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Orthogonal System of Eigenwaves of an Open Cylindrical Gyrotropic
Waveguide Located in Free Space

Vasiliy A. Es’kin*, Alexander V. Kudrin, and Nadezhda V. Yurasova

Abstract—A new method for obtaining an orthogonal system of eigenwaves of an open cylindrical
waveguide filled with a gyrotropic medium and located in free space is presented. The advantage of the
method is that it enables one to explicitly represent the fields of eigenwaves, which correspond to the
discrete and continuous parts of the eigenvalue spectrum of such a guiding structure. Orthogonality
relations for the eigenwaves and the procedure of expanding an electromagnetic field in terms of
these modal solutions are discussed. The limiting transition from the case of a closed cylindrical
waveguide with a perfectly conducting wall and a coaxial cylindrical gyrotropic core to the case of
an open waveguide is considered. To illustrate the completeness of the obtained system of eigenwaves,
a given field is expanded in terms of the found discrete- and continuous-spectrum waves and then
resynthesized by evaluating the corresponding expansion numerically. Perfect coincidence between the
initially specified field and the result yielded by this evaluation is demonstrated.

1. INTRODUCTION

Expansion of the field in a closed waveguide in terms of eigenwaves was applied for the first time by
Lord Rayleigh to the sound waves [1]. Then this approach was extended to the case of propagation of
electromagnetic waves in waveguides with perfectly conducting walls [2] and along dielectric rods [3].
As is known, to represent the total electromagnetic field in the presence of an open guiding structure,
it is necessary to use a complete set of eigenwaves, which comprises the terms corresponding to the
discrete and continuous parts of the eigenvalue spectrum for such a waveguide [4–7]. Most works on the
subject deal with isotropic [5–9] or anisotropic [10–13] cylindrical waveguides located in free space. It
has long been known that in this case, orthogonalization of the continuous-spectrum waves meets certain
difficulties related to polarization degeneration of waves in an isotropic outer medium (see, e.g., [10–
16] and references therein). At the same time, the required orthogonalization relations are readily
established in the case of an anisotropic outer medium [17–20] where the polarization degeneration does
not occur.

It is the purpose of this work to develop a method that enables one to readily obtain an
orthogonal system of eigenwaves of an open gyrotropic cylindrical waveguide located in free space. Such
guiding structures are often encountered in actual practice, especially when dealing with excitation and
propagation of electromagnetic waves in magneto-optical fibers [10–12], magnetized plasma columns [13],
helicon plasma sources [21–23], and other types of open gyrotropic waveguides [18, 24, 25]. The
feature of the proposed method is that it consistently employs two different polarization types of the
continuous-spectrum waves, along with the conventional consideration of the discrete-spectrum waves,
for constructing a complete set of eigenwaves. Although some aspects of the method presented here
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have already been considered with applications to particular diffraction problems [26, 27], those works
describe this method and its use very succinctly and do not provide analysis as thorough as desired.

Our work is organized as follows. In Section 2, we formulate the studied problem. Section 3
presents the derivation of the fields of eigenwaves, along with the orthogonality relations for these modal
solutions and their expansion coefficients. The limiting transition from the case of a closed circular
waveguide with a coaxial cylindrical gyrotropic core to the case of an open waveguide is discussed in
Section 4. In Section 5, the completeness of the obtained eigenwave system is demonstrated numerically.
Our conclusions are summarized in Section 6. Some auxiliary mathematical derivations are given in
appendixes.

2. BASIC FORMULATION

Consider a uniform cylinder of radius a which is located in free space and aligned with the z axis of a
cylindrical coordinate system (ρ, φ, z). It is assumed that the cylinder is filled with a gyrotropic medium
that may be frequency-dispersive and is described by the permittivity tensor

ε = ε0

(
ε −ig 0
ig ε 0
0 0 η

)
, (1)

where ε0 is the permittivity of free space. Note that such a tensor is typical of gyroelectric media of
natural [28] or artificial [29] origin.

Our main task in this work is to obtain an orthogonal system of eigenwaves for representing
the electromagnetic field in the presence of the considered open system. Such waves are described
by cylindrical vector eigenfunctions which are solutions of the source-free Maxwell equations. In a
gyrotropic medium with the tensor of Eq. (1), these equations for an electromagnetic field with exp(iωt)
time dependence have the form

∇× E = −iωμ0H, ∇× H = iωε ·E, (2)

where μ0 is the permeability of free space. In free space outside the gyrotropic cylinder, the tensor ε
should be replaced by ε0.

The transverse (with respect to the z axis) components of the desired solutions of the Maxwell
equations can be expressed in terms of the longitudinal components, which are represented in the
modal form [

Ez;m,s(r, q)
Hz;m,s(r, q)

]
=
[
Ez;m,s(ρ, q)
Hz;m,s(ρ, q)

]
exp[−imφ− ik0ps(q)z], (3)

where m is the azimuthal index (m = 0,±1,±2, . . .); k0 is the free-space wave number; q is the
normalized (to k0) transverse wave number in free space; the function ps(q) gives the dependence of the
normalized longitudinal wave number p on the transverse wave number q in free space; the subscript s
denotes the waves transferring energy in the positive (s = +) and negative (s = −) directions of the z
axis; and Ez;m,s(ρ, q) and Hz;m,s(ρ, q) are the scalar functions describing the radial distributions of the
longitudinal field components of a wave with the transverse wave number q and the indices m and s.
The quantities p+(q) and p−(q) satisfy the relation p±(q) = ±p(q), where

p(q) = (1 − q2)1/2. (4)

It is assumed that at least in the limit of vanishing losses in the outer medium, Imp(q) < 0.
It can be shown from the Maxwell equations that in the region ρ < a, the transverse components

E⊥;m,s(r, q) and H⊥;m,s(r, q) of the modal solutions are expressed via the longitudinal components
Ez;m,s(r, q) and Hz;m,s(r, q) as [18]

E⊥;m,s =
1

k0W

{
ips(ε− p2

s)∇⊥Ez;m,s + psg
(
z0 ×∇⊥Ez;m,s

)
+Z0g∇⊥Hz;m,s − iZ0(ε− p2

s)
(
z0 ×∇⊥Hz;m,s

)}
, (5)
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H⊥;m,s =
1

k0W

{
−Z−1

0 p2
sg∇⊥Ez;m,s − iZ−1

0

[
g2 − ε(ε− p2

s)
] (

z0 ×∇⊥Ez;m,s

)
+ips(ε− p2

s)∇⊥Hz;m,s + psg
(
z0 ×∇⊥Hz;m,s

)}
, (6)

where W = g2 − (ε− p2
s)

2; ∇⊥ is the transverse (with respect to the z axis) part of the del operator; z0

is the unit vector aligned with the z axis; and Z0 = (μ0/ε0)1/2 is the impedance of free space.
In turn, the quantities Ez;m,s(ρ, q) and Hz;m,s(ρ, q) satisfy the following equations in the inner

region of the cylinder [18]:

L̂mEz;m,s − k2
0

η

ε
(p2

s − ε)Ez;m,s = −ik2
0

g

ε
psZ0Hz;m,s, (7)

L̂mHz;m,s − k2
0

(
p2

s +
g2 − ε2

ε

)
Hz;m,s = ik2

0

g

ε
ηpsZ

−1
0 Ez;m,s, (8)

where

L̂m =
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− m2

ρ2
.

