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Polarimetric Parameters of Scattered Electromagnetic Waves
in the Conductive Magnetized Plasma

George V. Jandieri> * and Akira Ishimaru?

Abstract—Electromagnetic waves propagation in both homogeneous and random magnetized
conductive plasma is considered including longitudinal, Pedersen and Hall’s conductivities. The
second-order statistical moments of scattered electromagnetic waves in the conductive turbulent
magnetized plasma slab with electron density fluctuations are investigated on the bases of a set of
stochastic differential equations. Refractive index and polarization coeflicients of both the ordinary
and extraordinary waves are calculated for the polar terrestrial ionosphere. Using new spectral method
and the boundary conditions, transversal components of scattered electromagnetic waves are calculated.
Experimentally observed Stokes parameters describing the depolarization effects are calculated for the
arbitrary correlation function of electron density fluctuations. Coherent matrix describing polarization
features of non-plane waves generalizing the Stokes parameters is obtained.

1. INTRODUCTION

At the present time the features of electromagnetic waves propagation in random media are well
studied [1,2]. Many articles and reviews are related to the statistical characteristics of scattered
radiation and observations in the ionosphere. Randomness in the terrestrial atmosphere mainly is
caused by electron density fluctuations having significant influence on key parameters of the wave
leading to the depolarization of scattered radiation. Investigation of the statistical moments of small-
amplitude electromagnetic waves propagating in the turbulent ionospheric plasma is very important in
many practical applications associated with both natural and laboratory plasmas [3, 4].

In most papers isotropic irregularities have been considered. However, irregularities in the
ionosphere are anisotropic and mainly elongated along the geomagnetic field. Statistical characteristics
of the angular power spectrum (broadening and displacement of its maximum), scintillation effects, and
the angle-of-arrival of scattered electromagnetic waves by turbulent anisotropic magnetized ionospheric
plasma slab for both power-law and anisotropic Gaussian correlation functions of electron density
fluctuations were investigated analytically in the complex geometrical optics approximation and
numerically by statistical simulation using the Monte Carlo method [5, 6].

The problem of depolarization of electromagnetic waves in a turbulent magnetized plasma has
attracted great attention. It is known that polarized characteristics of a space radio emission are caused
by refraction and scattering on both density irregularities of space plasma and magnetic field bearing
important information on physical conditions of a source and ionospheric plasma parameters over the
path of wave propagation [7]. Depolarization of electromagnetic radiation and the Stokes parameters as
a function of distance and one physical parameter characterizing the interstellar plasma in the parabolic
approximation has been obtained in [8] for plane wave propagation.
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Linearly polarized wave in the earth’s anisotropic turbulent ionosphere generates the ordinary
and extraordinary waves traveling with slightly different phase velocities [3], and the geomagnetic field
leads to the rotation of the polarization plane. Phase difference is proportional to the rotation angle
(Faraday angle) of the polarization plane. Polarization characteristics of scattered radio signals provide
important information about physical conditions in the localization of the sources and about the medium
parameters on the path of wave propagation. Variances of the metric ordinary and extraordinary waves
scattered by the magnetized plasma slab at different orientations of the receiving antennas, variance
of the Faraday angle (#%) and the features of broadening of the spatial spectrum of the scattered
radiation in the inhomogeneous magnetized plasma were investigated analytically by the perturbation
method [9, 10]. Depolarization effects in nonconductive turbulent plasma was considered in [10, 11].

