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An Efficient Approximation of Frequency and
Temperature-Dependent Dielectric Properties of Tissues

Mykola Zhuk* and Jonathan Paradis

Abstract—We here present a bivariate Chebyshev series method for the approximation of the
experimental frequency and temperature dependent dielectric functions of materials. Within the
framework of this method, the dielectric properties are modeled as a low-degree polynomial of the
temperature variable (T ), the coefficients of which have a frequency (variable f) dependency. This
model is then rephrased in terms of the temperature coefficients which are given here as the rational
functions of frequency. The principal merits of this method are that it produces a near-best polynomial
approximation to the target function, rapidly improves with the order of approximation, and is easy to
compute. The favorable features of our approach are demonstrated by considering the experimental
wideband Cole-Cole models of animal tissues with the temperature-dependent parameters. The
numerical results show the inferiority of the commonly used power-of-f representation of the polynomials
concerned due to large rounding errors when the frequency range is large. This problem is ameliorated
by expressing the appertaining coefficients as polynomials in the transformed frequency variable x(f)
in the Chebyshev basis. Areas of application of the results of this article include the modeling of
human exposure to radiofrequency fields, development of treatment and diagnostic procedures, and
food processing technologies.

1. INTRODUCTION

The knowledge of dielectric properties of biological tissues is essential in many research and
industrial contexts, such as modeling human exposure to electromagnetic (EM) fields [1–3], developing
treatment [4–6] and diagnostic [7–9] procedures, or improving food processing technologies [10]. Our
interest in this topic has been motivated by the need to theoretically assess exposures to radiation from
devices used for wireless communications and power transfer. Ubiquitous deployment of this class of
devices may be composed of emerging metamaterial-inspired [11–14] technologies and circuits once these
solutions reach maturity.

Realistic mathematical descriptions of the dielectric properties are mostly obtained by fitting the
parameters of a theoretical model in accordance with the measured data points. The behavior of the
relative complex permittivity ε of biological tissues with frequency is usually described with the help of
empirical models such as the Debye [15] or Cole-Cole [16] functions, as described in [17–19].

It is well known that the physical properties of tissues are sensitive to temperature. A useful
survey regarding the temperature dependent properties of tissues may be found in [20, 21]. In [22], the
measured variation of the relative permittivity and conductivity of blood, at a given frequency, with
temperature was modeled by the linear law. The results were obtained from evaluations on human and
animal (cow, sheep) blood in the temperature range 25◦C–45◦C and the frequency range 1 MHz–1 GHz.
The reference temperature, or Tr in our notation (see below), was taken as 25◦C. The appertaining
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first-order temperature coefficients of relative permittivity and conductivity of blood as functions of
frequency were presented in graphical form. The dielectric properties of human blood in the frequency
range from 1 Hz to 40 GHz and the temperature range from about 7◦C to ∼ 57◦C, were experimentally
studied in [23]. A combination of models for different dispersion regions was developed, including
the temperature-dependent parameters of the first-order Cole-Cole function, with the fit parameters
presented in graphical and table forms as functions of temperature. In [24], the bovine and porcine liver
tissues were experimentally studied, where the wideband (0.5 GHz to 20 GHz) frequency dependence
of their dielectric properties was described with the help of a first-order Cole-Cole model. The study
concluded that the temperature dependence (from room temperature to ∼ 60◦C) can be modeled by
choosing the four Cole-Cole parameters as second-degree polynomials of temperature. In a recent
paper [25], porcine liver, muscle, fat, and blood were experimentally characterized in the temperature
range between 30◦C and 50◦C, in the microwave frequency range of 0.5 GHz to 27 GHz. To describe the
frequency dependence of the measured data, a second-order Cole-Cole model with six free parameters
was assumed, where the Cole-Cole parameters were taken as second-degree polynomials of temperature.