Equations for the longitudinal field components and expressions for the corresponding transverse
field components outside the cylinder are obtained from Eqs. (5)–(8) by putting ε = 1, g = 0, and η = 1.

Solution of the equations for Ez; m,s(ρ, q) andHz;,m,s(ρ, q) should be regular on the z-axis, ensure the
boundary conditions for the tangential field components at ρ = a, and satisfy the following boundedness
conditions at ρ→ ∞ [6]:

ρ1/2|Ez;m,s(ρ, q)| < R(1)
m , ρ1/2|Hz;m,s(ρ, q)| < R(2)

m , (9)

where R
(1)
m and R

(2)
m are finite constants. Equations (7) and (8), along with the above-mentioned

conditions, constitute the boundary value problem on finding the eigenvalues q and the corresponding
eigenwaves, in terms of which the electromagnetic field can be expanded. It is known that the resulting
source-excited field given by such an expansion satisfies the radiation condition at infinity [6].

3. EIGENWAVES OF AN OPEN CYLINDRICAL WAVEGUIDE

3.1. General Solution

Inside the gyrotropic cylinder (ρ < a), the solution of Eqs. (7) and (8) is represented in terms of
cylindrical functions as [18]

Ez;m,s(ρ, q) = iη−1
2∑

k=1

B(k)
m,s(q)nk,sqkJm(k0qkρ), (10)

Hz;m,s(ρ, q) = −Z−1
0

2∑
k=1

B(k)
m,s(q)qkJm(k0qkρ). (11)

Here, Jm is the Bessel function of the first kind of order m, and B
(1)
m,s and B

(2)
m,s are the amplitude

coefficients of the mth azimuthal field harmonic inside the cylinder. Other notations in Eqs. (10) and
(11) are given by

nk,s = −ε
(
q2k + p2

s +
g2

ε
− ε

)
(psg)−1, k = 1, 2, (12)

qk =
{
[ε2 − g2 + εη − (ε+ η)p2

s + (−1)kR]/(2ε)
}1/2

, (13)

where
R =

{
(ε− η)2p4

s + 2
[
g2(ε+ η) − ε(ε− η)2

]
p2

s + (ε2 − g2 − εη)2
}1/2

. (14)
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It should be noted that q1 and q2 are the normalized (to k0) transverse wave numbers corresponding to
two normal waves of a gyrotropic medium with the longitudinal wave number equal to p = ps(q).

Expressions that describe the dependence of the transverse field components on ρ in the region
ρ < a, with allowance for Eqs. (5) and (6), are written as

Eρ;m,s(ρ, q) =
2∑

k=1

B(k)
m,s(q)

[
(1 + uk)Jm+1(k0qkρ) − ukm

Jm(k0qkρ)
k0qkρ

]
, (15)

Eφ;m,s(ρ, q) = i

2∑
k=1

B(k)
m,s(q)

[
Jm+1(k0qkρ) + ukm

Jm(k0qkρ)
k0qkρ

]
, (16)

Hρ;m,s(ρ, q) = −iZ−1
0

2∑
k=1

B(k)
m,s(q)

[
psJm+1(k0qkρ) − nk,svkm

Jm(k0qkρ)
k0qkρ

]
, (17)

Hφ;m,s(ρ, q) = −Z−1
0

2∑
k=1

B(k)
m,s(q)nk,s

[
Jm+1(k0qkρ) − vkm

Jm(k0qkρ)
k0qkρ

]
, (18)

where

uk = g−1[q2k + p2
s − ε] − 1, vk = psn

−1
k,s + 1. (19)

Outside the cylinder (ρ > a), the solution for the longitudinal field components can be written as
follows:

Ez;m,s(ρ, q) = q
2∑

k=1

C(k)
m,s(q)H

(k)
m (k0qρ), (20)

Hz;m,s(ρ, q) = Z−1
0 q

2∑
k=1

D(k)
m,s(q)H

(k)
m (k0qρ). (21)

Here, H(1)
m and H(2)

m are the mth-order Hankel functions of the first and second kinds, respectively, and
C

(1,2)
m,s and D

(1,2)
m,s are the amplitude coefficients. Then for the transverse field components in the outer

region ρ > a, we have

Eρ;m,s(ρ, q) = −
2∑

k=1

[
iC(k)

m,s(q)psH
(k)
m

′
(k0qρ) +D(k)

m,s(q)m
H

(k)
m (k0qρ)
k0qρ

]
, (22)

Eφ;m,s(ρ, q) = −
2∑

k=1

[
C(k)

m,s(q)psm
H

(k)
m (k0qρ)
k0qρ

− iD(k)
m,s(q)H

(k)
m

′
(k0qρ)

]
, (23)

Hρ;m,s(ρ, q) = Z−1
0

2∑
k=1

[
C(k)

m,s(q)m
H

(k)
m (k0qρ)
k0qρ

− iD(k)
m,s(q)psH

(k)
m

′
(k0qρ)

]
, (24)

Hφ;m,s(ρ, q) = −Z−1
0

2∑
k=1

[
iC(k)

m,s(q)H
(k)
m

′
(k0qρ) +D(k)

m,s(q)psm
H

(k)
m (k0qρ)
k0qρ

]
. (25)

Hereafter, the prime indicates the derivative with respect to the argument.
As is known [6], the boundedness conditions in Eq. (9) can be satisfied for some discrete complex

values of q, which give the discrete part of the eigenvalue spectrum and correspond to the transversely
localized discrete-spectrum waves, i.e., eigenmodes of the gyrotropic cylinder. In addition, these
boundedness conditions are also satisfied for all real values of q, which constitute the continuous part
of the eigenvalue spectrum and correspond to the continuous-spectrum waves. Before proceeding to
obtaining eigenwaves of the discrete and continuous spectrum, we introduce some notations, which will
be used in what follows.
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Let Sm,s(Z
(I)
m , Z

(II)
m ) denote the matrix

Sm,s(Z(I)
m , Z(II)

m ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i

η
n1,sQ1Jm(Q1)

i

η
n2,sQ2Jm(Q2) −QZ(I)

m (Q) 0

Q1Jm(Q1) Q2Jm(Q2) 0 QZ
(II)
m (Q)

iĴ
(1)
m iĴ

(2)
m psm

Z
(I)
m (Q)
Q

−iZ(II)
m

′
(Q)

n1,sJ̃
(1)
m n2,sJ̃

(2)
m −iZ(I)

m
′
(Q) −psm

Z
(II)
m (Q)
Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (26)

where

Ĵ (k)
m = Jm+1(Qk) + ukm

Jm(Qk)
Qk

, J̃ (k)
m = Jm+1(Qk) − vkm

Jm(Qk)
Qk

, (27)

Qk = k0qka, Q = k0qa, and Z
(I)
m and Z

(II)
m are cylindrical functions of order m. Other notations in

Eqs. (26) and (27) are defined in Eqs. (4), (12), (13), and (19). Using the matrix given by Eq. (26), we
introduce the following determinants:

Δ(1)
m,s(q) = detSm,s

(
H(2)

m ,H(2)
m

)
, Δ(2)

m,s(q) = detSm,s

(
H(1)

m ,H(1)
m

)
,

Δ(3)
m,s(q) = detSm,s

(
H(2)

m ,H(1)
m

)
− detSm,s

(
H(1)

m ,H(2)
m

)
.

