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Time-Domain Analysis for the Coupling Problem of Overhead Lines
above Multilayered Earth

Ayoub Lahmidi and Abderrahman Maaouni*

Abstract—This paper investigates the effect of an external plane wave on a multi-conductor
transmission line (MTL) located above a multilayer soil directly in the time domain. An improved
finite-difference time-domain (FDTD) method is used, in conjunction with Vector Fitting (VF), to
obtain the recursion relations of voltages and currents along the line by discretizing the equations in
time and one-dimensional space. The source terms of the coupling equations are efficiently obtained in
the time domain based on the Gaver-Stehfest algorithm. An equivalent model is also established in this
work, where the geometry with three conductors is reduced to two conductors. Finally, some examples
are presented to illustrate the effect of the soil and the plane wave on the transient.

1. INTRODUCTION

Electromagnetic field interaction with transmission lines is an important topic in electromagnetic
compatibility [1]. Many researchers have investigated the field-to-transmission line coupling by
calculating the transient currents and voltages induced on the line. In most cases, the authors assumed
that the multi-wire structure is placed above a homogeneous medium, but a few works have involved the
case of stratified medium. Doric et al. in [2] deal with the plane wave coupling to multiple transmission
lines over lossy half-space for an arbitrary angle of incidence. The influence of the lossy half-space has
been taken into account via the reflection coefficient (RC) approximation instead of the Sommerfeld
integral approach. Rachidi in [3] evaluates the time-domain representation of transmission line above
a homogeneous medium. The general expression for the ground impedance had been invested in the
time domain using the inverse Fourier transform. The authors in [4] developed an efficient method for
modeling a dispersive transmission line illuminated by an external field in the presence of a homogeneous
ground. The transmission line is represented as a two-port stamp which only included resistive elements
and dependent current sources. The time-domain analysis of transmission line coupling to external plane
wave requires an expression for the transient reflected field from a finitely conducting half-space. This
means that it is appropriate to find a time-domain representation of the Fresnel coefficients (FC). Barnes
and Tesche [5] developed an approximate analytical expression for the transient earth-reflected field.
The approximation reached from the inversion of the Laplace transform led to good results only for
large values of the elevation angle. Other methods based on the decomposition of the frequency-domain
(FC) into space-dependent and space-frequency-dependent functions are presented by Antonijevic and
Poljak in [6]. The space-frequency-dependent function is derived by using Graver-Stehfest algorithm [7].

The transient analysis of transmission line plane wave coupling above a stratified medium in the
time domain has been the subject of a few studies. Lu et al. [8] present a new method in time domain
to consider the effect of the multilayer soil based on the complex ground return plane and a continuous
variation of the surface impedance between layers, but the displacement current was not considered.
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Transient analysis of incident field coupling to multiconductor transmission lines has been the subject
treated in [9] by using the complex ground return plane method presented in [8] and the (FC) in the
frequency domain.

The aim of the paper is to present an efficient method for the time domain analysis of plane wave
coupling to an overhead line in the presence of multilayer earth. The formulation of transmission line
equations is based on the Agrawal model [10] involving only the external electric field components
in distributed sources along the line. The inclusion of Fresnel coefficients to estimate the distributed
sources is straightforward for numerical calculations in the frequency domain but becomes complicated
if their time domain counterparts are needed due to the difficulty in finding time analytical expressions
of (FC) for stratified medium. In this paper, a novel expression of (FC) is presented by exploiting
the method proposed in [6] and the expressions of the reflection coefficients in frequency domain for
stratified medium developed in [11].

To attain a correct evaluation of transients on overhead lines above lossy stratified earth, an
appropriate choice of the earth-return impedance is needed. In this work, the Nakagawa model is
adopted [12], and the choice of this model is based on the fact that it takes into consideration the
propagation effect contrary to the Sunde model [13] used by Rachidi in [3]. The vector fitting developed
in [14] is used to reach a time-domain expression of this model [12]. To characterize the transmission
line in the time domain, we use in this work the FDTD in leap-frog scheme [15, 16], and finally an
equivalent model of multiple conductor systems is presented.

