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Characteristics Mode Analysis: A review of Its Concepts, Recent
Trends, State-of-the-Art Developments and Its Interpretation

with a Fractal UWB MIMO Antenna

Asutosh Mohanty1, * and Bikash R. Behera2

Abstract—In this article, we present a compact and efficient diametrically-fed dual port fractal UWB
MIMO antenna for portable handheld wireless devices. The electromagnetic behaviour on conducting
body is analyzed through classical approach based characteristics mode analysis (CMA). Their intrinsic
characteristics are explored on the basis of (a) modal surface current distributions, (b) narrow/broad
bandwidth capability, and (c) radiation potentials. Concurrent analysis is persuaded on a diametrically-
fed dual-port fed fractal conducting surface, which provides interesting facets on the combinatory
effect of electromagnetic performance and physical behaviour on metallic radiator, metallic ground
planes (unconnected/connected) and combination of two aforementioned metallic compact geometries.
Theoretical insights are investigated for essential/non-essential modes existing in proposed geometry.
The investigation through CMA also gives plethoric information on the feed location of antenna on modal
surface currents and similar trends to capture its radiation potentials on the current nulls existing in the
physical body. A broad classification of modes is explained, covering the CMA modal dynamics such as
(a) characteristics angle (CA), (b) eigenvalues (EV), and (c) modal significance (MS). These additive
parameters in general reflect the resemblance of Q-factor ≈ B.W. for narrowband/wideband traits,
electrically/magnetically coupled energy behaviour, and radiative potential for far-field propagation.
Thus, in a nut-shell, it can be concluded that ‘CMA provides physically intuitive guidance for the
analysis and designing of antenna structures’. To support the findings highlighted in this particular
study, a concise review about the theory of characteristic modes and the practical examples that use
such concepts are taken into consideration.

1. INTRODUCTION

In the era of using computational electromagnetism for full wave analysis, the concurrent research
is directed towards utilizing such type of concepts, which in general helps the antenna designers in
designing RF front-ends that satisfies tradeoffs from applications point of view. In such a scenario,
incorporation of characteristics mode analysis (CMA) has opened new way-out for maximizing outcomes,
by playing crucial role [1, 2]. The concept of CMA was originally proposed by Garbacz [3, 4], refined
by Harrington and Mautz [5, 6] in terms of classical electromagnetism. The analysis of CMA produces
a set of independent current patterns, i.e., modes, which naturally exist on an arbitrary structure at a
given frequency. At any frequency, one can calculate infinite number of modes. Some of them might
be closer to their natural resonance, and if excited, it would be able to radiate significantly. Others
may be far from their natural resonance, and as a result, they will store more energy and radiate less
power. Substantially, some of them might be easily excited, whereas others may not act in the same
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manner. In general, the current patterns that naturally exist on a structure are quite valuable to an
antenna designer [7]. Harrington and Mautz [5] started with integral equations for the surface currents
in the frequency domain. This closely ties CMA to the method of moments (MoM) [8], i.e., it works
with the impedance matrix in MoM analysis. In simplified understanding, characteristic modes are
the current modes that correspond to the eigenvectors of a particular weighted eigenvalue equation,
involving generalized impedance matrix of the conductor. Hence, characteristic modes can be used to
expand the total current on the conductor surface, which can be extended for the dielectrics [9]. In fact,
it makes the utilization of characteristic modes more attractive for antenna design, which helps to obtain
physical insights into antenna radiation [10, 11]. There is characteristic angle (CA) or eigenvalues (EV)
associated, which provides information about mode resonances and radiating characteristics [12]. Its
quantitative analysis is significantly dependent on the shape and size of the conducting object. Thus,
the process of antenna designing should be performed in controlled manner, based on the needs of
applications present in wireless communication platform [13–18].

Now coming to the applications point of view, portable hand-held wireless devices are of great
demand for its necessity in personal digital assistants (PDAs)/personal area networks (PAN). They
include smart multipurpose functionalities such as messaging, scanning, audio/video recording; personal
communication services (PCS) like cellular telephones, smart phones, tablets, two-way pagers, handheld
radios, bluetooth speakers, and newly introduced Alexa-enabled smart speakers. These PDAs require
a multi-port assistant for smarter connectivity, which is why multi-port antennas are introduced to
proliferate its data connectivity in a compact wireless integrated portable system [19–21]. Thus,
multiple-input-multiple-output (MIMO) proves to be the best solution [22–28]. For portable handheld
smarter devices, usually the dual/tri-port antenna systems are feasible [29, 30]. However, the real
challenge from antenna designers’ point of view is the requirement of multiband frequency systems,
such as PDA, PCS, PAN operating at different frequency ranges. So, ultra-wideband (UWB) [31, 32] is
considered as the only solution to capture all the operating associated bands in 3.1–10.6 GHz. Another
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Figure 1. Classic examples: HF communication and LTE antenna for cell phones, where CMA is
explored [1].