In the present paper, second order statistical moments of a scattered field in the conductive
turbulent magnetized plasma are investigated analytically taking account of Pedersen, Hall’s and
longitudinal conductivities. In Section 2, the attenuation of both the ordinary and extraordinary waves
propagating in the homogeneous conductive magnetized plasma and rotation of the polarization plane
— the Faraday angle is considered. Section 3 is devoted to the analytical calculations of both the
refractive index and polarization coefficients of a scattered radiation in the polar terrestrial atmosphere
using new spectral method [12] satisfying the boundary conditions. Second order statistical moments
are obtained for the arbitrary correlation functions of electron density fluctuations. Section 4 is devoted
to the analytical calculations of the statistical characteristics of scattered electromagnetic waves in the
conductive collision magnetized plasma. Stokes parameters are calculated analytically for arbitrary
correlation function of electron density fluctuations in Section 5. Application of the Stokes parameters
allows to define polarization characteristics of scattered waves with a big accuracy in inhomogeneous
conductive terrestrial atmosphere. The obtained results are valid for near and far zones with respect to
plasma slab boundaries. Conclusion is given in Section 6.

2. FORMULATION OF THE PROBLEM

The initial set of the equations is:

10D 4 4 10H
rotH=-2" + 3, 4+ TeNV, rotE=--2" D=¢E, J=4E,
c Ot c c c Ot
AY4 e
mﬂ + mVeﬁV =ecE + z [VH] . (1)

where € and & are the permittivity and conductivity second rank tensors of the conductive collision
magnetized plasma; c is the speed of light in vacuum; v.g is the collision frequency between plasma
particles.

Current density J = 6E can be rewritten as [3]:

Ji = (o) — 0L)mimj — oHbij kT + 01635 = 0ije;, (2)

here 7 is the unit vector along the external magnetic field Hy = Hy7, and the antisymmetric tensor of
the third rank 6;; (indices 4,k,l = 1,2, 3) has the following properties: 6;; is zero, if at least any two
indexes are identical; is equal to +1, if shift of indexes i, k,[ is even; and —1, if shift of indexes is odd.
Existence of the magnetic field leads to the anisotropy of the conductivity collision plasma characterizing
by: the longitudinal (parallel to the magnetic field) conductivity o), transversal (perpendicular to H)
as the Pedersen conductivity o, and the Hall’s conductivity og, transversal to the both electric and
magnetic fields:

2 Ve v 2 We Wi
o = € N + 5 o =€ N - )
+ ‘ (m WZ+w?)  m (2 + wg)> " ‘ (m W2+w2)  m (V3 + w-2)>

m 3

J||—62Ne( Ly ) (3)

Mele mmUli

Ne(r) is the electron density which is a random function of the spatial coordinates; e and m, are the
charge and mass of an electron; v, ; is the electron or ion collision frequency with the neutral molecules;
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we and w; are the angular gyro frequencies of an electron and ion, respectively. At high frequencies the
influence of ions can be neglected.
Dielectric permittivity tensor of the collision plasma in general case can be written as:

v \4 . u
Eij = (1 — gQ—fu> 61‘]’ + gQ——u <Z\/a5ij LTk + ETiTj> . (4)

where g = 1—1is, s = veg /w; v(r) = cug(r)/w2 and u = (eHy/mecw)? are nondimensional magneto-ionic

parameters of the ionospheric plasma; wy(r) = [47N,(r)e?/ me]*/? is the plasma frequency.
Calculating the velocity V from the set of Equation (1), we obtain:

ie g AU u
VoS {E ey e e ®)
Substituting Equation (5) into Equation (1) yields:
3
VXVXE —k Y &;B;=0, (6)

=1

here é,E = E — g;—fu{E - i%[ET] - g (Br)r} - icE; & is the second rank conductivity tensor;

N

£, =& —1i0, 0 = 4m6 [koc, ko is the wave vector of an incident wave.

3. WAVES PROPAGATION IN THE HOMOGENEOUS CONDUCTIVE
MAGNETIZED PLASMA

In this section, we consider wave propagation in the absorptive homogeneous magnetized plasma.
Components of the wave vector k of an oblique incident refractive electromagnetic wave can be written
as [13]:
ky = koN sinfsinp = ko1, ky = koN sinflcos o = koro, k. = koN cost) = ko3, 7'12 +7'22+7'3? = N?
where 6 is an angle between the wave vector k and Z axis; ¢ is the angle between the projection of the
wave vector k on the YOZ plane and X-axis of the Cartesian coordinate system. External magnetic
field in the polar ionosphere is in the main (YOZ) plane Hyl|Z.