2. TRANSMISSION LINE EQUATIONS

Consider Nc uniform conductors with the same radius r, at a position xi and a height yi (i = 1, 2, . . . , Nc)
parallel to z-axis; the sub-index i denotes the particular wire of the multiconductor line. The
wired structure is located above a stratified medium, which is composed of three layers. Each layer
is characterized by a constant permittivity εj = ε0εrgj , permeability μj = μ0, and conductivity
σj (j = 1, 2, 3). μ0 and ε0 are electrical parameters of the free space. The structure is excited by
an arbitrary polarization plane wave as shown in Fig. 1.

(a) (b)

Figure 1. Geometry of multiconductor transmission line above stratified earth excited by a plane wave.
(a) Geometric configuration of the line. (b) Cross-section of the wired structure.

The MTL equations for the general case for these conductors immersed in an incident field are
expressed for the voltage vector V(z, t) and current vector I(z, t) in the time domain at a position z as
follows

∂V(z, t)
∂z

+ Z(t) � I(z, t) = Vs
F (z, t) (1)
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∂I(z, t)
∂z

+ C
∂V(z, t)

∂t
= Is

F (z, t) (2)

Vs
F (z, t) and Is

F (z, t) represent the source terms which can be expressed as

Vs
F (z, t) = Ẽz(z, t) − ∂ET (z, t)

∂z
(3)

Is
F (z, t) = −C

∂ET (z, t)
∂t

(4)

where Ẽz(z, t) = Ez(x, h, z, t) − Ez(x, 0, z, t), ET (z, t) =
∫ h
0 Eydy, and Ez, Ey are z and y axis

components of the primary electric field, respectively.
The time domain expression of the impedance Z(t) is obtained by applying the Vector Fitting

method [14] on the frequency-dependent series impedance matrix Z,
Z(t) ⇔ Z = Zw + Ze (5)

where Zw represents the per-unit-length internal impedance of the conductors in the cable system. For
thin solid conductors, Zw is defined as [17]

Zw,mn � δmn

(
kwn

2πrσwn

)
I0(kwnr)
I1(kwnr)

, δmn =
{

1, m = n
0, m �= n

(6)

In Eq. (6), kwn =
√

sμwn(σwn + sεwn) and μwn, εwn, σwn, are the electrical parameters of the nth
conductor. I0 and I1 are the modified Bessel functions. The influence of the earth return path Ze is
expressed by

Ze = sL +
sμ0

π
J (7)

where L is the per-unit-length inductance matrix whose elements are

Lmn =
μ0

2π
ln
(

ρ∗mn

ρmn

)
, (8)

with ρmn =
√

(xm − xn)2 + (ym − yn)2 and ρ∗mn =
√

(xm − xn)2 + (ym + yn)2. For a single conductor
ρmn = r and ρ∗mn = 2yn (m = n).

By adopting the Nakagawa model [12] for the three-layer earth, the matrix of conduction losses in
the ground J is given by

[J]mn =
∫ ∞

0
χ(s)e−(ym+yn)ν cos(|xm − xn|ν)dν (9)

where

χ(s) =
c1 + c2

(ν + μ0b1)c1 + (ν − μ0b1)c2
(10)

c1 = (b1 + b2)(b2 + b3) + (b1 − b2)(b2 − b3) × e2a2(d1−d2)

c2 = ((b1 − b2)(b2 + b3) + (b1 + b2)(b2 − b3) × e2a2(d1−d2)) × e−2a1d1

ai =
√

v2 + k2
i − k2

0, bi = ai/μi, i = 1, 2 and 3

In Eq. (10), k0 and ki =
√

sμi(σi + sεi) (i = 1, 2 and 3) are the propagation constants in the air and in
the ith layer, respectively.