challenge is to fit appropriate antenna and generate multiple resonating spectrums [33–35]. Thus,
the phenomenon of self-similar antenna structures commonly known as Fractals, is introduced and
considered as the optimum solution, as it provides multi-resonances with wide bandwidth [36–39].
The self-similar structures are complex on design perspective, as the conducting surface has intricate
geometry. So, it is difficult to predict its intrinsic physical characteristics such as feed location, surface
current distributions, and radiation patterns. The aforementioned issues are resolved by an intuitive
classical approach based characteristics mode analysis (CMA) [40–50], as shown in Figure 1.

Nevertheless, when the electromagnetic numerical calculation is used to determine the modal
proportion, each characteristic current is discretely distributed on the structure meshes, making it
difficult to determine a modal proportion using mode currents. On the other hand, far-field of each
mode is contributed by the overall current of the corresponding modes. It is also proposed to use the
radiation field of the corresponding mode to quantify the modal proportion. The estimation of modal
proportion using only field values in a certain spatial direction helps to verify that the antenna is designed
in compliance with the desired requirements from application point of view [12]. To further strengthen
our study, we have proposed a compact and efficient diametrically-fed dual-port fractal UWB MIMO
antenna for portable handheld wireless devices [51]. The electromagnetic behaviour on conducting
body is analysed through CMA. Intrinsic characteristics are explored on the basis of (a) modal surface
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current distributions, (b) narrow/broad bandwidth capability, and (c) radiation potentials. Based on our
findings, it provides physically intuitive guidance for the analysis and designing of antenna structures.
This research article is divided in the following manner. Section 2 gives a complete idea about the CMA
approach on perfectly conducting surface. To get insights about CMA, its diversity and classification
of various modes, in pursuit of the proposed antenna, is given in Section 3. Section 4 explains the
phenomena of resolving a complex electromagnetic radiating structure, especially fractals through
characteristic mode analysis. Certain insights are presented based on design and characterization.
The concepts that we have given are experimentally validated. Conclusion is presented in Section 5,
followed by future works and references in Sections 6 and 7, respectively.

2. CMA APPROACH ON PERFECTLY CONDUCTING SURFACE

In this section, we will try to understand the extension of characteristics mode analysis (CMA) and
its metrics on analysing perfectly conducting surface. The theory of CMA states that a conducting
random body supports multi-characteristics modes with orthogonal characteristics modal currents (Jn)
& weighted eigenvalues (λn):

X(Jn) = λnR(Jn) (1)

where [X,R] are considered as the imaginary and real parts of impedance operator Z(Jn).

Z(Jn) = R(Jn) + jX(Jn) (2)

Similarly, the total modal currents JTotal , which exists on the surface, is considered as a superposition
of n number of orthogonal modal currents Jn. It is usually represented as:

JTotal =
∑

αnJn (3)

where αn is considered as modal weighting coefficient (MWC). Understanding of MWC is quite
important, because after the analysis of current distribution of the first few characteristic modes with
smaller eigenvalues, the mode selection and combination are carried out with the desired antenna
radiation field requirements. In that case, it is considered as an important guiding parameter for the
antenna design to determine the appropriate feed point and feed structure. To gain deeper insights about
such analysis, we must understand the relationship between characteristics modes and energy [52–56].
The energy that is stored in the form of reactive power (PX) & radiated power (PR) gives the eigenvalues
(λn). Mathematically, it can be expressed as:

λn =
PX

RX
=

Reactive Power
Radiated Power

(4)

Similarly, the orthogonality property of characteristics modes is interpreted:
1
2
〈J∗

m, R(Jn)〉 = δmn (5)

1
2
〈J∗

m,X(Jn)〉 = λnδmn (6)

1
2
〈J∗

m, Z(Jn)〉 = (1 + jλn)δmn (7)

where ∗ is the conjugate operator, and δmn is the delta function. Depending upon such orthogonality
property, the modal significance (MS) [56] can be computed [based on the weighted eigenvalues (λn)].
It can be elaborated:

MS =
∣∣∣∣ 1
1 + jλn

∣∣∣∣ (8)

The evaluation of characteristic angle (CA) is equally important to that of modal significance (MS). It
is also based on the weighted eigenvalues (λn) and expressed as:

φn = 180◦
[
1 − 1∏arc(tan(λn))

]
(9)
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In addition, the MWC analysis has utilized the orthogonality of the characteristic current wave mode,
and each mode radiation power is first normalized to the unit value. On the other hand, the reactive
power is proportional to the eigenvalue magnitude. The amplitude of a characteristic current is related
to the radiation efficiency of the corresponding mode, i.e., its eigenvalue magnitude requires large
mode currents to reach the same radiation power level as lower-order modes. Each characteristic mode
current of the antenna structure produces a pattern of the far-field. Therefore, the corresponding modal
proportion of the antenna can be verified by the proportion of the radiated field. For specific calculation,
maximum radiation direction of the main mode/total far-field electric field is obtained by the full-wave
method through CMA [8, 9]. Table 1 and Table 2 present the modal dynamics (a) characteristics angle,
(b) modal nature, (c) modal significance, and (d) modal stored energy. In the next section, a complete
classification of the family of CMA diversity (i.e., modes) is presented. To the best of the authors’
knowledge, it is the first time that such type of insights is given for CMA, as shown in Figure 2.

Figure 2. An overview of CMA diversity and its classification.

Table 1. Dynamics of characteristics angle (CA) as an evaluation metrics of CMA.

Characteristic

Angle (φn)
Modal Nature

90◦ < φn < 180◦ The generated modes at its operating bands are inductive in nature

φn = 180◦ The generated modes at its operating bands is at resonance condition

180◦ < φn < 270◦ The generated modes at its operating bands are capacitive in nature

3. CMA DIVERSITY AND CLASSIFICATION

For the ease of antenna design and analysis on intrinsic electromagnetic behaviour, we provide CMA
diversity in the broad classification of different existing modes in a conducting element, which is shown
in Figure 2. In a conducting element, there exit different types of modes, when it is subjected to the
supplementary excitation source. The electrons in the conducting body generate different paths directly
proportional to the amount of energy supplied by the external source. Thereby, more energy leads to
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Table 2. Dynamics of eigenvalues (EV), modal significance (MS) and modal stored energy as an
evaluation metrics of CMA.

Eigen Value

(λn)
Modal Stored Energy

Modal Significance

(MS)

λn < 0 The modal stored energy is electric/capacitive energy MS ≈ 1

λn = 0 The modal stored energy is at resonance condition MS = 1

λn > 0 The modal stored energy is magnetic/inductive energy MS < 1

the excitation of higher modes. However, there exist some modes which participate in the covalent
bonding of ions in a conductor (Hypothetical assumptions), and they are called as efficient modes,
which significantly contribute in radiation mechanism. Still there exist some modes, which result in
the cancellation of other significant modes due to phase reversal and looping of higher excited modes
and nullify magnitudes of significant modes, along with non-significant modes. These modes do not
participate in the radiating mechanism which are called as non-efficient modes. Now coming to the
classification, the efficient modes are classified in their magnitude of high radiative strengths as:

1. Radiating Modes: These modes are known to have stronger magnitudes of current density, which
strongly participate in other significant modes. They are potentially excited at the higher order modes,
and they can be further classified as:

• In-Phase Modes: These modes have equal magnitude and phase, which align themselves additively
in a perfect conducting body. Keeping with the initial conditions of magnitude and phase alignment,
they are separated into:

◦ Radial Modes: These modes have the same phase with equal magnitudes.
◦ Non-Radial Modes: These modes have the same phase with unequal magnitudes.

2. Semi-Radiating Modes: These modes have moderately aligned equal &/or non-equal magnitude of
current density.

3. Capacitive Radiating Modes: These modes have dominant stored electric field energy, which is
capacitive in nature. This mode is also called as Non-Loop Modes.

• Non-Loop Modes: Due to dominant stored capacitive energy, the magnitude of electric fields is
aligned radially without any loops and hence, contributes in the resonance condition.

The non-efficient modes are classified in their magnitude of low relative strengths on current density:

• Non-Radiating Modes: These modes do not participate in the radiation mechanism, because of
the low magnitude of current density, non-linearity in magnitudes, and unequal phase distributions
observed in the conducting element. These modes require an external source. It can be divided as:

◦ Anti-Phase Modes: The modes have unequal mode distributions, and the magnitudes of modes
get cancelled, due to their equal magnitude with unequal phases.