Components of the second rank complex permittivity tensor of the conductive collision magnetized
plasma are [3]:

éacac :éyy :&1 —i(sa’l +5J_), éacy = —éyx = —i(&2+&H)+s&2a’2, ézz :&G—i(saé+5||);

Epz = Eup = Eyy = €4y = 0. (7)

where a; = 1 — pg, a2 = povu, ag = 1 — v, af = po(1 +u)/(1 —u), ab = 2/(1 —u), a5 = v,
po = v/(1 — u). Numerical estimations are carried out for 3 MHz incident wave; magneto-ionospheric

parameters: v = 0.28, u = 0.22).
Solving Equation (6), determinant of the set of equation can be written as:

A(z) = (Egasin® 6 + ., cos” 0)a" — [(1 + cos® 0)&refe +sin® (22, + &3,)] 2 + E.. (82, +E5,) =0, (8)

here x = k. /ko.

In the most interesting case: s < &;;,5;; and s* < (1 — \/u)? we analyze the wave propagation
in the homogeneous conductive magnetized plasma. When the direction of wave propagation coincides
with the direction of an external magnetic field Hg||Z (6 = 0) — longitudinal propagation, we have:

(Z_O)Q — a1 + (a2 + 610)] — 61,

at transversal propagation k L Hg (0 = 7/2) we obtain:

ko)’ BN 2 o
T = 2(ag —i0))), T :d—{[al—(ag—i—aH) —I-O'l]—ZCLlO'l}.
11 0/ 12 1
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Upper sign corresponds to the ordinary wave k,; and lower sign to the extraordinary wave k.jy,
respectively.

For weakly attenuate monochromatic plane wave E ~ exp[i(wt — kr)] (k = kK’ + ik”") attenuation
coefficient of the wave amplitude o ~ 1/k”. Numerical calculation for an incident wave with frequency
3 MHz shows that at longitudinal propagation a; ~ 30m, aj; ~ 25m; at transversal propagation the
ordinary wave does not attenuate, for the extraordinary wave aj; ~ 20m. In both cases k,; > k.j7.

When a linearly polarized electromagnetic wave propagates through a region of magnetized plasma,
its plane of polarization will rotate — Faraday rotation [1]. Rotation is clockwise. Faraday angle is

equal to:
ko v v
=20 /1- —J1— .
br =75 [\/ 1+ u \/ l—uJ ©)

Numerical calculations show that in the considered case fp ~ 3 -1073. Electromagnetic radiation
travelling through a turbulent magnetized plasma becomes less and less polarized. This depolarization
has a particular interest in the development of laser light and the possibility of polarization modulation
of signals. Now we consider wave propagation through a medium containing random irregularities.

4. REFRACTIVE INDEX AND POLARIZATION COEFFICIENTS OF A
SCATTERED RADIATION IN THE POLAR TERRESTRIAL IONOSPHERE

Let us consider the second-order statistical moments of scattered electromagnetic waves in the
conductive turbulent magnetized plasma slab with electron density fluctuations. Each of the terms
in Equation (6) can be presented as the sum of the mean value and small fluctuating terms, which are
random functions of the spatial coordinates: E = (E) + e, Ho = (Hg), N = (N) + n. The angular
brackets indicate the statistical average.

Wave vector k of a refractive plane electromagnetic wave in the absorptive random medium is in
the YOZ plane (main plane) of the Cartesian coordinate system, Hg||Z.