By following the same process consisting of the introduction of the poles and the residues deduced
from the Vector Fitting method in the MTL equations, as indicated in [19], Eq. (1) can be expressed as

∂V(z, t)
∂z

+ (L + D)
I(z, t)

∂t
+ (R − Ω)I(z, t) + φ(t) � ∂

∂t
I(z, t) = Vs

F (z, t) (11)

where

Ω =
M∑
i=1

κi

pi
, φ =

M∑
i=1

κi

pi
epit (12)

D and R are a proportional term and a constant term, respectively. κi and pi are complex quantities
that represent the residues and poles.
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3. ELECTRIC FIELD

In order to study the plane wave coupling to overhead lines over stratified soil, the primary field
composed of the incident electric field ei(t) and the field er(t) reflected from the soil [18] is needed to
obtain explicit expressions of the distributed voltage and current sources along the line.

The general expression of the primary field in the time domain E(t) above the stratified medium is

E(t) = ei(t) + er(t) (13)
The time domain expressions of Ez(t) and Ey(t), which appear in Eqs. (3) and (4), are given as

Ey(t) =
(
cos(γ) cos(θ)e0(t − t−0 ) + cos(γ) cos(θ)γv � e0

(
t − t+0

))
(14)

Ez(t) = (cos(γ) sin(θ) sin(φ) + sin(γ) sin(φ))e0(t − t−0 )
+(−γv cos(γ) sin(θ) sin(φ) + γh sin(γ) sin(φ)) � e0

(
t − t+0

))
(15)

with t±0 =
√

ε0μ0(− cos(θ) sin(φ)x±sin(θ)y+cos(θ) cos(φ)z), and γv, γh are the Fresnel coefficients in the
time domain. � is the convolution product, δ(·) the impulse function, and u(·) the unit step function.
e0(t) is the two-exponential shape which is often used to simulate high-altitude Electromagnetic pulses
(HEMP) and is given by

e0(t) = E0

(
e−αt − e−βt

)
u(t) (16)

The parameters in Eq. (16) assume the following values: α = 4.086 × 106 s−1, β = 1.565 × 108 s−1,
E0 = V0/l0, V0 = 56.6kV, l0 = 1m.

Evaluating expressions (14) and (15) requires the use of a direct time domain expression of the
reflection coefficient function. In this work, the time domain (FC) function is derived by transforming
the frequency domain (FC) function for the stratified medium presented in [11] into the time-domain
using the Stehfest algorithm [7]. This method approximates the time domain (FC) function as

γΥ(t, θ) = γ
′
Υ(θ)δ(t) +

ln 2
t

N∑
i=1

ṼiΓ′′
Υ

(
i ln 2

t
, θ

)
(17)

where Ṽi is described by the following relationship

Ṽi = (−1)i+
N
2

min(i, N
2 )∑

k=( i+1
2 )

k
N
2 (2k)!(

N

2
− k

)
!k!(k − 1)!(2k − i)!

(18)

The parameter N is called the Stehfest number. Parameter N must be an even integer, and it
should be chosen by trial and error method. Thus, a suitable choice of N is important to achieve the
most accurate solution. In this work, the optimal value to accurately obtain the primary field is equal
to 10.

In Eq. (17), γ
′
Υ(θ) and Γ′′

Υ are defined by{
γ

′
Υ(θ) = lim

s→∞ΓΥ(s, θ),

Γ
′′
Υ(s, θ) = ΓΥ(s, θ) − γ

′
Υ(θ)

(19)

with

ΓΥ =

(
Λ11 + Λ12PΥk=ML

)
PΥk=1

−
(
Λ21 + Λ22PΥk=ML

)
(
Λ11 + Λ12PΥk=ML

)
PΥk=1

+
(
Λ21 + Λ22PΥk=ML

) ,

PΥk
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Υ = v, PΥk

=

√
μ0

ε0

√
n2

k − cos2(θ)

εrgk

(
1 +

σk

sεk

) ,

Υ = h, PΥk
=
√

n2
k − cos2(θ)

√
ε0

μ0

(20)
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Λnl are the elements of the characteristic matrix Λ of the stratified medium. Λ is expressed as
follows

Λ =
ML−1∏
k=1

Λk =
ML−1∏
k=1

⎡⎣ cosh(qk)
1

PΥk

sinh(qk)

PΥk
sinh(qk) cosh(qk)

⎤⎦ ,

qk = s(dk − dk−1)
√

ε0μ0

√
n2

k − cos2(θ), d−1 = 0

(21)

where nk =
√

μrk
εrk

+ μrk
σk

(ε0s) is the complex refractive index of the k-th layer, ML the number of soil
layers, and s the complex frequency.