◦ NULL Modes: These modes have zero magnitude of field distributions and are inherently
cancelled due to non-linearity and anti-phase magnitudes.

• Inductive Radiating Modes: Due to the dominant stored inductive energy, the magnitude of
magnetic fields forms a magnetic current loop. The formation of circulating loops does not
contribute to resonance, and henceforth, these modes are usually not considered as significant
modes. It is even divided into:

◦ Loop Modes: The inductive magnetic fields generate circulating magnetic currents, hence they
are termed as Loop Modes. Due to their generic characteristics, these modes are not considered
to be suitable for resonance conditions.

In the next section, the classical based characteristics mode analysis (CMA) is utilized for resolving at
various upfronts. Prior to simulation, the characterization of proposed fractal UWB MIMO antenna is
highlighted [51].
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4. RESOLVING A COMPLEX ELECTROMAGNETIC RADIATING STRUCTURE
THROUGH CHARACTERISTIC MODE ANALYSIS

The complex electromagnetic radiating structures can be resolved through CMA aiming for (a)
appropriate feeding locations, (b) bandwidth capabilities, and (c) radiation potentials. In this section,
the CMA analysis is implemented on a proposed perfectly metallic conducting body (2-port fractal
UWB MIMO antenna) with the help of CST microwave studio. The insights are dependent on (a)
analyse surface current modal distributions, (b) determining appropriate feeding location in metallic
conducting body, (c) evaluation of modal dynamics, and (d) investigating radiative mechanism. This
study is based on the analysis of (a) fractal conducting element without feed, (b) fractal conducting
element with feed, (c) split ground conducting element, (d) connected ground conducting element, and
(e) diametrically-fed dual port conducting element [51], shown in Figures 3–8.

Figure 3. Schematic configuration of the proposed diametrically-fed dual port fractal UWB MIMO
antenna.

(a) (b)

Figure 4. Fractal conducting element without feed, (a) perfect conducting body and (b) mesh
decomposition of perfect conducting body into fine discretised characteristics modes.
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(a) (b)

Figure 5. Fractal conducting element with feed, (a) perfect conducting body and (b) mesh
decomposition of perfect conducting body into fine discretised characteristics modes.

(a) (b)

Figure 6. Split ground conducting element, (a) perfect conducting body and (b) mesh decomposition
of perfect conducting body into fine discretised characteristics modes.

(a) (b)

Figure 7. Connected ground conducting element, (a) perfect conducting body and (b) mesh
decomposition of perfect conducting body into fine discretised characteristics modes.
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(a) (b)

Figure 8. Diametrically-fed 2-port conducting element (proposed radiator), (a) perfect conducting
body and (b) mesh decomposition of perfect conducting body into fine discretised characteristics modes.

4.1. Analysis of Fractal Conducting Element without Feed

Figure 4(a) shows the initial investigation of a perfect conducting element without feed, and Figure 4(b)
shows its mesh decomposition. Modal surface current distributions are shown in Figure 9 at discrete
frequencies. For all, the modal currents are strongly concentrated at vertices of fractal element. At
3GHz, the currents are horizontally polarized in ±X-direction, which are radiating in-phase modes.
Figure 10 shows the modal analysis at different modes. It is observed that mode-1 is an efficient
capacitive mode (180◦ < φn < 270◦) in comparison to mode-2 as inductively excited (90◦ < φn < 180◦).
The eigenvalue for mode-1 is λn < 0 and has dominated stored electric energy while for mode-2 is λn > 0
has dominated stored magnetic energy. The MS converges to unity for mode-1 and shows wideband
capability with low Q-factor, and in mode-2, it fails to attain maximum magnitude. So, mode-1 is the

(a) (b)

(c) (d)

Figure 9. Modal current distributions and its corresponding radiation patterns at discrete frequencies.
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significant mode. At 5 GHz, both mode-1 and mode-2 shown in Figure 11 act as the significant modes,
in which they are horizontally polarized in ±X-direction. At 7 GHz, mode-1 is considered as significant
mode in comparison to mode-2 shown in Figure 12. Surface currents are ±45◦ quasi-polarized. At
9GHz, modes show wideband traits and are ±45◦ quasi-polarized, since they reach maximum MS. In
Figure 13, conducting body has higher order excited modes and categorized as efficient semi-radiating
modes.