(28)

Expressions for Δ(1)
m,s(q) and Δ(2)

m,s(q) are cumbersome and will not be presented here. An expression
for Δ(3)

m,s(q) can be written as

Δ(3)
m,s(q) =

4
π

{
Q1Jm(Q1)

[
n2,sJ̃

(2)
m +

n1,s

η
Ĵ (2)

m

]
−Q2Jm(Q2)

[
n1,sJ̃

(1)
m +

n2,s

η
Ĵ (1)

m

]}
. (29)

Note that in deriving Eq. (29), use was made of the Wronskian of the Hankel functions H(1)
m (Q) and

H
(2)
m (Q) [30].

3.2. Discrete-Spectrum Waves

To obtain the discrete-spectrum waves, which are transversely localized, we should put C(1)
m,s(q) = 0

and D
(1)
m,s(q) = 0 in Eqs. (20)–(25) and then satisfy the boundary conditions for the tangential field

components, i.e., Eφ;m,s, Ez;m,s, Hφ;m,s, and Hz;m,s, at ρ = a. This yields a system of four linear
homogeneous equations for the coefficients B

(1)
m,s(q), B

(2)
m,s(q), C

(2)
m,s(q), and D

(2)
m,s(q). To obtain a

nontrivial solution for these coefficients, we should require that the determinant of such a system is
zero, which gives the eigenvalue equation

Δ(1)
m,s(q) = 0, (30)

where Δ(1)
m,s is defined in Eq. (28). It is evident that roots q = qm,n of Eq. (30), where n = 1, 2, . . .,

correspond to the transversely localized eigenmodes, i.e., the discrete-spectrum waves, if Im qm,n < 0.
The propagation constants of such modes are given by pm,s,n = ps(qm,n). Substituting q = qm,n into
Eqs. (10), (11), and (15)–(18) for ρ < a and into Eqs. (20)–(25) for ρ > a, with allowance for the
condition C

(1)
m,s(q) = D

(1)
m,s(q) = 0, we obtain the quantities which describe the components of the

discrete-spectrum waves as functions of ρ. Multiplying these quantities by exp(−imφ − ik0pm,s,n),
we arrive at the resulting expressions for the components of the fields Em,s,n(r) and Hm,s,n(r) of the
discrete-spectrum waves. The amplitude coefficients for these wave can now be denoted as

B(1,2)
m,s,n = B(1,2)

m,s (qm,n), C(2)
m,s,n = C(2)

m,s(qm,n), D(2)
m,s,n = D(2)

m,s(qm,n). (31)
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A procedure for obtaining explicit expressions of these coefficients is described in Appendix A. Note
that this procedure yields the coefficients in Eq. (31) in such a form that the eigenfunctions determining
the components of Em,s,n(r) and Hm,s,n(r) satisfy the relations

Eρ,φ;m,−s,n(ρ) = Eρ,φ;m,s,n(ρ), Ez;m,−s,n(ρ) = −Ez;m,s,n(ρ),

Hρ,φ;m,−s,n(ρ) = −Hρ,φ;m,s,n(ρ), Hz;m,−s,n(ρ) = Hz;m,s,n(ρ),
(32)

which will be useful in the forthcoming derivations.
Alternatively, one may put C(2)

m,s(q) = 0 and D
(2)
m,s(q) = 0 in Eqs. (20)–(25) and again satisfy the

boundary conditions for the tangential field components. This gives another eigenvalue equation

Δ(2)
m,s(q) = 0, (33)

where Δ(2)
m,s(q) is also defined in Eq. (28). The roots q = q̃m,n of Eq. (33), such that Im q̃m,n > 0, where

n = 1, 2, . . ., yield localized eigenmodes as well. However, the solutions of Eq. (33) do not give new
discrete-spectrum waves compared with those yielded by the solutions of Eq. (30) and can therefore be
rejected.

3.3. Continuous-Spectrum Waves

We now consider the real q values which constitute the continuous part of the eigenvalue spectrum.
To construct the corresponding continuous-spectrum waves in a form that automatically ensures the
fulfillment of the required orthogonality relations, we note that according to [6], an open waveguide
can be regarded the limiting case of a closed waveguide with the perfectly conducting boundary of
radius R that tends to infinity. In the region a ≤ ρ ≤ R of such a waveguide, the field is described by
Eqs. (20)–(25). Since Eφ;m,s(R, q) = 0 and Ez;m,s(R, q) = 0, one obtains from Eqs. (20) and (23) for
R→ ∞ that

C(1)
m,s(q)H

(1)
m (k0qR) + C(2)

m,s(q)H
(2)
m (k0qR) = 0, (34)

D(1)
m,s(q)H

(1)
m

′
(k0qR) +D(2)

m,s(q)H
(2)
m

′
(k0qR) = 0. (35)

Using the relation
H(1)

m (k0qR)/H(2)
m (k0qR) = −H(1)

m

′
(k0qR)/H(2)

m

′
(k0qR),

which is valid for R→ ∞, we can deduce from Eqs. (34) and (35) that in this limit,

C(1)
m,s(q)/C

(2)
m,s(q) = −D(1)

m,s(q)/D
(2)
m,s(q). (36)

Equation (36) allows us to assume that the following ansatz can be used to relate C(1)
m,s(q) and D(1)

m,s(q)
to C(2)

m,s(q) and D(2)
m,s(q), respectively, in the case of an open waveguide:

C(1)
m,s(q) = ψm(q)C(2)

m,s(q), D(1)
m,s(q) = −ψm(q)D(2)

m,s(q). (37)

Here, ψm(q) is a certain function of q, which is to be determined. It will be shown below that this
ansatz makes it possible to readily obtain the continuous-spectrum waves satisfying the orthogonality
relations.

To determine ψm(q), we substitute Eq. (37) into Eqs. (20)–(25) and then satisfy the boundary
conditions for the tangential field components at ρ = a. This yields a system of four linear homogeneous
equations for the coefficients B(1)

m,s(q), B
(2)
m,s(q), C

(2)
m,s(q), and D

(2)
m,s(q). Requiring that the determinant

of such a system be zero gives the following quadratic equation for ψm(q):

Δ(2)
m,s(q)ψ

2
m(q) + Δ(3)

m,s(q)ψm(q) − Δ(1)
m,s(q) = 0. (38)

Then it follows that

ψm,γ(q) =
Δ(3)

m,s(q)

2Δ(2)
m,s(q)