Given the nature of the waveform, i.e., a biexponential, the convolution product γΥ�e0(t) appearing
in expressions (14) and (15) is accurately calculated using the recursive convolution introduced in [18].

4. DISCRETIZATION OF THE MTL EQUATIONS

The MTL equations are discretized both in time and space by using the FDTD method in a leap-frog
manner [19]. The transmission line is divided into K segments, each of length Δz. Each voltage and
adjacent current solution point are separated by Δz

2 . In addition, the time points are also interlaced,
and each voltage time point and adjacent current time point are separated by Δt

2 . The two ends of the
line are separated by a length lz and connected to a resistive circuit. Discretizing the derivatives in the
transmission-line Eqs. (2) and (11) using second-order central differences gives

Vn
k+1 − Vn

k

Δz
+ (L + D)

I
n+ 1

2

k+ 1
2

− I
n− 1

2

k+ 1
2

Δt
+
∫ nΔt

0
φ(τ)

∂

∂(nΔt − τ)
Ik+ 1

2
(nΔt − τ) dτ

+(R − Ω)
I
n+ 1

2

k+ 1
2

+ I
n− 1

2

k+ 1
2

2
=

Ẽ
n+ 1

2

z,k+ 1
2

+ Ẽ
n− 1

2

z,k+ 1
2

2
− En

T,k+1 − En
T,k

Δz

I
n+ 1

2

k+ 1
2

− I
n+ 1

2

k− 1
2

Δz
+ C

Vn+1
k − Vn

k

Δt
= G1

(
En+1

T,k − En
T,k

)
(22)

where G1 = − 1
ΔtC, and k and n are space and time indices, respectively.

In this work, the time derivative of the current which appears in the convolution integral in Eq. (22)
can be approximated using the piecewise polynomial approximation [19] as follows

∂

∂t
Ik+ 1

2
(t − τ) (23)

=
∂

∂t
Ik+ 1

2
(t − mΔt) −

∂

∂t
Ik+ 1

2
(t − (m + 1) Δt) − ∂

∂t
Ik+ 1

2
(t − (m − 1) Δt)

2Δt
(τ − mΔt)

+

∂

∂t
Ik+ 1

2
(t − (m + 1)Δt)−2

∂

∂t
Ik+ 1

2
(t − mΔt) +

∂

∂t
Ik+ 1

2
(t − (m − 1) Δt)

2Δt2
(τ − mΔt)2 (24)

By using the central difference scheme at nΔt to approximate the time derivatives of Ik+ 1
2
, we get

after some manipulations

φ(t) � ∂

∂t
Ik+ 1

2
(t)
∣∣∣∣
t=nΔt

=
M∑
i=1

κi

pi

∑
1≤m≤n,
m, odd

(Amχm
i + Bmξm

i + Cmηm
i ) (25)

where

Am = I
n−m+ 1

2

k+ 1
2

− I
n−m− 1

2

k+ 1
2

Bm = I
n−m− 1

2

k+ 1
2

− I
n−m− 3

2

k+ 1
2

− I
n−m+ 3

2

k+ 1
2

+ I
n−m+ 1

2

k+ 1
2
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Cm = 3I
n−m− 1

2

k+ 1
2

− I
n−m− 3

2

k+ 1
2

+ I
n−m+ 3

2

k+ 1
2

− 3I
n−m+ 1

2

k+ 1
2

The quantities χm
i , ξm

i , and ηm
i are given by

χm
i =

2epimΔt sinh piΔt

piΔt

ξm
i = −epimΔt(piΔt cosh(piΔt) − sinh(piΔt))