In the case, at s < &;5,0;; and s> < (1 — y/u)? from Equation (6), we obtain the refractive index
of the conductive turbulent magnetized plasma:
8 2 . . . s
N]'Q:1—m(¢m—Zq’m):l—(Nle‘i‘ZNgj)a (10)
where index j is devoted to the ordinary and extraordinary waves:

), = BiA; — 3252, ®y = B1Ag + 3251, By =Aog— Ay + /~\4, By=Ay — Az + 1~\5,

o _ ~ L _ _ 1 . 112 . /2
A, = 28— Ro £ G, Ay=—2R, 4+ As+ G, Glzﬁ{[pfﬂ)f} +D1} ,
Go = Gi(Dy — —Dy),

D1 = A% — A% — 4([\0]\4 — /~\1/~\5), E’l =2 |:—/~\2/~\3 + 2([\0[\5 + /~\1/~\4)] : /~\0 = dl sin2 0+ d6 COS2 9,
Ay = [arag(1 + cos®0) + (@i — a3)sin® 0] — [61.6)(1 + cos®0) + (67 + &7 + 225 sin” 6],
Az = (@16) + G661 )(1 + cos® 0) + 2a15 sin®0, Ay = ag (@ — a3) — as(67 + 67 + 2a26m)]

As =) [d% —5% — (@3 + 6H)2] +2a1866 1, A = &) sin®0 + 6@0052 6, signs “+” and “—” refer to the
ordinary and extraordinary waves, respectively; 6 is an angle between the wave vector of a refracted
wave k (k € YOZ) and the external magnetic field Bo||Z.
For the collisionless plasma, s = 0 and 6;; = 0, we obtain the well-known result [3].
If ko||Z and By € YOZ, at s < &;5,0;; polarization coefficients of the conductive magnetized
plasma are:
(B, {[(po — N})as — azais] — (q1 + q3)} — igo IV
P12 = = . = - —— =Py —iPy, (11)
T (Br) (g6 — qa) —i(gr — g5)] + i [az(1 — @5 — NE) — agda] ’ ’
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where q1 = (N3 — 6.)(6) — 61)sinfcost, qo = (po — NP)(6) — 61)sinfcosf + as(N3 — 6.1),
q3 = 6 (a2 sin 0+as cos 0) +6% sin 6 cos 0, g4 = (az+Gp cos 0)(G)|—6.1)sinfcosl, g5 = asGp cost, g5 =
(a3+Gm sind) [N — (51 cos? 0 + &) sin?0)] , qr = 6 sinO(1—as—N7), Gz = po\/ur, a3 = por/ur, Gs =
po/upur, as =1 —po(1 —ur), ur = usin? 6, uy = ucos? .
Gz = % = G +iGY o, (12)
12 = — (W1 +U3P , + Uy Py), To=WYo+ UsP/y — Wyl ,,

s GO o o } o
where ¥, — %, T, = ae(as++rsme)’ N WGX&’ Qy = UHCOS20+Ul81n20’

M = (0] —d1)sinfcost, Ay = d%(&HCOSQH + &, sin?0)2, Uy = MOA;;%QI, ag = 1 —po(l —ur). If
6 = 0° ie., ko||Bo||Z we have: P12 = +i, G12 = 0. Polarization coefficients at kg € YOZ and
By € YOZ were calculated in.

5. STATISTICAL CHARACTERISTICS OF SCATTERED ELECTROMAGNETIC
WAVES IN THE CONDUCTIVE COLLISION MAGNETIZED PLASMA

Applying the perturbation method submits all terms as the sum of a constant mean and fluctuating
terms:
E(r) = (E) +e(r), N(r)=No+m(r), &r)=é+&m), 60)=6No+m@].  (13)

Second terms are random functions of the spatial coordinates.
Differential equation of the fluctuating scattered field in the collision conductive magnetized plasma
can be written as:

Ao Vg v . u .
grad dive — Ae — k{ Kl 7w za)e+92_u{zx/ﬂ[eT]—Fg(eT)TH Js (14)

Current density is proportional to the electron density fluctuations:

j= k2 K£ + w> (E) — g2V_ - {z\/ﬁ[(E)T] + §(<E>T)TH ny. (15)

9> —u

Current density is proportional to the electron density fluctuations.
Fourier transformations of a scattered field and current density are:

o) = [ dky [ B0y, 2) explilhs + byl

j(r) = /dk:x / dkyg(kz, ky, z) expli(kzx + kyy)]. (16)