While the Cole-Cole function is a widespread model, from a practical point of view a more
convenient approximation would consist of a version which has a simpler form. For example, it is
quite useful to characterize the dielectric properties over a select range of temperatures with the help
of temperature coefficients. This amounts to representing the dielectric functions as polynomials of the
temperature variable (T ). This form also considers the following aspects: i) a slow varying dielectric
quantity with respect to T is described with a single linear temperature coefficient, ii) to address a strong
temperature dependence, knowledge of the linear and quadratic temperature coefficients usually suffices,
and iii) frequency dispersion is naturally incorporated into this framework by setting the polynomial
or temperature coefficients as functions of frequency variable (f).

The goal of this paper is twofold: first, we develop an efficient procedure to approximate the
parametric mathematical functions used to model the frequency and temperature dependence of
dielectric properties, by using polynomials of T , whose coefficients are in turn polynomials of f .
Hence, the algorithm enables us to express the temperature coefficients of the complex permittivity
as rational functions of frequency. Second, we apply our algorithm to the Cole-Cole models of tissue
properties developed in [24, 25] over wide frequency and temperature ranges, and convert them into
simple polynomial models. For reference purposes, we present explicit polynomial approximations for
the real ε′(f, T ) and imaginary ε′′(f, T ) parts of the relative complex permittivity functions that match
those from [24, 25] with a relative error of less than 1% (the error metrics is described below).

A common way to develop a polynomial approximation for a given function is to use a least squares
fit. However, a least squares fit can allow large magnitude deviations from the basic formulation.
Another obvious method is to use a partial sum of the power series for ε′(f, T ), ε′′(f, T ) as functions
of f, T (a variation of this method using a univariate power series of T is illustrated in Section 3).
Unfortunately, the accuracy of all these methods is hard to control.

The principal idea of our approximation procedure is to represent the dielectric functions ε′(f, T ),
ε′′(f, T ) as expansions in the basis of bivariate Chebyshev polynomials of the first kind [26, Sec. 5.3.3],
and then truncate the resulting bivariate Chebyshev series after a finite number of terms. The expansion
coefficients of the bivariate Chebyshev series are easily calculated numerically via a midpoint quadrature
rule.

The main reason that we chose to work with the Chebyshev polynomials (henceforth understood to
refer exclusively to Chebyshev polynomials of the first kind) is that for a continuous function of several
variables a truncated multivariate Chebyshev series produces a near-best polynomial approximation [27].
In practical terms, this means that for a dielectric function of f, T , the partial sum of a given order
is virtually indistinguishable from the best polynomial approximation, which minimizes the maximal
absolute deviation from the true function for bivariate polynomials of the same order. Owing to the
fact that the Chebyshev polynomials are bounded between −1 and 1 in the region of interest, the
truncation error can be (unrigorously) estimated as the maximal coefficient of the discarded terms. For
well-behaved functions, including the aforementioned functions, the expansion coefficients tend rapidly
to zero [27, 28].

The approximation procedure presented in this paper has two major limitations. One is that
the polynomial representation of frequency dependence, unlike the Debye representation, can not
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be efficiently incorporated into the finite-difference time-domain (FDTD) modeling of dispersive
materials [29, Ch. 9] because the powers of the frequency give rise to the derivatives in the time domain.
The other challenge concerns the approximation of functions over large measurement domains — as the
size of a domain increases, a multivariate Chebyshev series approach may involve a large number of
terms, thus rendering it impracticable.

The paper is organized as follows. A presentation of the Chebyshev series approximation method is
found in Section 2. In Section 3, we briefly describe the concept of temperature coefficients and review
(for comparison purposes) the power series approximation of the dielectric functions. In Section 4,
the Chebyshev series method is applied to the benchmark temperature-dependent Cole-Cole models of
biological tissues from [24] and [25], giving a very good illustration of the efficiency of our procedure.
The numerical results have shown the unsuitability of the commonly used power-of-f representation of
the polynomials concerned due to large rounding errors when the frequency range is large. We resolve
this problem by expressing the appertaining coefficients as polynomials in the transformed frequency
variable x(f) in the Chebyshev basis. In Appendix A, we provide a simple scheme for determining
the domain of convergence of the power series for the temperature-dependent Cole-Cole models by
extending the latter into the complex T -domain. In the important case where the Cole-Cole parameters
are the second-degree polynomials in the temperature variable, the radius of convergence can be found
analytically.