(piΔt)2

ηm
i =

epimΔt(−2piΔt cosh(piΔt) + (2 + (piΔt)2) sinh(piΔt))
(piΔt)3

By inserting these terms in Eq. (25), we obtain the following relationship

φ(t) � ∂

∂t
Ik+ 1

2
(t)
∣∣∣∣
t=nΔt

=
M∑
i=1

κi

pi

[(
A1χ

1
i + B1ξ

1
i + C1η

1
i

)
+ Ψn

i

]
with

Ψn
i =

((
I
n− 5

2

k+ 1
2

− I
n− 7

2

k+ 1
2

)
χ3

i +
(
I
n− 7

2

k+ 1
2

− I
n− 9

2

k+ 1
2

− I
n− 3

2

k+ 1
2

+ I
n− 5

2

k+ 1
2

)
ξ3
i

+
(

3I
n− 7

2

k+ 1
2

− I
n− 9

2

k+ 1
2

+ I
n− 3

2

k+ 1
2

− 3I
n− 5

2

k+ 1
2

)
η3

i

)
+ e2piΔtΨn−2

i , (26)

and

A1 = I
n− 1

2

k+ 1
2

− I
n− 3

2

k+ 1
2

(27)

B1 = I
n− 3

2

k+ 1
2

− I
n− 5

2

k+ 1
2

− I
n+ 1

2

k+ 1
2

+ I
n− 1

2

k+ 1
2

(28)

C1 = 3I
n− 3

2

k+ 1
2

− I
n− 5

2

k+ 1
2

+ I
n+ 1

2

k+ 1
2

− 3I
n− 1

2

k+ 1
2

(29)

In order to obtain the transient current and voltage on an overhead line above a stratified medium,

Eq. (22) should be solved for Vn+1
k , and Eq. (22) for I

n+ 1
2

k+ 1
2

. Referring to the previous relations, it is

obvious to show that the general solution of the transmission line equations for Vn+1
k and I

n+ 1
2

k+ 1
2

can be
written as

I
n+ 1

2

k+ 1
2

= Z−1
1

(
Z2I

n− 1
2

k+ 1
2

− (Vn
k+1 − Vn+1

k

)
+ Z3I

n− 3
2

k+ 1
2

+ Z4I
n− 5

2

k+ 1
2

−Δz

⎛⎜⎝Ψn −

⎛⎜⎝Ẽ
n+ 1

2

z,k+ 1
2

+ Ẽ
n− 1

2

z,k+ 1
2

2
− En

T,k+1 − En
T,k

Δz

⎞⎟⎠
⎞⎟⎠
⎞⎟⎠ (30)

Vn+1
k = Vn

k − 1
ε0μ0

(
Δt

Δz

)
L
((

I
n+ 1

2

k+ 1
2

− I
n+ 1

2

k− 1
2

)
− Δz

(
G1

(
En+1

T,k − En
T,k

))
(31)

where

Z1 = Δz

(
(L + D)

Δt
+

R
2

− Ω
2
− ξ + η

)
Z2 = Δz

(
(L + D)

Δt
− R

2
+

Ω
2
− χ − ξ + 3η

)
Z3 = Δz(χ − ξ − 3η), Z4 = Δz(ξ + η)

χ =
M∑
i=1

κi

pi
χ1

i , ξ =
M∑
i=1

κi

pi
ξ1
i , η =

M∑
i=1

κi

pi
η1

i , Ψn =
M∑
i=1

κi

pi
Ψn

i ,
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The general solutions of the MTL equations which are obtained in Eq. (30) and Eq. (31) are not
valid for terminal voltages, which means that Vn+1

0 and Vn+1
K need to be calculated. By adopting the

technique used in [15], the terminal condition can be written as

Vn+1
0 = G−1

2

(
G3Vn

0 − 2
Δz

I
n+ 1

2
1
2

+ G1

(
En+1

T,0 − En
T,0

))
and

Vn+1
K = Y−1

1

(
Y2Vn

K +
2

Δz
I
n+ 1

2

K− 1
2

+ G1

(
En+1

T,K − En
T,K

))
where

G2 =
C
Δt

+
R−1

0

Δz

G3 =
C
Δt

− R−1
0

Δz

Y1 =
C
Δt

+
R−1

L

Δz

Y2 =
C
Δt

− R−1
L

Δz

R0 and RL are the internal resistances which are connected to the sending end and receiving end of
the line, respectively.