{
(−1)γ−1

[
1 + 4Δ(1)

m,s(q)Δ
(2)
m,s(q)/

(
Δ(3)

m,s(q)
)2]1/2

− 1
}
, (39)
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where the subscripts γ = 1 and γ = 2 denote the polarization type of the continuous-spectrum waves,
and the square root is defined so as to have the positive real part. Note that the quantities Δ(1)

m,s(q),
Δ(2)

m,s(q), and Δ(3)
m,s(q) reverse their sign at the replacement s → −s. Therefore, the functions ψm,1(q)

and ψm,2(q) are independent of s, as expected. The existence of two solutions ψm,1(q) and ψm,2(q)
implies that we have two types of the continuous-spectrum waves, whose amplitude coefficients will be
marked using the additional subscript γ. The longitudinal components for the corresponding continuous-
spectrum waves in Eq. (3) are then denoted as Ez;m,s,γ(r, q) and Hz;m,s,γ(r, q) and can be found using
Eqs. (10), (11), (20), and (21). Calculating the functions in Eqs. (15)–(18) and (22)–(25) for γ = 1, 2 and
multiplying them by the same exponential function as in Eq. (3), we obtain the transverse components
of the fields Em,s,γ(r, q) and Hm,s,γ(r, q) of the continuous-spectrum waves. The coefficients B(1)

m,s,γ(q),
B

(2)
m,s,γ(q), C

(2)
m,s,γ(q), and D

(2)
m,s,γ(q) for such waves are calculated as described in Appendix A. With

these coefficients, one can verify that similar to Eq. (32), the following relations take place:

Eρ,φ;m,−s,γ(ρ, q) = Eρ,φ;m,s,γ(ρ, q), Ez;m,−s,γ(ρ, q) = −Ez;m,s,γ(ρ, q),

Hρ,φ;m,−s,γ(ρ, q) = −Hρ,φ;m,s,γ(ρ, q), Hz;m,−s,γ(ρ, q) = Hz;m,s,γ(ρ, q).
(40)

In what follows, we will use such eigenwaves only for the positive real q values because, as a careful
inspection shows, the negative real q values do not give new solutions for the continuous-spectrum
waves.

Interestingly, substituting q = qm,n for q into ψm,1(q) yields ψm,1(qm,n) = 0, so that C(1)
m,s,γ(qm,n) = 0

andD(1)
m,s,γ(qm,n) = 0 for γ = 1. Similarly, ψ−1

m,2(q̃m,n) = 0, so that C(2)
m,s,γ(q̃m,n) = 0 andD(2)

m,s,γ(q̃m,n) = 0
for γ = 2.

In addition, we note that there exists an alternative way for deriving the continuous-spectrum waves.
To this end, one may consider a closed waveguide with the perfect magnetic boundary at ρ = R → ∞
instead of the perfect electric boundary used in the preceding analysis. Then one should employ the
conditions Hφ;m,s(R, q) = 0 and Hz;m,s(R, q) = 0 and repeat steps similar to those described above.

It should also be mentioned that an analogous set of eigenwaves of an open cylindrical waveguide
filled with a gyrotropic medium can be constructed using the scattering matrix method [7, 10, 11],
in which two kinds of continuous-spectrum waves correspond to two eigenvalues of the scattering
matrix that can be introduced for cylindrical waves according to a special procedure. The approach
presented here differs from the scattering matrix method in that the relations of the quantities C(1)

m,s,γ(q)
and D

(1)
m,s,γ(q) to the quantities C(2)

m,s,γ(q) and D
(2)
m,s,γ(q), which follow from Eq. (37), are determined

by considering the reflection of the continuous-spectrum waves from an infinitely distant, perfectly
conducting cylindrical surface. In the scattering matrix method, the corresponding relations are derived
using the eigenvalues of the scattering matrix for cylindrical waves, which is obtained by solving a more
complicated problem of reflection of such waves from an open gyrotropic waveguide. It is important to
note that our approach gives closed-form representations for the eigenwaves which automatically satisfy
the required orthogonality relations discussed in the forthcoming section. Moreover, it will be shown
in what follows that the use of both types of the continuous-spectrum waves is generally necessary
for rigorous representation of an arbitrary field. At the same time, in works [7, 10, 11], in which the
scattering matrix method was developed, only one kind of the continuous-spectrum waves was employed
by default. However, this may generally be insufficient since an accurate field representation should
involve the use of both kinds of such eigenwaves.

3.4. Orthogonality Relations for Eigenwaves and the Field Expansion

As is known, orthogonality relations for guiding systems with gyrotropic filling are established using
the transposed formulation of Lorentz’s theorem [18]. According to it, the fields in an auxiliary
(“transposed”) medium described by the transposed dielectric tensor εT are involved in the analysis,
along with the fields in a medium described by the tensor ε. Based on Eqs. (5)–(8), it is easily verified
that the fields of the discrete- and continuous-spectrum waves can always be defined so as to satisfy the
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relations
E

(T)
ρ;−m,−s,n(ρ) = −Eρ;m,s,n(ρ), E

(T)
φ,z;−m,−s,n(ρ) = Eφ,z;m,s,n(ρ),

H
(T)
ρ;−m,−s,n(ρ) = −Hρ;m,s,n(ρ), H

(T)
φ,z;−m,−s,n(ρ) = Hφ,z;m,s,n(ρ)

(41)

and
E

(T)
ρ;−m,−s,γ(ρ, q) = −Eρ;m,s,γ(ρ, q), E

(T)
φ,z;−m,−s,γ(ρ, q) = Eφ,z;m,s,γ(ρ, q),

H
(T)
ρ;−m,−s,γ(ρ, q) = −Hρ;m,s,γ(ρ, q), H

(T)
φ,z;−m,−s,γ(ρ, q) = Hφ,z;m,s,γ(ρ, q).

(42)

Hereafter, the superscript (T) denotes field quantities taken in the “transposed” medium. Moreover,
on close examination, one can find that Eqs. (41) and (42) are fulfilled automatically when using the
field coefficients determined according to Appendix A. Note that the derivation of the orthogonality
relations for eigenwaves is significantly simplified with the help of Eqs. (41) and (42), although they are
not a prerequisite for this procedure.

The orthogonality relations for the discrete- and continuous-spectrum waves are written as∫ 2π

0
dφ

∫ ∞

0

[
Em,s,n(r) ×H(T)

m̃,s̃,ñ(r) − E(T)
m̃,s̃,ñ(r) × Hm,s,n(r)

]
· z0ρdρ = Nm,s,nδm,−m̃δs,−s̃δn,ñ, (43)∫ 2π

0
dφ

∫ ∞

0

[
Em,s,γ(r, q) × H(T)

m̃,s̃,ñ(r) − E(T)
m̃,s̃,ñ(r) × Hm,s,γ(r, q)

]
· z0ρdρ = 0, (44)∫ 2π

0
dφ

∫ ∞

0

[
Em,s,γ(r, q) × H(T)

m̃,s̃,γ̃(r, q̃) − E(T)
m̃,s̃,γ̃(r, q̃) × Hm,s,γ(r, q)

]
· z0ρdρ

= Nm,s,γ(q)δ(q − q̃)δm,−m̃δs,−s̃δγ,γ̃ , (45)
where δα,β is the Kronecker delta, and δ(q) is the Dirac function. The norms of eigenwaves obey the
relations Nm,+,γ(q) = −Nm,−,γ(q) = Nm,γ(q) and Nm,+,n = −Nm,−,n = Nm,n and are given by the
formulas

Nm,γ(q) = − 16π
Z0k2

0

p

q

[(
C

(2)
m,+,γ(q)

)2
+
(
D

(2)
m,+,γ(q)

)2
]
ψm,γ(q), (46)

Nm,n =
1

2πi
dNm,1(q)

dq

∣∣∣∣
q=qm,n

. (47)

