investigated to enhance the properties of microstrip
antenna such as artificial magnetic conductor (AMC) [5], metamaterial [1, 6, 13], single [8, 10], and
double-layer FSS [2, 7, 11]. In [1], a double split ring reflector based on mu-negative characteristic of
the metasurface is used for gain enhancement. The dual FSS layers based on stopband reflector are
loaded on a ultra-wideband (UWB) antenna, where a split ring in the top layer and the combination
of Jerusalem cross (JC) FSS with a square loop in the bottom layer are used for gain enhancement
[2]. A parabolic cylinder FSS reflector is accomplished on a dielectric resonator antenna (DRA) and
monopole antenna to enhance the gain [3]. Due to the tremendous reflecting and absorbing property of
FSS, multilayer FSS is also a popular approach for enhancing the parameters of a microstrip antenna.
In [4], a multi-layer bandpass FSS placed above the antenna is used to enhance the gain. In [5], a
triple band AMC structure is used below the antenna for gain enhancement where AMC represents zero
reflection phases in the resonant frequencies. In [6], split-ring resonator (SRR) metamaterial is loaded
on a DRA to enhance the gain with stable efficiency in the operating bandwidth. In [7], a double-layer
passband FSS is used to influence the gain at ISM band placed over microstrip antenna. In [8], the
single-layer passband substrate integrated waveguide (SIW)-FSS is loaded to enhance the gain of a
microstrip antenna whereas in [9] an FSS combined with a DRA is used for gain enhancement. In [10],
double-side single layer FSS incorporated with chip resistor is used for gain enhancement of a DRA in
X-band. Similarly in [11, 12], a double-layer FSS reflector is designed for UWB applications, improving
the gain effectively. In [13], a metamaterial SRR incorporated with the antenna in the same substrate is
used to enhance the gain in two operating bands. In the proposed paper, a modified circular loop FSS
is designed. The insensitive polarization FSS is analyzed for the gain improvement of a slot antenna
based on microstrip-feed in sub-6GHz operating bandwidth.
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2. ANTENNA DESIGN WITH EQUIVALENT CIRCUIT (EC) MODEL

The proposed slot antenna with fabricated hardware is shown in Fig. 1(a) where dimensions are as
follows (in mm): W1 = 2, W3 = 1.5, W4 = 0.75, W5 = 9, W6 = 12, W7 = 13.5, W8 = 1, Ls = 30,
L1 = 2, L2 = 7, L3 = 14.5, Wf = 3. FR-4 material is utilized to design the antenna with a 4.4
dielectric constant. The proposed antenna size is 30× 30× 1.6 mm3, which is based on a microstrip-fed
and slot based defected ground. In the first step as model-I, 15 mm length (Lf) of microstrip-fed line
with 3mm width (Wf) is used for achieving 50-ohm impedance where the length of the microstrip-fed
is directly related to the operating bandwidth. A rectangular slot is inserted in the ground as Model-I
in Fig. 1(b) that influences the impedance matching which results in impedance bandwidth (−10 dB)
from 3.4 GHz to 4 GHz as depicted in Fig. 1(c). In the second step as model-II, the internal impedance
of an antenna is influenced by the variation of the ground, when the size of the rectangular slot of the
ground increases and tilted 45◦, which enhances the impedance bandwidth from 3.5 GHz to 5.9 GHz.
In the last step, inductance width increases with some corner defect in the ground therefore resonant
frequency of antenna shifted from 4.8 GHz to 4.7 GHz where impedance bandwidth varies from 3.5 GHz
to 6.1 GHz as depicted in Fig. 1(c) in Model-III. The EC model of the proposed antenna is developed and
tuned with QUCS software as represented in Fig. 1(d). The |S11| bandwidth of EC model is matched
with antenna bandwidth illustrated in Fig. 1(e), where lumped elements of feed line (Lf, Cf), slot in-
ground (Lg, Cg), and resonant frequency (Rp, Lp and Cp) are Lf = 2 nH, Cf = 0.63 pF, Lg = 3.7 nH,
Cg = 1.577 pF, Rp = 49Ω, Lp = 1.96 nH, and Cp = 1.03 pF.