5. RESULTS AND DISCUSSION

In this part, the developed transmission line-plane wave coupling model is applied to show the effect of
multilayer soil conductivities, elevation angle, polarization, and layer thicknesses on the induced voltages
at the ends of the line. To do this, we consider a model composed of three conductors characterized
by the same radius r and on height h1 for the first conductor, h2 for the second and h3 for the third
conductor, placed above a three-layer soil at positions x1 = 0m, x2 = 2.5 m, x3 = 5m (Fig. 2(a)). The

(a) (b)

Figure 2. (a) Three-conductor transmission line configuration (TCM). (b) Equivalent two-conductor
transmission line (ETCM).
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upper layer is characterized by a conductivity σ1 and permittivity ε1 with a height d1; the middle layer
has the permittivity ε2 and conductivity σ2 with a thickness d2 − d1; the bottom layer is characterized
by a permittivity ε3 and conductivity σ3; the three layers have the same permeability μ0. For each layer,
the electrical parameters are assumed to be constant. The internal resistances of the source and load
are respectively set at R0 = diag(50, 50, 50)Ω and RL = diag(100, 100, 100)Ω. diag stands for diagonal.

As indicated above, the determination of the induced voltages along the line relies primarily on the
computation of the reflected field at the air-ground interface with precision. Fig. 3 illustrates the impact
of different values of N used in expression (17) on the reflected field. The simulations here provided have
the following assumptions: the plane wave is of vertical polarization of angles θ = 80◦, φ = 0◦, γ = 0◦
and evaluated at the position (x1 = 0 m, h1 = 10 m, lz = 10 m); the ground is formed of three layers
of thicknesses d1 = 1 m and d2 − d1 = 2m; the bottom layer is semi-infinite; the electrical parameters
of the layers are σ1 = 10−4 S/m, σ2 = 10−3 S/m, σ3 = 10−2 S/m, εrg1 = εrg3 = 10, εrg2 = 12. The
accuracy of this approximation is for a value of 8 < N < 10 as shown by comparison with FFT (Fig. 3).
The value of N equal to 10 is adopted to accurately estimate the primary field for all the parameters
involved.

(a) (b)

Figure 3. Reflected electric field for different values of N compared with the reference waveform
obtained via FFT.

Figure 4(a) gives the response for different polarization angles (γ = 0◦, 30◦, 60◦, 90◦), and the
voltage response is lower for the case of horizontal polarization. Note that the voltage peak value
decreases as the polarization angle increases. The voltage indicated in the figure is normalized with
respect to V0. The behavior of earth thickness d1 of the first layer on the transient voltage for a vertical
polarization is illustrated in Fig. 4(b). Due to the small conductivity (σ1 = 0.0001 S/m) of the first
layer, the losses in the soil become greater as d1 increases, which is reflected in the decrease in voltage
at the early time. The same observation can be made concerning the variation of the voltage at the
near end of the line as a function of the thickness of the second layer for d1 = 0.5 m. In addition, in the
case of vertical polarization, the depth of the second layer has an effect on the pulse width.

To validate the proposed method, the two-conductor transmission line over a two-layer soil
introduced in [20] is considered. The line configuration is shown in Fig. 5. The conductors are located
at (x1 = 0 m, h1 = 10 m) and (x2 = 5 m, h2 = 10 m), and both have a radius of r = 2.5 mm and
length of lz = 20 m. The upper and bottom layers are characterized, respectively, by the conductivities
σ1 = 0.001 S/m and σ2 = 0.01 S/m, and both have a relative permittivity of εrg1 = εrg2 = 10. The
load matrices are assumed to be diagonal and are defined by (R0,ii = 100Ω, RL,ii = 50Ω, i = 1, 2).
The parameters in Eq. (16) are given by : α = 4 × 106 s−1, β = 4.76 × 108 s−1, and E0 = 52.5 (kV/m).
As observed in Fig. 6, the current FDTD-based method (solid curves) matches very well with the FFT
results (dashed curves) reported in [20] for the case of vertical and horizontal polarizations. Note that
the slight difference between the FFT and FDTD results is because the earth return impedance models
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(a) (b)

(c)

Figure 4. The transient response at the near end of the conductor 1 (−V1(0, t)/V0) as a function of
several parameters. (a) Polarization angles effect, (b) thickness d1 effect, (c) thickness d2 effect.