In the following, the constants Fmin, Fmax (Fmax > Fmin) and Tmin, Tmax (Tmax > Tmin) denote the
end points of the intervals in the frequency and temperature domains, from which the approximations
for ε′, ε′′ will be developed. When we specifically deal with the permittivity functions from [24, 25],
these constants have the meaning of the end points of the measurement intervals employed in both cited
papers. Namely, when we refer to the results of [24], it is assumed that:

Fmin = 0.5GHz, Fmax = 20GHz, (1.1)
Tmin = 23◦C, Tmax = 60◦C (1.2)

(note that the lower temperature bound is not specified precisely in [24], and we interpret it from the
plots therein). Additionally, whenever we make use of the model of [25], the aforementioned constants
are understood to have the following values:

Fmin = 0.5GHz, Fmax = 7GHz, (1.3)
Tmin = 30◦C, Tmax = 50◦C. (1.4)

We shall assume, except where otherwise specified, that:
Fmin ≤ f ≤ Fmax, (1.5)
Tmin ≤ T ≤ Tmax. (1.6)

Also, we have further use for the lengths of the approximation/measurement intervals
ΔF = Fmax − Fmin, (1.7)
ΔT = Tmax − Tmin (1.8)

and the midpoint of the temperature range

Tm =
1
2
(Tmax + Tmin). (1.9)

For notational simplicity, the quantities ε′, ε′′ will be collectively referred to as ν. When we use the
results of [24] or [25] for a numerical illustration, the quality of an approximation νapprox(f, T ) to the
true function νtrue(f, T ) will be quantified by the relative error r,%,

r = 100max
p,q

∣∣∣∣νtrue(fp, Tq) − νapprox(fp, Tq)
νtrue(fp, Tq)

∣∣∣∣ (1.10)

calculated by sweeping over discrete frequencies fp in 10 MHz steps and discrete temperatures Tq with
0.2◦C steps (the systems {fp}, {Tq} include the end points of the intervals in Eqs. (1.5), (1.6). Note
that we shall use the same frequency and temperature spacings for both the measurement intervals in
Eqs. (1.1), (1.2) and in Eqs. (1.3), (1.4). The relative error r,% is evaluated for the approximating
expressions exactly as they are written below. When reporting a numerical value of the relative error,
the original result calculated according to Eq. (1.10) is always rounded up.

We used Wolfram Mathematica 12 from Wolfram Research (Champaign, IL) to complete this work.
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2. THE CHEBYSHEV SERIES METHOD

The chief tool that we use in this section is the double series expansion of a function that uses the
form: {Tm(x)Tn(y)}∞m,n=0, which is composed of products of two univariate Chebyshev polynomials
Tm(x), Tn(y). The Chebyshev polynomial Tm(x) of degree m at the point x is defined by the following
recurrence relation [26, Eqs. (1.3a), (1.3b)]

T0(x) = 1, (2.1)
T1(x) = x, (2.2)
Tm(x) = 2xTm−1(x) − Tm−2(x), (m = 2, 3, . . .) (2.3)

Below, Tn(y) will denote the same function of n, y as Tm(x) is of m,x.
Let x(f) and y(T ) be the normalized frequency and temperature variables defined by

x(f) =
1

ΔF
(2f − Fmin − Fmax), (2.4)

y(T ) =
1

ΔT
(2T − Tmin − Tmax) (2.5)

It is easy to verify that

x(Fmin) = −1, x(Fmax) = 1, (2.6)
y(Tmin) = −1, y(Tmax) = 1. (2.7)

Note that the aforementioned functions are invertible at every point of their domains, and their
respective inverse functions are:

f(x) =
1
2
(xΔF + Fmin + Fmax), (2.8)

T (y) =
1
2
(yΔT + Tmin + Tmax). (2.9)

The reason for introducing the functions f(x), T (y) is that the generic dielectric function ν(f, T ) can
be regarded as a function of x, y on the unit square