3. DESIGN OF THE FREQUENCY SELECTIVE SURFACE

3.1. Design of the Unit Cell

The proposed modified circular loop FSS is optimized for a 5G sub-6GHz application with a stopband
characteristic, which varies from 3GHz to 7.8 GHz. The design steps of a unit cell FSS are illustrated
in Fig. 2(a) and discussed as follows:

Step-I — The FSS stopband and reflection characteristics depend on unit cell periodicity (P) and
the incidence angle (θo) of the EM waves coming from the antenna. The periodicity (P) can be calculated
by the wavelength (λ) of the EM waves, and its incidence angle is represented in Equation (1) [17].

P <
λ

1 + sinθo
(1)

When incident angle varies from 0◦ to 60◦, the FSS unit cell size should not exceed 26.79 mm for a
6GHz frequency by implementing Equation (1). Therefore, in the first step, the customized size of the
circular unit cell is taken 14 mm. The ring FSS circumference will be equal to one wavelength, and the
radius should be 10.16 mm for 4.7 GHz [14], but here the circular unit cell FSS radius is taken as 6 mm,
keeping the compact size as depicted in Fig. 2(a). The 10 dB bandwidth varies from 5.2 GHz to 6.9 GHz
and is represented in Fig. 2(b) with resonance frequency 6.1 GHz.

Step-II — In the second step, two strips of 0.5 mm width and 12 mm length (v) have been combined
with a ring FSS (step-I) to increase the 10 dB impedance bandwidth and reduce the resonant frequency
without increasing the size. The impedance bandwidth (−10 dB) of the hybrid unit cell is achieved from
3.6 GHz to 5.7 GHz with a resonant frequency of 4.7 GHz where stopband frequencies vary from 3GHz to
7.8 GHz, as illustrated in step-II and its s-parameters (in dB) in Fig. 2(a) and Fig. 2(b). The reflection
phase (S11) of FSS unit cell decreases linearly with increasing frequency. The unit cell of the FSS is
analyzed with the master-slave condition in x- and y-planes and Floquet-port in z-plane to investigate
the stopband response in different angles and polarizations. FSS polarization stability is important and
requires characteristics for practical applications. The resonant frequency of an FSS must be stable on
the EM waves coming from different angles and polarizations so that it can properly control the grating
lobes. The polarization instability of the hybrid structure unit cell is extracted in TE/TM polarization
from 0◦ to 60◦, and its |S21| is depicted in Fig. 2(c) and Fig. 2(d). Modified circular FSS is angular
stable at a different angle and polarization at an operating frequency. The lumped element of a square
loop FSS is discussed in [15]. The overall values of L and C of the EC model are extracted by Equation
(2) and Equation (3). The factor π/2 in Bc and π/4 in XL is used because of the circular loop structure
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Figure 1. (a) Antenna prototype and fabricated antenna. (b) Antenna design steps. (c) S-parameters
of antenna steps. (d) EC Model. (e) s-parameter of EC model and slot antenna.
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Figure 2. Proposed unit cell FSS. (a) Design steps. (b) s-parameters. (c) TE polarization. (d) TM
polarization. (e) EC model. (f) s-parameters of EC model and with EM simulator.

[16]. The lumped elements of the EC model are extracted, and the optimized with QUCS software of
the modified circular loop FSS are L = 0.695 nH, C = 1.67 pF as shown in Fig. 2(e). The EC model
and HFSS EM simulation are compared in Fig. 2(f), where the results validate the EC model with the
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HFSS simulation.
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3.2. Performance Analysis of FSS over Microstrip Antenna

The FSS reflects the unwanted frequency coming from the antenna, and the maximum gain is achieved
if the EM waves radiated from the antenna and the EM waves imitated from the FSS are in the same
phase. The gain improvement of FSS loaded antenna is dependent upon the reflection phase (ϕFSS) of
FSS and height (h) of FSS superstrate from the antenna, extracted from Equation (8).