Figure 5. Two-conductor overhead line configuration.



48 Lahmidi and Maaouni

Figure 6. Comparison between the proposed model and the FFT presented in [20].

(a) (b)

(c) (d)

Figure 7. Induced voltages for TCM and ETCM at the near and far ends of the line, (a) (−V1(0, t)/V0),
(c) Conductors 1 and 3, (b) (−V2(0, t)/V0), (d) Conductor 2.
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used in this work and in [20] are not the same: this paper uses the Nakagawa model and [20] the
Papadopoulos model [21]. In addition, the normalized induced current at the near end of the line shown
in Fig. 6 is obtained by dividing the induced current by a constant current I0 = E0l0/η0. η0 is the
characteristic impedance of free space.

Figure 2(b) shows the equivalent model (ETCM) of the three conductors model (TCM), where we
replace the two conductors placed at h1,3 = 10 m above the ground by an equivalent conductor 1′ of the
radius req =

√
r|x1 − x3|, placed in the half distance of conductors 1 and 3.

The accuracy of reducing the TCM to ETCM by replacing the conductors (1, 3) at the same height
from the earth by conductor 1′ is illustrated in Fig. 7. Despite the change of structure, the induced
voltage in conductor 2 in the (TCM) can be reproduced in the same way using conductor 1′ (ETCM),
which means that instead of analyzing a system with three conductors model, it can be reduced to a
two-conductor model.

For the elevation angle θ = 80◦, the induced voltages on conductors 1 and 3 are the same although
the two conductors are at different positions (x1 = 0 m and x3 = 5m). Indeed, this is due to the
delay ta =

√
ε0μ0 cos(θ) sin(φ)|x1 − x3| introduced by the plane wave which remains negligible both for

θ = 80◦ (Figs. 7(a) and 8(a)) and for θ = 45◦ (Fig. 8(c)). Note that in Fig. 8(c) there is for the angle
θ = 45◦ a very small difference between the voltage curves of conductors 1 and 3. From the results
shown in Figs. 8(b) and 8(d), it appears that the estimation of the induced voltage on conductor 2 can

(a) (b)

(c) (d)

Figure 8. Induced voltages (−V (0, t)/V0) for TCM and ETCM at the near end (a) (c) of conductors
1, 3 and 1

′
for θ = (80◦, 45◦). (b), (d) Conductor 2 in TCM and ETCM for θ = (80◦, 45◦).
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be obtained with accuracy by adopting the equivalent two-wire structure, whatever the elevation and
polarization angles are. Furthermore, by dividing the induced voltage on the equivalent conductor by
two, v1′′(0, t) = v1, ETCM(0, t)/2, where v1, ETCM(0, t) is the voltage at the near end of the equivalent
conductor, the equivalent model also provides an acceptable estimate of the peak induced voltage on
conductors 1 and 3 as shown in Figs. 8(a) and 8(c).

6. CONCLUSION

In this paper, the transient voltage on an overhead line in the presence of stratified earth excited by a
plane wave directly in the time domain has been determined. The advantage of the proposed method
arises from the fact that the expressions of the earth return impedance and the Fresnel coefficients have
been established directly in the time domain, by exploiting the (VF) and the Graver Stehfest algorithm.
The results show that the transient voltage on the line is greater for the case of the vertical polarization
than the horizontal polarization. In addition, the induced voltage increases for small thickness values of
the first layer, and the increase in the duration of the transient waveform is due to the increase in the
thickness of the second layer especially when the conductivities of the top layer and the second layer
are small. Note that the method developed in this paper can be generalized to study the influence of
soil stratification on lightning-induced voltages on an overhead line provided that the field created by
a lightning channel in the presence of multi-layered soil is properly determined. Finally, the equivalent
model composed of two conductors provides a good result since it is able to correctly estimate the
induced voltage on the conductor placed between the other two.
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