If the time dependence is exp(iwt), fluctuating scattered field satisfies the set of stochastic differential
equations:

Cy + a1l + b1y + 18y = fi, &+ a8, +bols + 26y = fo, €, +a3é, +dse. = f3,  (17)

where a; = —’ikx, b1 = (kg&l — k‘;) — ’L'kgé'L, Cc1 = k‘xky +Zk‘(2)(fl2 + 5’]—[), as = —’iky, az = k‘y/k‘x,
by = kxk‘y — ’Lk%(dg + 5'H), Co = (k‘gdl — kg) — il{:g&l, ds = [k?gé'H — Z(kg + k‘; — ]Cgfl(g)]/k‘x, fi= —kggx,
f2 - _k(%gya f3 = _Z(k(%/k:v)gz

Derivatives of the Fourier spectral functions &; in the set of Equation (16) are carried out with
respect to the coordinate z. Let XOY -plane coincide with the lower boundary of a slab. The boundary
conditions are: at z > L (L is a thickness of an inhomogeneous plasma slab) waves propagating in
negative direction must be absent, at z < 0 — in the positive direction.
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We solve the set of Equation (16) using the spectral method [12]

[ a(2) 17 [ A®)

ey(z) | = Py dt | B(t) | exp[—i(L — 2)t],
L éx(2) | ﬂ-_oo L C(t)

AT L % TR |

fo(z) | = Py dt | Fa(z) | exp[—i(L — 2)t]. (18)
L fa(z) | i L F5(2)

—00
The set of stochastic differential Equation (17) can be transformed into the set of algebraic equations:

a1 (D)A[R) + aB(t) + ax(t)C(t) = Fi(t), boA(t) + Bi()B(t) + B2(t)C(t) = Fa(t),

() A(t) +72(6)B(t) +dsC(t) = F3(t), (19)
where
Alt) = Att) {[ 381(t) — B2(t)v2()|F1(t) + [a2(t)y2(t) — crds| Fa(t) + ];:[6152@) — B (t)a2(t)]F3(t)} ;
B(t) = Att) {[B2(t) 11 () — bads] Fi(t) + [dzar(t) — aa(t) 1 (8)] F2(t) + [baca(t) — cn(t)Ba2(t)] F5(t)},
1

ct) = ING] {[b272(t) = 11 ()AL (O] F1(t) + [c171(t) — en(t)y2 ()] Fo(t) + [ () B1(t) — baca] (1)},

ar(t) = by — 12, ot) =iat, Pi(t) =co— >, Bolt) =iagt, (t)=it, 2(t) =iast.
Determinant set of Equation (19) is:
kj5
here:
hy = 2(5“5J_ —aiag) + (a1 + &6)’)/2, hy = 2(5“&1 +01a6) — (5” + 5J_)’)/2, ’)/2 = ’)/g —|—’Y§,
Yo = ke/ko, h3={5) [a] — &1 — (a2 + 61)?] + 26 Ldvde | — [5Gz + 5L (2a + ds)] 77,
Yy = ky/ko, ho= {2&15||5J_—6~L6 [EL% — 53_ — (az + 51{)2}}— [5||5J_ — EL% + 53_ + (az + &H)2—C~Llc~l6] ’)/2,
Tr = kz/ko.

Applying the Cauchy and residue theory to Equation (19), Fourier spectral function of a scattered field
for X-component can be written as:

~2 6Z

L

ik 1

ex(k,L) = ko (Ey Z To(x /dz’nl Kk, 2')exp [—i(L — 2)kox;] (21)
|| 1=1 0

4
where To(z;) = (ag +i6))) Y. Ti(z;)(J] +4J]'), components of the current density contain polarization
i=1

coefficients and at s < ¢;5,0;; can be written as:

.
Zw T il = z [(B: +iB) i) — (Qi + Q) Yi(w2)]. (22)
where: - a

J;/z + Z‘J:’E’ - [po —(6g — dg)P'{Q] +1 [(51{ — d2)P,1,2 - 5l]