ϕFSS − 2βh = 2Nπ (8)

where N = 0, 1, 2, 3, . . ..
The extracted value of the height of FSS is 32.6 mm from the antenna by Equation (8). The

gain enhancement characteristics have been achieved by 7 × 7 FSS unit cells with the same material,
whereas one unit cell (Modified circular loop FSS) size is 14 × 14 × 1.6 mm3. The FSS is loaded on a
slot antenna with optimized distance as depicted in Fig. 3(a). |S11| in dB and a realized gain of the
proposed FSS with a slot antenna are analyzed at different heights (h). The |S11| in dB and realized
gain of an antenna with different FSS heights from 24.6 to 32.6 mm are presented in Fig. 3(b) and Fig.
3(c). Result reveals that when height of the FSS decreases, |S11| is shifted to the higher frequency due
to an increase in coupling between FSS and antenna. The increasing height of FSS leads to decrease
in the gain of the antenna at lower frequency and increased gain of the antenna at higher frequency.
Higher gain enhancement of the antenna is achieved, when the height of the FSS from the antenna is
reduced, but due to the coupling between the antenna and the FSS, the operating bandwidth of the
antenna shifts towards higher frequency. Therefore, the optimized distance of the FSS from antenna
is considered 28.6 mm. The 10 dB impedance bandwidth (IBW) at 28.6 mm height of FSS varies from
3.6 GHz to 6.1 GHz, which is close to operating frequency (3.5 GHz to 6.1 GHz) of the antenna without
FSS. The maximum gain enhancement of 4 dB is achieved at 28.6 mm with less than 1.8 dB variation.

4. SIMULATED AND EXPERIMENTS RESULTS

The modified circular loop FSS with a slot antenna is designed on HFSS 13 and measured using Anritsu
VNA (MS2038C). The |S11| (in dB) of the slot antenna with and without FSS are illustrated in Fig. 4(a).
It is observed from the figure that the antenna exhibits frequency from 3.5 GHz to 6.1 GHz with an
absence of FSS and 3.6 GHz to 6.1 GHz with the presence of FSS. The maximum realized gain is
achieved as 7.87 dB and 4.3 dB of the proposed slot antenna with the presence and absence of FSS, as
illustrated in Fig. 4(b), where the maximum 4 dB gain enhancement is achieved at 5 GHz. The gain
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is reduced at 4.9 GHz due to disturbance of the surface current distribution near the feed and slot in
the ground. Fig. 4(c) reveals that radiation efficiency (simulated) in the absence and presence of FSS
is above 94% throughout the operating frequency band. The co- and cross-polar far-field normalized
radiation patterns in xz and yz planes are measured in an anechoic chamber as illustrated in Fig. 4(d)
and Fig. 4(e). The co- and cross-polarization difference is higher than 20 dB at resonant frequencies.

(a)

(b) (c)

Figure 3. Slot antenna loaded at different heights of FSS layer. (a) Hardware prototype of FSS loaded
on antenna. (b) s-parameters (|S11|). (c) Realized gain (dB).

(a) (b)

(c)
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(d) (e)

Figure 4. Slot antenna results with presence and without FSS. (a) S parameters (|S11| in dB, (b)
Realized Gain (in dB). (c) Simulated radiation efficiency (%), Normalized radiation pattern in xz plane
(d) and yz plane (e) at 4.7 GHz with FSS.

Table 1 describes the difference between the recently published papers, for gain enhancement. This
table concludes that the proposed antenna manifests the 4 dB gain enhancement with a compact size of
the antenna and single layer FSS. The maximum gain of the antenna with FSS is about 7.87 dB. Hence,
the gain improvement of a slot antenna with a modified circular loop FSS is higher than those given by
recently published articles [4, 6, 8–10] with single and dual-layer FSSs, where other articles [5, 7] used
higher antenna size or double layer FSS.

Table 1. Gain enhancement comparison between proposed antenna and recently published
FSS/metasurface papers.