Equations (43)–(47) are derived in Appendix B with allowance for Eqs. (41) and (42).
Using the above orthogonality relations, one can immediately calculate the total field due to given

sources [25], which can be specified as electric and magnetic currents with the densities J(r) and M(r),
respectively, on the right-hand sides of the Maxwell curl equations. For example, outside the source
region, the total field can be expanded in the form[

E(r)
H(r)

]
=

∞∑
m=−∞

⎛
⎝∑

n

am,s,n

[
Em,s,n(r)
Hm,s,n(r)

]
+

2∑
γ=1

∫ ∞

0
am,s,γ(q)

[
Em,s,γ(r, q)
Hm,s,γ(r, q)

]
dq

⎞
⎠ , (48)

where one should take s = − or s = + for the field quantities taken on the left or right of the source
region along the z axis, respectively, and the expansion coefficients am,s,n and am,s,γ are given by

am,±,n =
1

Nm,n

∫
V

[
J(r) ·E(T)

−m,∓,n(r) − M(r) · H(T)
−m,∓,n(r)

]
dr, (49)

am,±,γ(q) =
1

Nm,γ(q)

∫
V

[
J(r) ·E(T)

−m,∓,γ(r, q) − M(r) ·H(T)
−m,∓,γ(r, q)

]
dr, (50)

with integration over the volume V occupied by the source currents. It is evident that Eqs. (48)–(50)
differ from the corresponding formulas for an anisotropic outer medium [25] in that here two kinds of
the continuous-spectrum waves satisfying the free-space dispersion relation of Eq. (4) are used instead
of the ordinary and extraordinary waves of an anisotropic outer medium. In the interests of brevity, we
do not present the field expansion inside the source region since such an expansion can also be obtained
by analogy with [25].
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3.5. Limiting Transition to the Case of Free Space

It is interesting to consider the transition from the eigenfunctions obtained for an open gyrotropic
cylindrical waveguide to those in the case of free space. To do this, we should consider either the
limiting transitions ε → 1, g → 0, and η → 1 or the transition a → 0 in the preceding formulas.
The latter case is somewhat simpler for consideration. With decreasing radius a, the discrete-spectrum
modes eventually disappear, while Δ(1)

m,s(q)/Δ
(2)
m,s(q) → 1 and Δ(3)

m,s(q)/Δ
(1,2)
m,s (q) → 0. For one value of

γ, we then have

ψm,γ(q) = 1, D(2)
m,s,γ(q) = 0, (51)

Ez;m,s,γ(ρ, q) = 2C(2)
m,s,γ(q)qJm(k0qρ), Hz;m,s,γ(ρ, q) = 0. (52)

For the other value γ̃ �= γ, we get

ψm,γ̃(q) = −1, C
(2)
m,s,γ̃(q) = 0, (53)

Ez;m,s,γ̃(ρ, q) = 0, Hz;m,s,γ̃(ρ, q) = 2Z−1
0 D

(2)
m,s,γ̃(q)qJm(k0qρ). (54)

It follows from Eqs. (52) and (54) that in the considered limiting transition, the continuous-spectrum
waves of the two types transform to the E and H waves of free space. Note that without loss of
generality, the quantities C(2)

m,s,γ(q) and D
(2)
m,s,γ̃(q) in these formulas can be replaced by an arbitrary

constant.

4. TRANSITION TO AN OPEN CYLINDRICAL WAVEGUIDE FROM A CLOSED
WAVEGUIDE

It is instructive to compare the properties of eigenmodes of a closed waveguide with indefinitely
increasing radius, which was discussed above, and those of the continuous-spectrum waves of an open
waveguide. Bearing in mind that the eigenvalue spectrum of the closed waveguide is discrete, we will
analyze the behavior of the ratio C(1)

m,s,n/C
(2)
m,s,n of the field coefficients for the eigenmodes of the closed

waveguide and the dependences of the quantities ψm,1 and ψm,2 for the continuous-spectrum waves of
the open waveguide. The parameters of the gyrotropic cylinder of radius a in both waveguides are
assumed identical.

As a gyrotropic medium in the region ρ < a, we take a cold collisionless electron magnetoplasma
with the superimposed static magnetic field B0 = B0z0. Then the elements of the tensor in Eq. (1) are
given by the expressions

ε = 1− ω2
p

ω2 − ω2
H

, g =
ω2

pωH

(ω2 − ω2
H)ω

, η = 1−ω
2
p

ω2
, (55)

where ωH and ωp are the gyrofrequency and the plasma frequency of electrons, respectively.
Figure 1 shows the real parts of the quantities ψm,1(q) and ψm,2(q) as functions of q for an open

waveguide and the values of the quantities Re (C(1)
m,s,n/C

(2)
m,s,n) for eigenmodes (with the transverse wave

numbers q = qm,n) of a closed waveguide. For this figure, we chose the following parameters: the
azimuthal index m = 1, k0a = 0.585, ω/ωH = 0.5, and ωp/ωH = 6.95. With these values, ε = 65.3,
g = −128.6, and η = −192. The radius of the closed waveguide is varied from R = 2a to R = 50a.
It is seen in Fig. 1 that the green and red lines, referring to ψm,1 and ψm,2, respectively, transform
continuously to each other at their coalescence points. The existence of such points is related to the
jumps of ψm,1 and ψm,2 at the corresponding values of q due to the adopted convention for choosing
the branch of the square root in Eq. (39). We observe that the eigenmodes of the closed waveguide
are eventually divided into two families with increasing R, so that the value of the ratio C(1)

m,s,n/C
(2)
m,s,n

in each family tends to approach either ψm,1(q) or ψm,2(q). Obviously, for R → ∞, the continuous
eigenvalue spectrum of the open waveguide forms from the discrete spectrum of the closed waveguide,
and the corresponding continuous-spectrum solutions become either γ = 1 or γ = 2 waves. Note that
we limit ourselves to analysis of the real parts of the corresponding quantities in Fig. 1 for brevity.
Analogous results can be obtained for the imaginary parts of these quantities as well.
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Figure 1. The real parts of the quantities ψm,1 (green solid lines) and ψm,2 (red dash-dotted lines) as
functions of q for an open waveguide and the quantities Re (C(1)

m,s,n/C
(2)
m,s,n) (circles) for eigenmodes of

a closed waveguide with radius (a) R = 2a, (b) R = 10a, and (c) R = 50a. See text for discussion.

5. TEST OF COMPLETENESS

Although the property of completeness has not been established rigorously for a system of the discrete
and continuous-spectrum waves of an open waveguide that is considered in this work, this property can
be shown to take place at the physical level of rigor if an arbitrary field expanded in terms of the found
eigenwaves can be resynthesized by evaluating the corresponding expansion [31].