D = {x, y : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1}. (2.10)

On the assumption that ν(f(x), T (y)) is continuous on D, it can be characterized by the following
bivariate Chebyshev series [26, Sec. 5.3.3]:

C(x(f), y(T ))) =
+∞∑

m,n=0

cmnTm(x(f))Tn(y(T )), (2.11)

where the coefficients cmn are defined as

cmn =
1

SmSn

∫ 1

−1

∫ 1

−1
ν(f(x), T (y))

Tm(x)Tn(y)√
1 − x2

√
1 − y2

dxdy (m,n = 0, 1, 2, . . .) (2.12)

with

Sm =
π

2

{
2 (m = 0)
1 (m �= 0)

(2.13)

The series C(x, y) converges to ν(f(x), T (y)) uniformly on D if the latter function satisfies some
additional conditions beyond continuity on D [26, Thm. 5.9, Sec. 5.3.3]. We will not address fine
mathematical points related to the convergence, and instead emphasize a principal merit that makes the
Chebyshev series (2.11) notable: its partial sum of order mmax, nmax in x, y, respectively, forms a near-
best approximation to the continuous function ν(f(x), T (y)) [27]. Simply put, it is very nearly the same
polynomial as the minimax polynomial of order mmax, nmax which, among the bivariate polynomials of
x, y of the same order, has the smallest maximum deviation on D from the target function ν(f(x), T (y)).
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Another nice property of the Chebyshev series in Eq. (2.11) which follows from a relevant property
of the univariate Chebyshev polynomials (cf Eq. (1.1) from [26, Sec. 1.2.1]) is that |Tm(x)Tn(y)| ≤ 1 on
D. Assuming (unrigorously) that the absolute error due to truncation of a series is of the same order
as the maximal discarded term, we then obtain a convenient estimate of the truncation error as the
maximal discarded coefficient. If ν(f(x), T (y)) satisfies certain analyticity assumptions, the coefficients
cmn decrease geometrically with the indices m,n [28, Lem. 5.1].

In view of the preceding, the development of a practical approximation to ν(f, T ) can be done
in the following way: a) truncate the Chebyshev series in Eq. (2.11) at the (sufficiently large)
indices mmax, nmax assuming that cmn are negligible beyond the index set mmax, nmax, b) compute
the coefficients cm,n for m = 0, 1, . . . ,mmax, n = 0, 1, . . . , nmax, c) define an approximate cut-off bound
δ (δ > 0), and replace by zeros the computed coefficients such that |cmn| < δ, d) (optionally) cull the
retained coefficients cmn further in order to reduce the degree L of the resulting polynomial in Eq. (2.14)
in the temperature variable, and e) express Tn(y(T )) in terms of powers of T . These steps produce an
approximate formula for ν(f, T ) in the form

ν(f, T ) ≈ b0 + b1T + b2T
2 + . . . + bLTL, (2.14)

where the coefficients b0, b1, . . . , bL are polynomials in f which are naturally expressible in terms of the
Chebyshev polynomials Tm(x(f)). The latter can be expanded in terms of powers of f ; however, this
is not recommended because we may lose in the accuracy of computations — see Section 4.

To implement the aforementioned procedures in a practical sense, we need a method for evaluating
the Chebyshev coefficients cmn from Eq. (2.12). Writing x = cos θx, y = cos θy, the coefficient cmn will
be:

cmn =
1

SmSn

∫ π

0

∫ π

0
ν(f(cos θx), T (cos θy)) cos(mθx) cos(nθy) dθxdθy, (2.15)

where we have used the equalities Tm(cos θx) = cos mθx, Tn(cos θy) = cos nθy [26, Eq. (1.1)]. (Obviously,
the subscripts in θx, θy do not stand for differentiation with respect to x, y.)