Reference

Nos.

Antenna Dimensions

(mm3)

Gain Enhancement

Technology

Operating Frequency

in GHz (Bandwidth)

Overall

Gain

Improvement

in gain (dB)

[4] 70 × 70 × 1.6 Band-Pass FSS 5–8 (3) 9 2–4

[5] 60 × 60 × 1.6 AMC
3.75, 5.98 and 8.79

(Multi-band)
7.52 3.88–4.93

[6] 60 × 60 × 1.6 Metamaterial 5.5–6.5 (1) 10 3

[7] 63.65 × 54.16 × 1.58
Band-Pass FSS

(Double Layer)
2.4 7 5

[8] 63.65 × 54.16 × 1.58 SIW FSS 2.4 4.2 2

[9] 50 × 53.4 × 1.6 DRA-FSS 2.4 5.6 3

[10]
40 × 30 × 0.8

(DR height = 4.3 mm)
FSS (Double side) 8.15–13.2 (5.05) 7.8 3.3

[11] 30 × 60 × 1.6 FSS (Double Layer) 3.2–12 ( 8.8) - 3–4

[12] 63 × 63 × 0.8 FSS (Double Layer) 3–10.6 (7) 9.8 4

Proposed 30 × 30 × 1.6
Modified circular loop

FSS (Single Layer)
3.6 to 6.1 (2.5) 7.87 4

5. CONCLUSIONS

This paper presents a modified circular loop FSS loaded with a slot antenna for sub-6GHz 5G
applications. The modified FSS increases the stopband operating bandwidth and shifts it to a lower
frequency band without the enhancement of FSS size. The modified FSS is insensitive to the phase
change in TE and TM polarization modes. The slot antenna with FSS has obtained a bandwidth from
3.6 GHz to 6.1 GHz with up to 4 dB gain enhancement where the maximum gain of 7.87 dB is achieved.
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9. Belen, M. A., P. Mahouti, and M. Palandöken, “Design and realization of novel frequency selective
surface loaded dielectric resonator antenna via 3D printing technology,” Microwave and Optical
Technology Letters, Vol. 62, No. 5, 2004–2013, 2020.

10. Bhattacharya, A., B. Dasgupta, and R. Jyoti, “Design and analysis of ultrathin X-band frequency
selective surface structure for gain enhancement of hybrid antenna,” International Journal of RF
and Microwave Computer-Aided Engineering, e22505, 2020.

11. Krishna, R. R. and R. Kumar, “Slotted ground microstrip antenna with FSS reflector for high-gain
horizontal polarisation,” Electronics Letters, Vol. 51, No. 8, 599–600, 2015.

12. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, “Multioctave frequency selective surface
reflector for ultrawideband antennas,” IEEE Antennas Wirel. Propag. Lett., Vol. 10, 219–222, 2011.

13. Roy, S. and U. Chakraborty, “Gain enhancement of a dual-band WLAN microstrip antenna loaded
with diagonal pattern metamaterials,” IET Communications, Vol. 12, No. 12 1448–1453, 2018.

14. Huang, J., T.-K. Wu, and S.-W. Lee, “Tri-band frequency selective surface with circular ring
elements,” IEEE Transactions on Antennas and Propagation, Vol. 42, No. 2, 166–175, 1994.

15. Langley, R. J. and E. A. Parker, “Equivalent circuit model for arrays of square loops,” Electronics
Letters, Vol. 18, No. 7, 294–296, 1982.

16. Varkani, A. R., Z. H. Firouzeh, and A. Z. Nezhad, “Equivalent circuit model for array of circular
loop FSS structures at oblique angles of incidence,” IET Microwaves, Antennas & Propagation,
Vol. 12, No. 5, 749–755, 2017.

17. Das, P. and K. Mandal, “Modelling of ultra-wide stop-band frequency-selective surface to enhance
the gain of a UWB antenna,” IET Microwaves, Antennas & Propagation, Vol. 13, No. 3, 269–277,
2019.