Let us specify a certain field (E(0), H(0)) in the cross section z = 0 in which r = r⊥, where r⊥ is
the transverse part of the radius vector with respect to the z axis. The transverse parts E(0)

⊥ and H(0)
⊥

of this field in the chosen cross section can be expanded in terms of the above-described eigenwaves as

E(0)
⊥ (r⊥) =

∞∑
m=−∞

⎛
⎝∑

n

bm,s,nE⊥;m,s,n(r⊥) +
2∑

γ=1

∫ ∞

0
bm,s,γ(q)E⊥;m,s,γ(r⊥, q) dq

⎞
⎠ , (56)

H(0)
⊥ (r⊥) =

∞∑
m=−∞

⎛
⎝∑

n

cm,s,nH⊥;m,s,n(r⊥) +
2∑

γ=1

∫ ∞

0
cm,s,γ(q)H⊥;m,s,γ(r⊥, q) dq

⎞
⎠ , (57)

where the eigenwaves propagating only in one direction, i.e., either s = − or s = +, are employed. Note
that the expansion coefficients bm,s,n and bm,s,γ(q) for the electric field in Eq. (56) and the analogous
coefficients cm,s,n and cm,s,γ(q) for the magnetic field in Eq. (57) are generally different for an arbitrary
field that does not satisfy the same boundary conditions as those valid for the eigenwaves. Introducing
new coefficients according to the relations

dm,s,n = (bm,s,n + cm,s,n)/2, dm,−s,n = (bm,s,n − cm,s,n)/2, (58)
dm,s,γ(q) = [bm,s,γ(q) + cm,s,γ(q)]/2, dm,−s,γ(q) = [bm,s,γ(q) − cm,s,γ(q)]/2 (59)

and allowing for Eqs. (32) and (40), one can rewrite the expansions of Eqs. (56) and (57) in the form[
E(0)

⊥ (r⊥)

H(0)
⊥ (r⊥)

]
=

+∑
s=−

∞∑
m=−∞

⎛
⎝∑

n

dm,s,n

[
E⊥;m,s,n(r⊥)
H⊥;m,s,n(r⊥)

]
+

2∑
γ=1

∫ ∞

0
dm,s,γ(q)

[
E⊥;m,s,γ(r⊥, q)
H⊥;m,s,γ(r⊥, q)

]
dq

⎞
⎠ . (60)

To obtain the longitudinal components of the field, it is necessary to use the Maxwell equations
projected onto the z-axis direction. Then, from Eqs. (1) and (2), one obtains

z0 · (∇⊥ × E⊥) = −iωμ0Hz, z0 · (∇⊥ ×H⊥) = iωε0ηEz . (61)
Since the fields of eigenwaves satisfy these equations, from Eqs. (60) and (61) we get[

E
(0)
z (r⊥)

H
(0)
z (r⊥)

]
=

+∑
s=−

∞∑
m=−∞

⎛
⎝∑

n

dm,s,n

[
Ez;m,s,n(r⊥)
Hz;m,s,n(r⊥)

]
+

2∑
γ=1

∫ ∞

0
dm,s,γ(q)

[
Ez;m,s,γ(r⊥, q)
Hz;m,s,γ(r⊥, q)

]
dq

⎞
⎠ . (62)
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Thus, the field in the chosen cross section is represented using the common expansion coefficients
for the transverse and longitudinal field components of eigenwaves of both propagation directions. In
turn, these expansion coefficients are derived with the help of Eqs. (43)–(45), which express the property
of orthogonality of the eigenwaves. As a result, we have

dm,±,n =
1

Nm,n

∫ 2π

0
dφ

∫ ∞

0

[
E(0)(r⊥) × H(T)

−m,∓,n(r⊥) − E(T)
−m,∓,n(r⊥) × H(0)(r⊥)

]
· z0ρdρ, (63)

dm,±,γ(q) =
1

Nm,γ(q)

∫ 2π

0
dφ

∫ ∞

0

[
E(0)(r⊥) × H(T)

−m,∓,γ(r⊥, q)

− E(T)
−m,∓,γ(r⊥, q) × H(0)(r⊥)

]
· z0ρdρ. (64)

It is worth noting that only the transverse field components determine the right-hand sides of Eqs. (63)
and (64).

As the test field (E(0), H(0)), we choose the field of an E-polarized vortex Bessel beam propagating
in free space and possessing the transverse wave number q0 and azimuthal index m0. The longitudinal
components of the field of such a beam have the form

E(0)
z (r) = Jm0(k0q0ρ) exp(−im0φ− ik0p0z), H(0)

z (r) = 0, (65)

where p0 = (1 − q20)
1/2. The transverse field components for the beam can be obtained by substituting

the longitudinal components of Eq. (65) into Eqs. (5) and (6), in which one should put ε = η = 1, g = 0,
and ps = p0. It can be easily verified that the expansion coefficients are nonzero only for m = m0. In
addition, it is found straightforwardly that the coefficients dm0,s,γ(q) are recast as

dm0,s,γ(q) = d̃m0,s,γ(q) + d(0)
m0,γδ (q − q0) δ+,s, (66)

where

d(0)
m0,γ = − 4π

Z0k
2
0

p0

q20

C
(2)
m0,+,γ(q0)
Nm0,γ(q0)

[1 + ψm0,γ(q0)] . (67)

In Eq. (66), the singular term with the Dirac function is isolated. Due to such isolation, the resulting
integrands in the field expressions will contain only the regular functions of the variable q, which
significantly facilitates the numerical integration over this variable.

Let us present the results of evaluation of the azimuthal field components yielded by the expansion
of Eq. (60) at z = 0. These components can be written as follows:⎡

⎣E(0)
φ (r⊥)

H
(0)
φ (r⊥)

⎤
⎦=

⎡
⎣E(I)

φ (r⊥)

H
(I)
φ (r⊥)

⎤
⎦+

⎡
⎣E(II)

φ (r⊥)

H
(II)
φ (r⊥)

⎤
⎦+

⎡
⎣E(III)

φ (r⊥)

H
(III)
φ (r⊥)

⎤
⎦ , (68)

where ⎡
⎣E(I)

φ (r⊥)

H
(I)
φ (r⊥)

⎤
⎦ =

+∑
s=−

∑
n

dm0,s,n

[
Eφ;m0,s,n(ρ)
Hφ;m0,s,n(ρ)

]
exp(−im0φ), (69)

⎡
⎣E(II)

φ (r⊥)

H
(II)
φ (r⊥)

⎤
⎦ =

+∑
s=−

2∑
γ=1

∫ ∞

0
d̃m0,s,γ(q)

[
Eφ;m0,s,γ(ρ, q)
Hφ;m0,s,γ(ρ, q)

]
dq exp(−im0φ), (70)

⎡
⎣E(III)

φ (r⊥)

H
(III)
φ (r⊥)

⎤
⎦ =

2∑
γ=1

d(0)
m0,γ

[
Eφ;m0,+,γ(ρ, q0)
Hφ;m0,+,γ(ρ, q0)

]
exp(−im0φ). (71)

Figure 2 shows the azimuthal components of the test field, the synthesized field yielded by Eq. (68),
and the partial contributions given by Eqs. (69)–(71) to the synthesized field as functions of the
coordinate ρ in the plane z = 0 at φ = 0. The calculations were performed for the following parameters
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of the test field: m0 = 1, q0 = 1/
√

2, and ω/ωH = 6.98. The dimensionless parameters of the gyrotropic
cylinder were equal to ωp/ωH = 6.95 and k0a = 8.167. In this case, εη < 0, so that the waveguide can
support an infinite number of eigenmodes of the quasielectrostatic type [13, 21, 22]. For calculations,
we took into account the first 56 eigenmodes, and the infinite upper integration limit in Eq. (70) was
replaced by a finite quantity equal to 40. This turned out to be sufficient to ensure the required accuracy
of evaluating the field. Indeed, it is seen in Fig. 2 that the spatial distributions of the initial field and
the synthesized field coincide with graphical accuracy. It should be emphasized that such agreement
can only be reached if both the γ = 1 and γ = 2 continuous-spectrum waves are taken into account,
along with the eigenmodes.