An efficient way to compute the integrals in the right-hand side of Eq. (2.15) is the use of the
rectangle (midpoint) quadrature rule. With this method in mind, let us partition the interval 0 < θx < π
into M + 1 subintervals

[(k − 1)Δθx, kΔθx], (k = 1, 2, . . . ,M + 1) (2.16)

of the same length
Δθx =

π

M + 1
(2.17)

and the midpoints

θxk =
π(k − 1/2)

M + 1
. (2.18)

Similarly, we break up the interval 0 < θy < π into N + 1 subintervals

[(l − 1)Δθy, lΔθy], (l = 1, 2, . . . , N + 1) (2.19)

with the length
Δθy =

π

N + 1
(2.20)

and the midpoints

θyl =
π(l − 1/2)

N + 1
. (2.21)

Then a numerical approximation to the integral in Eq. (2.15) is given by

cmn ≈ Δθx

Sm

Δθy

Sn

M+1∑
k=1

N+1∑
l=1

ν(f(cos θxk), T (cos θyl)) cos(mθxk) cos(nθyl). (2.22)

— cf. [26, Eq. (5.38)]. Our own experience in using this quadrature formula suggests that a satisfactory
accuracy is achieved if one chooses M = 10mmax, N = 10nmax. Such choice of parameters M,N is
assumed in the numerical examples to follow.
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3. TEMPERATURE COEFFICIENTS

The key concept of temperature coefficients is motivated by the following (approximate or exact)
description of the dielectric property ν(f, T ) as a function of temperature:

ν(f, T ) ≈ ξ

[
1 +

L∑
k=1

Λk(T − Tr)k
]

. (3.1)

Here Tr is some reference temperature (which is usually set to the midpoint temperature Tm); the
constant ξ is the estimate of ν(f, T ) at the reference temperature; and Λk is the k-th order temperature
coefficient. Note that the reference temperature Tr and the degree L may be different for ν = ε′
and ν = ε′′. The temperature coefficients and the constant ξ in general may depend upon f and Tr:
Λk = Λk(f, Tr), ξ = ξ(f, Tr).

If we expand the right-hand side of Eq. (2.14) in powers of T −Tr, where Tr is an arbitrary reference
temperature, the result can obviously made into a form Eq. (3.1) with

ξ(f, Tr) =
L∑

l=0

blT
l
r, (3.2)

Λk(f, Tr) =
1

ξ(f, Tr)

L∑
l=k

(
l

k

)
blT

l−k
r , (k = 1, 2, . . . , L), (3.3)

(
l

k

)
=

l!
k!(l − k)!

. (3.4)

These equations define a family of frequency-dependent temperature coefficients Λk(f, Tr) as rational
functions of f . Note that although our quantities ξ(f, Tr), Λk(f, Tr) are specific to a particular value of
Tr, when used in the right-hand side of Eq. (3.1), they yield an expression (2.14) that does not depend
upon Tr. In other words, the accuracy of the approximate expression (3.1) does not depend upon the
reference temperature if the quantities ξ(f, Tr), Λk(f, Tr) are calculated within the Chebyshev series
approach.

Another way to arrive at an approximation of the form of Eq. (3.1) is to develop ν(f, T ) as a power
series in T − Tr. This method works for those ν(f, T ) that are real analytic functions of T at T = Tr.
Within the frames of such an approach, the temperature coefficients are calculated as follows

Λk(f, Tr) =
1

k!ν(f, Tr)
∂kν(f, T )

∂T k

∣∣∣∣
T=Tr

, (3.5)

and the constant ξ is determined by
ξ(f, Tr) = ν(f, Tr). (3.6)

The aforementioned approach requires that the power series concerned converge for each frequency
and temperature from Eqs. (1.5), (1.6), hence the domain of convergence of the power series needs
to be ascertained. For this, we will treat ν(f, T ) as an analytic function in the complex T -plane (see
Appendix A). Table A1 of Appendix A reveals that, for Tr = Tm, the power series of the experimental
Cole-Cole functions from [24, 25] have the radius of convergence that does not depend upon frequency
and well exceeds the halfwidth 1

2ΔT of the temperature range. However, we are unable to give a realistic
estimate of the rate of convergence of those power series, or to estimate the improvement, if any, of the
approximation with the degree L. Note that the analytic differentiation in Eq. (3.5), while elementary,
may be tedious, and the resulting expressions are extremely cumbersome when the exact dielectric
functions are described by the Debye [15] or Cole-Cole [16] models with the temperature-dependent
parameters.