(a) (b) (c)

Figure 10. Modal analysis at 3GHz for (a) MS, (b) λn and (c) φn.

(a) (b) (c)

Figure 11. Modal analysis at 5GHz for (a) MS, (b) Eigen Value λn and (c) φn.

(a) (b) (c)

Figure 12. Modal analysis at 7GHz for (a) MS, (b) λn and (c) φn.
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(a) (b) (c)

Figure 13. Modal analysis at 9GHz for (a) MS, (b) λn and (c) φn.

(a) (b)

(c) (d)

Figure 14. Modal current distributions and its corresponding radiation patterns at discrete frequencies.

4.2. Analysis of Fractal Conducting Element with Feed

Figure 5(a) shows the perfect conducting element with feed, and Figure 5(b) shows its mesh
decomposition. It is observed from Figure 14 that the behaviours of radiation patterns are almost
the same at 3GHz, 5GHz and 7 GHz, 9 GHz, respectively. Hence, for brevity we consider the lower
and upper bound frequencies (3 GHz and 9 GHz) for the evaluation of modal dynamics. At 3 GHz,
the surface current distributions resemble horizontally polarized patterns in ±X-direction. Here, the
magnitude of currents are basically in-phase radiative modes, which are aligned in a single direction.
From Figure 15, it is observed that the MS has a sharper Q-factor with narrow bandwidth for mode-1,
and for mode-2, it fails to attain maximum MS. Similarly, λn < 0 is capacitive in nature for mode-1
and inductive in nature λn > 0 for mode-2. As a result, mode-1 is considered to be significant mode,
and mode-2 is also considered as non-significant mode. Even CA shows sharper response at 3 GHz,
at 9 GHz, the distribution of current has quasi-directionality, which is semi-radiating with quasi-radial
modes, and the MS shows a wideband response for mode-1, which can be seen in Figure 16. It is inferred
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(a) (b) (c)

Figure 15. Modal analysis at 3GHz for (a) MS, (b) λn and (c) φn.

(a) (b) (c)

Figure 16. Modal analysis at 9GHz for (a) MS, (b) λn and (c) φn.

that modal behaviour is purely dominated by stored capacitive energy (180◦ < φn < 270◦). Both the
mode-1 and mode-2 are considered as significant modes. Due to the presence of significant modes, the
proposed geometry exhibits better performance than previous counterpart. In this step, the analysis of
fractal radiating element is completed. Next, we are going to show some modal dynamics about the
ground (unconnected/connected).

4.3. Analysis of Split Ground Conducting Element

Figure 6(a) highlights split ground conducting body, and its mesh decomposition is shown in Figure 6(b).
Figure 17 shows the modal surface current distributions of split ground conducting element with
radiation patterns for discrete frequencies such as 3 GHz, 5 GHz, 7 GHz, and 9GHz, respectively. Since
the grounds are split/unconnected, patterns are identified through radiation NULLS. At 3GHz, NULL
currents do exist, which resides at the center. So, the radiation NULLS are observed at the center of split
conducting body and can be seen in Figure 17. The maximum modal currents are denser in the center
part of each split conducting body, which is polarized in ±X-direction. The MS for mode-1 has wideband
response compared to mode-2 as observed from Figure 18. Thus, mode-1 completely dominates mode-2.
At 5GHz, the current NULLS move away from center in either direction. Henceforth, the radiation is
quite densely polarized at center. Here, both modes [mode-1 and mode-2] show stronger MS convergence
due to dominant stored electric energy λn < 0 observed from Figure 19. So, mode-1 and mode-2 are
considered the efficient anti-phase modes. At 7 GHz, the current NULLS produce two minima at each
of the split conducting elements, and denser current resides in between them. As a consequence, quasi-
directional radiative patterns are produced and shown in Figure 20. Here, mode-1 dominates mode-2.
Thus, mode-1 is taken as a significant radiating mode observed from Figure 21. At 9 GHz, the current
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(a) (b)

(c) (d)

Figure 17. Modal current distributions and its corresponding radiation patterns at discrete frequencies.

(a) (b) (c)

Figure 18. Modal analysis at 3GHz for (a) MS, (b) λn and (c) φn.

(a) (b) (c)

Figure 19. Modal analysis at 5GHz for (a) MS, (b) λn and (c) φn.