To illustrate the last statement, Fig. 3 shows the azimuthal components of the total field, which
have been synthesized using Eq. (68), and the same quantities calculated without allowance for the γ = 1
term or γ = 2 term in Eq. (70). Note that when Fig. 3 was plotted, the same values of all parameters
as in Fig. 2 were used. Under such conditions, ImEφ = 0 and ReHφ = 0 in the total field in the cross
section z = 0. Therefore, the red solid line is absent in Fig. 3(a), whereas the blue solid line is absent
in Fig. 3(b). It is evident that neglecting either the γ = 1 or γ = 2 term in Eq. (70) makes the field
representation inaccurate. A similar situation takes place if we omit any of these terms in Eq. (71) or
do so in Eqs. (70) and (71) simultaneously. Thus, rejecting one of two kinds of the continuous-spectrum
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Figure 2. Azimuthal components of the test field (bold solid line), the synthesized field yielded by
Eq. (68) (circles), and the partial contributions given by Eqs. (69), (70), and (71) and denoted by
the thin solid, dash-dotted, and dashed lines, respectively, to the synthesized field as functions of the
coordinate ρ in the plane z = 0 at φ = 0 for m0 = 1, q0 = 1/
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Figure 3. Azimuthal components of the total field (bold solid lines) synthesized using Eq. (68) and the
same quantities calculated without allowance for the γ = 1 and γ = 2 terms (dashed and dash-dotted
lines, respectively) in Eq. (70). Same values of parameters as in Fig. 2. The real and imaginary parts
of the field quantities are shown by the blue and red lines, respectively.
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waves makes the set of eigenwaves incomplete and, hence, incapable of representing the specified field
correctly. Therefore, only the complete system of eigenwaves should be generally employed for expanding
the electromagnetic field in the presence of an open gyrotropic cylindrical waveguide.

6. CONCLUSION

In this work, we have presented a method for obtaining a complete orthogonal system of the discrete-
and continuous-spectrum waves of an open cylindrical waveguide filled with a gyrotropic medium and
located in free space. We have derived closed-form expressions for the fields of the eigenwaves and
their norms. It is shown that there exist two kinds of the continuous-spectrum waves which should
be taken into account to correctly describe the total electromagnetic field in the presence of such a
waveguide. In applying the resultant formulation, a given test field has been expanded in terms of the
found eigenwaves. Then this field has been resynthesized by evaluating the obtained expansion and
perfect coincidence between the field yielded by this procedure and the initially specified test field has
been demonstrated numerically.

The results obtained can be useful in studying the excitation and propagation of electromagnetic
waves in various open systems, including magneto-optical fibers, magnetized plasma waveguides, etc.
Moreover, the proposed method can be extended to the case of open guiding structures filled with a
medium having more complicated properties than those considered in this work. Future work should
also include an application of the developed method of field expansion to solving diffraction problem in
the presence of semi-infinite open gyrotropic waveguides.
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APPENDIX A. DERIVATION OF THE FIELD COEFFICIENTS

The coefficients B(1)
m,s,n, B(2)

m,s,n, C(2)
m,s,n, and D

(2)
m,s,n are related by a system of four linear homogeneous

equations which ensure the fulfillment of the boundary conditions for the eigenmodes at ρ = a. Since
the determinant of this system is zero, one of the coefficients can be arbitrary, and it is sufficient to
take any three equations of the system for obtaining the remaining coefficients:⎛

⎜⎜⎜⎜⎝
i

η
n1,sQ1Jm(Q1)

i

η
n2,sQ2Jm(Q2) −QH(2)

m (Q)

Q1Jm(Q1) Q2Jm(Q2) 0

iĴ
(1)
m iĴ

(2)
m psm

H
(2)
m (Q)
Q

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝
B

(1)
m,s,n

B
(2)
m,s,n

C
(2)
m,s,n

⎞
⎟⎟⎠ =

⎛
⎜⎝

0

−QH(2)
m (Q)

iH
(2)
m

′
(Q)

⎞
⎟⎠D(2)

m,s,n. (A1)

Here, all terms depending on q are taken at q = qm,n. It is convenient to choose the coefficient D(2)
m,s,n

equal to the determinant of the matrix on the left-hand side of Eq. (A1). The other coefficients in
Eq. (A1) are then expressed via D(2)

m,s,n.
The coefficients for the continuous-spectrum waves can also be found using any three equations of a

system of four linear equations that are obtained for B(1)
m,s,γ(q), B(2)

m,s,γ(q), C(2)
m,s,γ(q), and D(2)

m,s,γ(q) from
the boundary conditions for these waves at ρ = a. Thus, the coefficients for the continuous-spectrum
waves are determined from the system⎛

⎜⎜⎜⎜⎝
i

η
n1,sQ1Jm(Q1)

i

η
n2,sQ2Jm(Q2) −QH̃m,γ

Q1Jm(Q1) Q2Jm(Q2) 0

iĴ
(1)
m iĴ

(2)
m psm

H̃m,γ

Q

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝
B

(1)
m,s,γ

B
(2)
m,s,γ

C
(2)
m,s,γ

⎞
⎟⎟⎠ =

⎛
⎝ 0
−QHm,γ

iH′
m,γ

⎞
⎠D(2)

m,s,γ , (A2)
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where Hm,γ = H
(2)
m (Q)− ψm,γ(q)H(1)

m (Q), H̃m,γ = H
(2)
m (Q) + ψm,γ(q)H(1)

m (Q), and the quantity q takes
real values. The coefficient D(2)

m,s,γ for each γ may be determined as the determinant of the matrix on
the left-hand side of Eq. (A2). Then the remaining coefficients are readily expressed in terms of D(2)

m,s,γ

by solving Eq. (A2).
It can also be verified straightforwardly that in the case of γ̃ �= γ, the following relation takes place:

C(2)
m,s,γ(q)C

(2)
m,s,γ̃(q) +D(2)

m,s,γ(q)D(2)
m,s,γ̃(q) = 0. (A3)

This result turns out to be useful when deriving the orthogonality relations for the continuous-spectrum
waves.

APPENDIX B. DERIVATION OF THE ORTHOGONALITY RELATIONS

To derive Eqs. (43)–(47), we consider two fields, (EI, HI) and (E(T)
II , H(T)

II ), which have the same
frequency and satisfy the homogeneous Maxwell equations in different media that are described by the
tensors ε and εT, respectively. Then it follows from the Maxwell equations that

∇ ·
(
EI × H(T)

II − E(T)
II × HI

)
= 0. (B1)

It is worth noting that Eq. (B1) represents a transposed formulation of Lorentz’s theorem in a gyrotropic
medium in the absence of sources. Applying the divergence theorem in a two-dimensional form to
Eq. (B1) yields

∂

∂z

∫
S⊥

(
EI × H(T)

II − E(T)
II × HI

)
· z0dS⊥ = −

∮
L

(
EI × H(T)

II − E(T)
II × HI

)
· n0dl. (B2)

Here, S⊥ is an arbitrary cross-sectional area with respect to the z axis; the line integral is along the
boundary L of S⊥; and n0 is the unit outward normal on L in the plane of S⊥.