For lack of better information, we illustrate in Table 1 the rationality of the Chebyshev series
approximations listed in Section 4 and of the power series approximations of the same degree L by
calculating the relative error of these approximations to the measured dielectric functions of several
tissues from [24] and [25]. According to these results, we gain better accuracy by using the Chebyshev
series approach.
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Table 1. Relative error r,%, of approximation (3.1) to the experimental dielectric functions, for the
Chebyshev series method (3.2)–(3.3) and the power series method (3.5)–(3.6) with Tr = Tm.

Method
Liver [24] Liver [25] Muscle [25] Fat [25] Blood [25]
ε′ ε′′ ε′ ε′′ ε′ ε′′ ε′ ε′′ ε′ ε′′

Cheb. 0.19 0.46 0.25 0.73 0.18 0.86 0.60 0.11 0.40 0.20
Power 1.12 3.59 0.40 1.41 0.33 1.71 1.15 0.37 0.80 0.60

From an application point of view, it is highly desirable to characterize a dielectric function ν(f, T )
with less temperature coefficients, ie to use a polynomial in T of the lowest degree L while preserving
the desired accuracy. As can be seen from Table 2, this is better realized in the Chebyshev series
approximation. With reference to the experimental results of [25], only one temperature coefficient
is necessary to describe the porcine liver or muscle ε′, ε′′ and the porcine fat or blood ε′, and two
temperature coefficients — for the porcine fat or blood ε′′. The ultra-wideband dielectric properties of
animal liver [24] can be described with three temperature coefficients for each of the quantities ε′, ε′′.

Table 2. Degree L of approximation (3.1) in the temperature variable T that provides a relative error
of r ≤ 1% to the experimental dielectric functions, for the Chebyshev series method (3.2)–(3.3) and the
power series method (3.5)–(3.6) with Tr = Tm.

Method
Liver [24] Liver [25] Muscle [25] Fat [25] Blood [25]
ε′ ε′′ ε′ ε′′ ε′ ε′′ ε′ ε′′ ε′ ε′′

Cheb. 3 3 1 1 1 1 1 2 1 2
Power 4 5 1 2 1 2 2 2 1 2

Plots for the selected temperature coefficients as functions of frequency are shown in the next
section. In these plots, the temperature coefficients of the real and imaginary parts ε′, ε′′ of the
complex permittivity are marked by primes and double primes as Λ′

k and Λ′′
k, accordingly. Specifically,

Figs. 2, 4, 6 and 8 give the temperature coefficients for porcine liver, muscle, fat and blood, respectively,
based on the experimental results from [25], and Fig. 10 — for the animal liver results from [24]. These
plots demonstrate that the numerical values of the temperature coefficients based on Eq. (3.3) and on
the power series approximation in Eq. (3.5) with Tr = Tm are quite close.

4. PRACTICAL DIELECTRIC FUNCTIONS

Our aim here is to provide the Chebyshev series approximations to several wideband temperature-
dependent Cole-Cole models of biological tissues. The sources of the experimental dielectric functions
are [24] and [25].

Tables 3 and 4 illustrate the rapid improvement of the approximations that we have developed with
the degree L of approximation in the temperature variable.

Table 3. Relative error r,%, of the Chebyshev series approximation (2.14) to the measured dielectric
functions from [24] vs degree L in the temperature variable T .

L 1 2 3 4
ε′ 1.47 1.18 0.19 0.062
ε′′ 4.45 1.82 0.46 0.29
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Table 4. Relative error r,%, of the Chebyshev series approximation (2.14) to the measured dielectric
functions from [25] vs degree L in the temperature variable T .