NULLS are often suppressed by the denser currents at the ending perimeter of split elements and often
radiate in either direction; as a result, quasi-directional NULLS are compressed, and broader side-lobe
beams are formed. Similarly, in Figure 21, mode-1 and mode-2 show stronger MS convergence, due
to the dominant capacitive energy. That is why they are considered as efficient degenerate modes.
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(a) (b) (c)

Figure 20. Modal analysis at 7GHz for (a) MS, (b) λn and (c) φn.

(a) (b) (c)

Figure 21. Modal analysis at 9GHz for (a) MS, (b) λn and (c) φn.

The presence of efficient degenerate modes in the proposed geometry is expected to highlight better
performance. However from the MIMO antenna design’s point of view, connected ground plane would
be more desirable and would be intricate effective attributes, by considering the tradeoffs [51].

4.4. Analysis of Connected Ground Conducting Element

Figure 7(a) shows that split ground element is connected by thin neutralization lines, and its mesh
decomposition is shown in Figure 7(b). By introducing thin neutralization lines, modal current changes
position and magnitude, of NULLS. At 3GHz, NULLS at center are suppressed due to dense currents
in neutralization lines. The dense modal currents have same magnitude, but oppositely directed and
radiative patterns are polarized in ±X-directions shown in Figure 22. These neutralization lines are also
helpful in improving impedance matching in the entire operating bands. Coming to the modal dynamics,
MS response has a sharp Q-factor with lower bandwidth for mode-1, observed from Figure 23. It is
dominated by stored electric energy since λn < 0. The CA is capacitive for mode-1, whereas CA for
mode-2 is 90◦ < φn < 180◦; as a result, mode-1 is treated as the significant semi-radiating anti-phase
mode. At 5GHz, modal currents are denser at the end with two NULLS near the center, and lobes are
produced in opposite directions, which can be seen in Figure 23. The modal currents of neutralization
lines are concentrated at center. For mode-1, the MS has wideband response with dominating electric
energy, and it is treated as capacitive radiating modes, shown in Figure 24. It shows greater magnitude
than the convergent modal currents with NULLS near the center. The eigenvalues for mode-1 and
mode-2 have λn > 0 which confirms dominated stored magnetic current loops. It is not suitable for
radiation mechanism although CA has values lying in between 90◦ < φn < 180◦ considered to be
the non-efficient inductive radiating modes, shown in Figure 25. At 9 GHz, the modal currents have
phase reversals with unequal magnitudes and produce NULLS with less dense modal currents resides
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(a) (b)

(c) (d)

Figure 22. Modal current distributions and its corresponding radiation patterns at discrete frequencies.

(a) (b) (c)

Figure 23. Modal analysis at 3GHz for (a) MS, (b) λn and (c) φn.

(a) (b) (c)

Figure 24. Modal analysis at 5GHz for (a) MS, (b) λn and (c) φn.
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(a) (b) (c)

Figure 25. Modal analysis at 7GHz for (a) MS, (b) λn and (c) φn.

(a) (b) (c)

Figure 26. Modal analysis at 9GHz for (a) MS, (b) λn and (c) φn.

at intermediate lobe formations, which in turn pushes the dense currents to coagulate at the conductor
endings. Figure 26 highlights that the MS response for mode-1 and mode-2 shows narrow bandwidth
capability, and it also suggests that both the modes are dominated by capacitive stored energy. Due to
such geometrical intuition, the proposed geometry is able to exhibit desired characteristics.

4.5. Analysis of Diametrically-Fed Dual Port Conducting Element

Figures 8(a) and (b) show the dual-port conducting body with meshed contour. The modal current
distributions are presented in Figure 27, along with its corresponding radiative patterns in Figure 28.
The proposed antenna consists of a dual-port network. One port is excited, and the other port is
matched terminated. Then their patterns are combined to observe the radiative potentials, shown
in Figure 28 at discrete frequencies [3GHz, 5 GHz, 7 GHz and 9 GHz]. At 3 GHz, port-1 radiates in
+X-direction, and port-2 radiates in −X-direction. The radiative patterns are combined to linearly
polarize in ±Y -direction. At 5GHz, port-1/port-2 radiates in ±X-direction, and their patterns are
combined to polarize omni-directionally. Modal currents in the proposed radiating element moves in
anticlockwise directions, giving a sense of omni-directionality. At 7 GHz, radiative magnitudes have
dense intensity at center and polarized in ±X-directions with intermediate NULLS. When the patterns
are combined, these NULLS are suppressed by dense magnitudes of side lobes, resulting in bi-directional
radiative patterns. At 9GHz, the magnitudes of mainlobes are high and polarized in ±X-directions,
where side lobes have lower radiation strength. When the patterns are combined, the conducting body
witnesses higher excited modes, which in turn radiates linearly polarized broader lobe magnitude in
±X-directions. The modal dynamics of dual-port conducting body is characterized in terms of modal
performances at discrete frequency sweeps in Tables 3–6. The modal characteristics involving MS, EV,
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(a) (b)