Ty Ty = (poPl o +31Po) +i [(@ — 511)P] o + poPl)

T, id! = [po(1 —u) + Glady] +i [po(1 — WGy — Ghay ]

Bo= 00 =80 Bl= 00T + 8T, Qi= 80— 8!, Q= 02! + 3,

8 = 2(Q3A1 — QA2),

81 = 2(Qhg + QuA1), 8 = 2(QsA1 — QAa), 5 = 2(QAs + QAy),

Ay = (95 —Q3) — (2 — 95),
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=2(2304 — Q5Q6); Q3...Q5 are the roots of the dispersion Equation (20).
(xl) (1o — iptg) + (un + i) vs + (p2 +ipy) vy, Ya(z1) = vo + (V1 + i)y — 4y’
Ta(w1)=(C1 — i)y —(
p1 = ae(l —arg1) + a1 — a1 + 0192, P2 = a1 —€ja1g1 + 0|92, My = Gg2 — 0L + 0)a1g1;

Co+iCy)vy; po = aglar —ar), po = ojj(ar —ay), py = asg2 — o)1 — arg1),
I I

vo=o(az +ou), vi=ads¢—a1, vy =0, —o0)— (d2+on)is, vy=(a2+ o)V

G=(EL—a), G=(1L—a), CG=(@+0on), G=(e+o0r),
cia1 +oco o1C1 — aic o1a1 — Q0| 10 + asaq

= = = ’ Co = ~ )

— ~ ~OoN ) — ~ ~ ) C1 = =
N am@ e T 2@+ a2+ 52 a2+ 652

o] = C~L6(6~l6 +ay + as + 5H),
ay = ai +ag + oy, ag = ))(a1 + az + 6y) — ag0 L. Parameters T1(z2) can be easily obtained having
replaced a1 — as, g1 — g3, g2 — g4, Q23 — Qs, Q4 — Q. As a result, we obtain

L
ex(k,L) = —2~l§0< ) {Vl/ d2'ni( K, 2')sin [(L — 2")kox1] + [(Va + Vi) — iV]]
|| 0

L L
/ dz'ni(k,2") cos [(L—2")kow1 | —Vg/ dz'ni(k,2") sin [(L—2")kows| — [(Va + Vy) — iV5)
0 0

. /L d2'ni(k,2") cos [(L — 2')kow2) } , (23)

where: ’

Vi = Ei(po + i + pavy) + B (i — 117s — pavy) + Ea(vo + iveyy) — Es(Vivay — va7?),

Vi = E3(C1ve — Govy) — E3(Cve + Govy);

Va = —E1(ph — phv2 — phyl) + Ef(po + mn2 + pavl) + Bx(Wivayy — 57°) + E5(vo + i),

Vo = —E3(Gve + ) + E5(Gye — Gwy);

Vs = Qu(ps + pava + ps75) + Q1 (15 — thyvs — wsvy) + Q2(vs + vaveyy) + Q4(—vavayy + vEY?),

Q5 = Q3(C372 — Cayy) + Q5(C37 + Civy)s

Vi = Qu(—ps + hva + psvy) + @1 (13 + pavi + ns7y) + Qa(Vivayy — VA7) + Q4(vs + vaveyy),

Vi = —Q3(CGye + Civy) + Q3(Gva — Cay)s
Similar calculations can be carried out for the next component of scattered electromagnetic wave:

L
ey(k,L) = —% {Zl /0 d2'ni( K, 2")sin [(L — 2koz1]| + [(Z2 + Z3) — iZ]]

L L
/ dz'ni(k,2") cos|[(L—2")kox:] —Z3/ d2'ni (K, ") sin[(L—2"koxa] — [(Zs+ Z}) —iZ3)
0 0