To obtain the relations given by Eqs. (43) and (44), we should substitute the fields occurring in
the integrands of these relations into Eq. (B2) with allowance for Eqs. (41) and (42) and then tend
the contour L to infinity where the fields of the discrete-spectrum waves are zero. The above-described
procedure makes it possible to immediately arrive at Eqs. (43) and (44). During this derivation, use
should be made of the identity

p
(T)
−m,−s,n = −pm,s,n, (B3)

which follows from the dispersion relation in the form of Eq. (30) for the discrete-spectrum waves, and
the formula ∫ 2π

0
exp [−i(m+ m̃)φ] dφ = 2πδm,−m̃. (B4)

Derivation of Eqs. (45) and (46) is more involved. Denoting the left-hand side of Eq. (45) as Jm,s,γ
m̃,s̃,γ̃ ,

we now substitute the fields occurring in the integrand of Eq. (45) into Eq. (B2) and, after some algebra,
obtain

Jm,s,γ
m̃,s̃,γ̃ =

exp {−ik0 [ps(q) + ps̃(q̃)] z}
ik0 [ps(q) + ps̃(q̃)]

∫ 2π

0
exp [−i(m+m̃)φ] dφ

× lim
ρ→∞ ρ

[
Eφ;m,s,γ(ρ, q)H

(T)
z;m̃,s̃,γ̃(ρ, q̃)−E(T)

φ;m̃,s̃,γ̃(ρ, q̃)Hz;m,s,γ(ρ, q)

+ E
(T)
z;m̃,s̃,γ̃(ρ, q̃)Hφ;m,s,γ(ρ, q)−Ez;m,s,γ(ρ, q)H

(T)
φ;m̃,s̃,γ̃(ρ, q̃)

]
. (B5)

Making use of the fact that Jm,s,γ
m̃,s̃,γ̃ = 0 for m̃ �= −m by virtue of Eq. (B4), we can further consider only

the case of m̃ = −m. Then we should analyze the cases where s̃ = −s and s̃ �= −s.
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For s̃ = −s, taking into account the relations in Eq. (42) and the large-argument approximations
of the cylindrical functions determining the fields in Eq. (B5), we arrive at the following expression:

Jm,s,γ
−m,−s,γ̃ =

4(q − q̃) exp{−ik0[ps(q) − ps(q̃)]z}
Z0k2

0[ps(q) − ps(q̃)](qq̃)1/2

× lim
ρ→∞

{
(−1)m

(
C(2)

m,s,γ(q)C
(2)
m,s,γ̃(q̃) −D(2)

m,s,γ(q)D(2)
m,s,γ̃(q̃)

)
×
(
ψm,γ(q)ψm,γ̃(q̃)eik0ρ(q+q̃) + e−ik0ρ(q+q̃)

)
−i (q + q̃)

(
ψm,γ(q)C(2)

m,s,γ(q)C(2)
m,s,γ̃(q̃) − ψm,γ̃(q̃)C(2)

m,s,γ̃(q̃)C(2)
m,s,γ(q)

+ ψm,γ(q)D(2)
m,s,γ(q)D(2)

m,s,γ̃(q̃) − ψm,γ̃(q̃)D(2)
m,s,γ̃(q̃)D(2)

m,s,γ(q)
) cos [k0ρ (q − q̃)]

q − q̃

+ (q + q̃)
(
ψm,γ(q)C(2)

m,s,γ(q)C(2)
m,s,γ̃(q̃) + ψm,γ̃(q̃)C(2)

m,s,γ̃(q̃)C(2)
m,s,γ(q)

+ ψm,γ(q)D(2)
m,s,γ(q)D(2)

m,s,γ̃(q̃) + ψm,γ̃(q̃)D(2)
m,s,γ̃(q̃)D(2)

m,s,γ(q)
) sin [k0ρ (q − q̃)]

q − q̃

}
. (B6)

Calculating the limit ρ→ ∞ in Eq. (B6) within the framework of the theory of distributions and taking
into account the well-known formula

δ(ξ) = lim
R→∞

sin(Rξ)
πξ

, (B7)

we obtain the expression

Jm,s,γ
−m,−s,γ̃ =

16π
Z0k2

0

(
dps

dq

)−1 [(
C(2)

m,s,γ(q)
)2

+
(
D(2)

m,s,γ(q)
)2
]
ψm,γ(q)δ (q − q̃) δγ,γ̃ , (B8)

which corresponds to the orthogonality relation in Eq. (45) for m̃ = −m and s̃ = −s, with the norm
Nm,γ(q) given by Eq. (46), if one takes into account that p′s(q) = −q/ps(q). Note that in deriving
Eq. (B8), use was made of Eq. (A3) for γ̃ �= γ.

In the case where s̃ �= −s, i.e., s̃ = s, we should perform similar calculations with allowance for the
relation ps(q) + ps̃(q̃) = ps(q) + ps(q̃). Then it turns out that the expression for Jm,s,γ

−m,s̃,γ̃ contains the
quantity

q − q̃

ps(q) + ps(q̃)
δ (q − q̃) = 0,

which leads to a zero result for Jm,s,γ
−m,s̃,γ̃ in this case.

To derive Eq. (47) for Nm,n, we note that this quantity can be represented as

Nm,n = 2π lim
R→∞

lim
q→qm,n

∫ R

0

[
Em,+,n(r)×H(T)

−m,−,1(r, q)−E(T)
−m,−,1(r, q)×Hm,+,n(r)

]
· z0ρdρ. (B9)

Using Eq. (B2), the integral over the cross-sectional area in Eq. (B9) can be transformed to the line
integral over the circular boundary of this area by analogy with that made in deriving Eq. (B5). Applying
this procedure and making use of the relations in Eq. (42) for γ = 1, we rewrite Eq. (B9) as

Nm,n = 2π lim
R→∞

lim
q→qm,n

exp {−ik0 [p(qm,n) − p(q)] z}
ik0 [p(qm,n) − p(q)]

×ρ
[
Eφ;m,+,n(ρ)H(T)

z;−m,−,1(ρ, q) − E
(T)
φ;−m,−,1(ρ, q)Hz;m,+,n(ρ)

+ E
(T)
z;−m,−,1(ρ, q)Hφ;m,+,n(ρ) − Ez;m,+,n(ρ)H(T)

φ;−m,−,1(ρ, q)
]∣∣∣

ρ=R
. (B10)

Performing the operations indicated here and taking into account the inequality Im qm,n < 0 and the
relation ψm,1(qm,n) = 0, we find

Nm,n =
8i
Z0k2

0

p

q

[(
C

(2)
m,s,1(q)

)2
+
(
D

(2)
m,s,1(q)

)2
]

dψm,1(q)
dq

∣∣∣∣
q=qm,n

. (B11)
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Bearing in mind Eq. (46), we come from Eq. (B11) to Eq. (47) for Nm,n.
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