(c) (d)

Figure 27. Modal current distributions at discrete frequencies.

and CA are illustrated at discretised frequency sweeps. From the observations, clear insight is given
about the bandwidth capabilities confirming that modes are quite significant and support resonating
conditions. It is also observed that the stored electric energy has dominating effect, and its validations
are supported with modal current distributions. Figure 29 shows the modal significance (MS) for desired
operating bands. Figure 30 shows the eigenvalues (EV), which confirms capacitive stored energy, and
Figure 31 shows the resonating characteristics angles (CA) of the proposed fractal UWB MIMO antenna.

Table 3. A study of the dynamics of modal analysis at 3 GHz for diametrically-fed dual port conducting
body.

Modal Dynamics Modal Characteristics Modal Inference
MS Sharp Q-Factor Lower Bandwidth Potential
EV λn < 0 Capacitive Nature
CA φn = 180◦ At Resonance Condition

Table 4. A study of the dynamics of modal analysis at 5 GHz for diametrically-fed dual port conducting
body.

Modal Dynamics Modal Characteristics Modal Inference
MS High Q-Factor Lower Bandwidth Potential
EV λn < 0 Capacitive Nature
CA φn = 180◦ At Resonance Condition

The prototype of proposed antenna is fabricated by PCB prototyping, and S-parameters are
measured by Agilent N5247A PNA-X vector network analyzer (VNA). The far-field pattern is measured
in an anechoic chamber. There is a slight difference between the simulated outcomes and measured
results. It happens in our case, due to the discrepancies caused by experimental tolerances (actually
took place during the measurement of S parameter and measurement of far-field parameters). The
inaccuracy during the fabrication process is related to the soldering of SMA connector, which is one of
the primary reasons. Then the validation is also performed for other different MIMO metrics [57–59]
such as TARC, ECC, CCL, and MEG, as shown in Figures 32–37.
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(a)

(b)

(c)

(d)

Figure 28. Modal radiation patterns at discrete frequencies.

Table 5. A study of the dynamics of modal analysis at 7 GHz for diametrically-fed dual port conducting
body.

Modal Dynamics Modal Characteristics Modal Inference
MS Moderate Q-Factor Moderate Bandwidth Potential
EV λn < 0 Capacitive Nature
CA φn = 180◦ At Resonance Condition



Progress In Electromagnetics Research B, Vol. 92, 2021 37

Figure 29. MS at discrete modal sweeps for
diametrically-fed dual port conducting body.

Figure 30. λn at discrete modal sweeps for
diametrically-fed dual port conducting body.

Figure 31. φn at discrete modal sweeps for diametrically-fed dual port conducting body.

Figure 32. Fabricated prototype of the proposed diametrically-fed dual port fractal UWB MIMO
antenna and its experimental setup present in the measurement lab for measuring various parameters.



38 Mohanty and Behera

Figure 33. Simulated and measured S-parameters of diametrically-fed dual port fractal UWB MIMO
antenna.

Figure 34. Measured radiation pattern of diametrically-fed dual port fractal UWB MIMO antenna.

Table 6. A study of the dynamics of modal analysis at 9 GHz for diametrically-fed dual port conducting
body.

Modal Dynamics Modal Characteristics Modal Inference
MS Low Q-Factor Wide Bandwidth Potential
EV λn < 0 Capacitive Nature
CA φn = 180◦ At Resonance Condition
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(a) (b)

Figure 35. Measured realized gain and efficiency of diametrically-fed dual port fractal UWB MIMO
antenna.

Table 7. Comparison of proposed UWB MIMO diversity antenna with other existing MIMO
antennas [60–74].