. /L dz'ni(k, 2") cos [(L — z’)koxg] } , (24)
where: ’
Z1 = Er(no + myay) — B1(nh + mivay — m57°) + Eapo + p1va + p2vy) + —Es(po + p17s + r575),
7y = E3(—wove +wiyy) — Ey(—wove +wiy),
Zy = Ei(ng + ey — 127%) + EL (0 + myevy) + Ea(oh + 0172 + pa7y) + Ealpo + p1vi + pavy),
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Zy = Q113 + mavavy) + Q0 + nivayy — 157°) + Q2(ps + pari + psvy) + Q4(05 + Pivs + P53
Z3y = Q3(~wayz +wsyy) — Q3(—waye +wyy),

Zy = Qu(ns + vy — 157°) + QL (03 + i) + Q20 + pivs + P575) + Pa(ps + pava + ps7;),
Zy = Q3(~wyye +wiy) + Q(—waye +way),  Zy = E3(—wpve +wivy) + By(—wyr + wiy).

6. THE STOKES PARAMETERS

The field at the antenna exit with isotropic polarization is split on two orthogonal components, and at
the exit of the device all four Stokes parameters are allocated.

Knowledge of the correlation functions of scattered radiation in the conductive magnetized plasma
fields allows to calculate the Stokes parameters:

I = (ezey) + (eyey), Q= (exey) — (eyey), U =2Re({exey)), V =2Im({eze,)). (25)

here e, and e, are orthogonal components of a scattered field. Stokes I is the total intensity of the
wave. Stokes Q and U are measures of the linear polarization of the wave, and Stokes V' is a measure of
the circular polarization of the wave. The first Stokes parameter is invariant with respect to the choice
of the orthogonal basis while other parameters depend on such choice. In general, the set of these
parameters describes elliptically polarized wave. Inclination angle of the main axis ¢ and ellipticity
degree E of the polarized ellipse are determined by formulae:

9= taretgl, B =tg|2arcs v
= EaI'C g@, =19 §arcsm (Q2 I U2 I V2)1/2

Depolarization degree is the ratio of the unpolarized energy to the polarized energy

d= 7 .

For a completely polarized wave, I? = Q? + U? + V2 and polarization fluctuations are absent. Note
that depolarization effect and fluctuations of the angle-of-arrival are in the same order.

Still the following three measures are more interesting than the Stokes parameters. The total
polarization P, the degree of ellipticity F, and the degree of linear polarization L are defined by:

P (Q2 + U2 + V2)1/2 o v I (Q2 + U2)1/2 (27)
- I ’ - (QQ + U2+ V2)1/2’ - (Q2 + U2+ V2)1/2'
These parameters are of interest and have wide application because they are invariant under Lorentz
transformation, which is not true of the Stokes parameters.

Electromagnetic wave with fluctuating polarization can be represented as: (E,) = A, exp(igy)
and (E,) = A,exp(ipy) in a general case are random functions of the spatial coordinate and time.
Sometimes, i is convenient, instead of orientation angle ¥ and the ratio of the polarization ellipse axis,
to consider module M and the phase (g of the polarization coefficient P determined as:

(26)

(Ey) :
P = = pexp(ipo), 28
where p = A, /As, o = ¢y — ¢z. These parameters can be expressed via the Stokes parameters:
v I+ Q\"?
¥0 arc gUa b (IO_Q> ) ( )

where Iy = (Q* + U? + V2)1/2,

The Stokes parameters are related with the correlation of an interferometer. The response of an
interferometer is a linear combination of two Stokes parameters. Observing different combinations of
polarizations, all the Stokes parameters can be determined and the complex state of the polarization
of the wave found. Parameter I is always positive (ignoring noise, errors), whereas other parameters:
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@, U and V may be positive or negatively depending on the polarization position angle, or sense of

rotation.
The knowledge of spectral functions of a scattered field in the conductive collision magnetized

plasma allows to calculate Stokes parameters:

. 2U2L(E T
<6x(fv+px,y+py,L)6x(w7y7L)>—(a27/dk’ /dk exp(lkxpxﬂkypy)/dpzw (ks oy, p2)
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cos(2koLx1)
2k0Lx1

cos(2koLx2)