Ref. Antenna geometry Ae (λ2) BW. Isolation GND ECC Peak Gain

60 Meandered Monopoles 0.13 109.48% > 15 dB � < 0.15 ——

61 Bi-Planar Yagi-Like 0.43 109.48% > 17 dB � 0.0568 6 dBi

62 L-Shaped Slots 0.11 44.8% > 15 dB � 0.04 4.2 dBi

63 Circular Monopoles 0.060 93.82% > 22 dB � < 0.1 3.5 dBi

64 Coplanar Staircased Shaped 0.122 115.06% > 19 dB � < 0.2 5.5 dBi

65 FSS Based Cuboid 0.125 109.48% ∼ 20 dB � < 0.5 ——

66 Quasi Self-Complementary 0.033 133.93% ∼ 20 dB � < 0.25 6.5 dBi

67 Stripline-Fed Staircased 0.081 109.48% ∼ 20 dB � < 0.1 5.2 dBi

68 Microstrip + Stepped-Slot 0.062 109.48% > 18 dB � 0.004 3.8 dBi

69 (Circular + Square) Ring/2 0.041 111.42% > 15 dB � 0.1–0.2 3.5 dBi

70 Distinct PIFAs 1.41 29% > 15 dB � 0.08 3.39 dBi

71 P-Shaped Monopole 0.06 131.03% > 20 dB � 0.02 4.2 dBi

72 CPW + L-Shaped Element 0.2 109.5% > 14.2 dB � 0.047 1.6 dBi

73 Patch + Parasitic Element 0.607 13.7% > 20 dB � 0.05 5.8 dBi

74 Square Monopole + L-Slot 0.056 118.2% > 20 dB � 0.004 3.32 dBi

Prop. Fractal + Contorted Feed 0.15 118.18% > 22.5 dB � 0.025 8.4 dBi

(Ae) is the total electrical area; (λ) is calculated at lowest operating frequency, GND — Ground
Plane; (�) denotes the connected ground; and (�) denotes the isolated ground.
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(a) (b)

Figure 36. (a) TARC (at different phase angles) and (b) ECC of proposed diametrically-fed dual port
fractal UWB MIMO antenna.

(a) (b)

Figure 37. (a) Channel Capacity Loss (CCL) and (b) Mean Effective Gain (MEG) of proposed
diametrically-fed dual port fractal UWB MIMO antenna.

5. CONCLUSION

In this paper, the concept of classical approach inspired characteristics mode analysis (CMA) is reviewed
from a theoretical viewpoint with reference to its recent trends, state-of-the-art developments, and its
interpretation with a fractal UWB MIMO antenna. The physical insight provided by CMA enables a
deterministic design approach, which is more efficient than lengthy optimization/trial-and-error process.
It reveals intrinsic modal characteristics of the proposed conducting body. On a closer introspection,
modal dynamics is performed on the ground of (a) modal significance (MS), (b) eigenvalues (λn), and
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(c) characteristics angle (φn) for different conducting bodies. Nevertheless, the modal surface current
distributions and modal radiative patterns reveal the essential significant resonant modes along with the
intrinsic nature of energy modes. The application of CMA in antenna structures is to decompose and
synthesize surface currents or radiation fields. As the radiation field is decomposed into the superposition
of orthogonal modes, the antenna performance is easier to optimize and can be realized from their
physical principles.

Here, a 2-port UWB MIMO diversity antenna is designed, fabricated, and operates with measured
bands from 2.4 to 10.4 GHz. The port isolations measures > −22.5 dB by introducing neutralization
lines with slots. The design is investigated by CMA, which helps to improvise feeding configurations by
analyzing characteristics modal parameters. The optimized design has a good impedance bandwidth of
118.18% and directive radiation patterns with peakgain of 8.4 dBi (can be extended for MIMO array
applications). Calculated performance metrics seem excellent for MIMO pattern diversity applications.
Simulated and measured validations show strong potentials of the proposed MIMO antenna, for the use
in multi-disciplinary UWB multi-standard mobile/wireless/sensor ad-hoc diversity systems, which is
proved through the comparative analysis with reported ones in [60–74], highlighted in Table 7. Besides
progressive development in this area, there are still variety of rooms towards the achievement of tradeoffs,
targeting contingent research outcomes for RF energy harvesting [75].

6. FUTURE WORKS AND OPEN CHALLENGES

In the present work, we have persuaded the modal analysis to establish physical insights (i.e., right from
the geometrical features to performance deliverables and modal dynamics) about the proposed antenna
model.

• For future works, we are currently trying to incorporate numerical modelling approach, as a
utility for characteristics mode analysis (CMA), and would validate the MIMO performance
characteristics.

• Insight on physical interpretation, numerical modelling, and CMA would be available in the same
platform for more in-depth analysis.

• The future antenna designs can be modelled based on a parametric analysis, and CMA approach
would be quite enough to track and resolve intrinsic performance complexities in compact and large
antenna models.
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