+(Q2 + V3Z3) cos(kop-x2) — Q3 [ ko Lo
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where:
Q1= (Va+Vo)(Zo+ Z3) + VI Z1, Qo= (Va+ Vi) (Zs+ Zy) + V3 Z3,
Qs =Vi(Za+ Z3) + Z1(Va + V3), Qu=Vi(Za+Zy) + Z1(Va+ Vi), Qs =ViZs+ Z1 V5,
Qs = (Vo + V3)(Za + Zy) + VIZy + (Va + Vi) (Za + Z3) + Z1 V3,
Qr =V3(Zo + Zb) + Zs(Vo + V), Qs = V3(Z4+ Z}) + Z3(Vy + V)
Im(ex(x + pz, ¥ + py, L)ey(z,y, L)) :% / dk, / dky exp(ikypy + ikypy)
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kop-
2/{0[/1’2 +COS( 0 xQ):|

_o | cos(@koLay) C Ly , '
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where:
Qv = Va+V3)Zy — (Za+ Zo)VI, Q= (Va+Vi)Z5 — (Zs+ Z3)V3,
Qs = ViZi— Z1\V], Qy=21Vs-ViZ;, QF=Z3V] —V3Zy, Qg=V3Zs— Z3Vs,
Q6 = Vi(Za+ Z0) + Z3(Va + Vi) + V5(Z2 + Z3) = Z1(Va+ V).

The analysis of non-plane waves needs the generalization of Stokes parameters analyzing polarization
phenomena. For the covariant description of polarization features of plane waves, it is convenient to

use the coherence matrix i i
(exey) (exey) H
<€y€;> <€yez>

Unlike a plane wave where there are only two transversal components of an electric field e, and ey, in
a general case of a non-plane wave the longitudinal component e, of a scattered field should be taken
into account. In this case instead of a square coherent matrix describing a plane wave, we will have:

(exe}) (exey) (exel)
Ms = (eye;> (eyez> <€yez>
(e-€3) (ezez> (e-€%)
They are generalized Stokes parameters. These Stokes parameters in general case are independent
and form a full system. They will have different amplitudes and phases. Longitudinal component e,
is allocated. Generally, a full description of the polarization characteristics of quasi-monochromatic
non-plane wave needs experimental measurements of all nine Stokes parameters. Unlike plane waves,
where polarization measurements are very simple, in this case, the problem becomes more complicated.
Particularly in measurements of a low-frequency band, the approximation of a plane wave becomes
unacceptable. In this case, addition information of a source can be obtained in comparison with the
polarization measurements for a plane wave.
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7. CONCLUSION

Electromagnetic waves propagation in both homogeneous and turbulent conductive magnetized plasma
is considered including longitudinal, Pedersen and Hall’s conductivities. Attenuation coefficients of
the wave amplitude are calculated at waves propagation along and perpendicular directions with
respect to the external magnetic field. Rotation of the polarization plane and the Faraday angle
is calculated for both ordinary and extraordinary waves. The second-order statistical moments of
scattered electromagnetic waves in the conductive turbulent magnetized plasma slab with electron
density fluctuations are investigated on the bases of the stochastic wave equation in the polar terrestrial
ionosphere (the external magnetic field is directed vertically upward). Refractive index and polarization
coefficients of the ordinary and extraordinary waves are calculated containing magnetoionic parameters
and the angle between the wave vector of an incident wave and external magnetic field. The set of
stochastic differential equations of a scattered field is obtained. Solving these equations using a new
spectral method satisfying the boundary conditions, transversal (with respect to the external magnetic
field) components of scattered electromagnetic waves are calculated. Experimentally observed Stokes
parameters describing the depolarization effects are valid for the arbitrary correlation function of electron
density fluctuations. Coherent matrix is presented for the description of polarization features of low-
frequency non-plane waves generalizing the Stokes parameters of a plane wave.
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