L
Liver Muscle Fat Blood

ε′ ε′′ ε′ ε′′ ε′ ε′′ ε′ ε′′

1 0.27 0.73 0.18 0.86 0.60 1.59 0.40 1.34
2 0.087 0.14 0.077 0.13 0.088 0.11 0.078 0.20
3 n/a 0.093 n/a 0.079 n/a 0.082 n/a 0.094

Our special interest has been in evaluating the effect of the representation of the numerical
coefficients on the accuracy of the approximations concerned. On this subject, we note that the
frequency-dependent coefficients b0, b1, . . . , bL from Eq. (2.14) can be given in two forms, namely as
functions of the transformed variable x(f) (2.4), and as polynomials of the frequency variable f — e.g.,
Eqs. (4.1), (4.2) and Eqs. (4.3), (4.4). Under finite-precision arithmetic, however, the familiar “power-
of-f” form may be the cause of a large rounding error. How this comes about is illustrated in Table 5.
This table refers to the imaginary part of complex permittivity of porcine muscle from [25], and gives
the relative error r,% of the quadratic (L = 2) Chebyshev series approximation (2.14) for ε′′ in the case
where the coefficients b0 and b1 from Eqs. (4.11), (4.12) are expressed in the “power-of-f” basis. The
parameter Ns is the number of significant digits kept in the fractional part of the numerical coefficients
of the powers of f . Two things stand out very markedly about these results. First, as compared to the
x-domain representation in the Chebyshev basis, extra significant digits (Ns = 11 . . . 12) are needed
to keep the relative error at an acceptable level. Second, writing b0, b1 in the power form with the
insufficient precision in the coefficients may be the cause of catastrophic rounding errors. We here
resolve this problem by expressing the coefficients b0, b1, . . . , bL in the Chebyshev basis in the x domain
(the other technique being the extended-precision calculations).

Table 5. Relative error r,%, of the quadratic approximation (2.14), (4.11), (4.12) to the measured ε′′
of porcine muscle [25] vs Ns in the “power-of-f” expansion for the coefficients b0, b1.

Ns 7 8 9 10 11 12
r,% 555 91 1.78 0.71 0.13 0.13

The graphical representations of the approximations for the dielectric functions that we have
discussed are given in Figs. 1, 3, 5, and 7 for porcine liver, muscle, fat and blood, respectively, based on
the experimental results from [25], and in Fig. 9 — for the animal liver results from [24]. As can be seen
from these figures, the agreement between the approximate formulations and the original experimental
data is exceedingly good.

4.1. Porcine Liver [25, Table 1]

ε′: L = 1, r = 0.25%,
b0 = 46.6678 − 7.5879T1(x) + 0.4524T2(x) − 0.1292T3(x)

+0.08942T4(x) − 0.05316T5(x) + 0.02998T6(x)
−0.05396T7(x) + 0.03048T8(x) − 0.01727T9(x), (4.1)

b1 = −0.04607 + 0.05276T1(x) + 0.0147T2(x) − 0.01029T3(x)
+0.005399T4(x) − 0.002945T5(x) + 0.001647T6(x). (4.2)

In the frequency domain:
b0 = 61.4064124 − 22.3523746f + 28.349677f2 − 22.1333128f3

+10.3497087f4 − 3.02332181f5 + 0.5571493f6

−0.06302658f7 + 0.004001336f8 − 0.0001092707f9 , (4.3)
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Figure 1. Dielectric properties ε′, ε′′ of porcine liver at three different temperatures based on the
approximations from Section 4.1 (solid lines), and the results reported in [25, Sec. 4.1] (dots).
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Figure 2. Temperature coefficients of the complex dielectric permittivity of porcine liver based
on Eq. (3.3) and the approximations from Section 4.1 (solid lines), and on the power series
approximation (3.5) (dots), for Tr = Tm.

b1 = 0.01450895 − 0.2279394f + 0.1697456f2 − 0.06009775f3

+0.01154731f4 − 0.001136054f5 + 0.00004471628f6 . (4.4)

ε′′: L = 1, r = 0.73%,

b0 = 14.864 + 2.6523T1(x) + 0.7684T2(x) − 0.9707T3(x) + 0.6215T4(x) − 0.3648T5(x)
+0.2110T6(x) − 0.1216T7(x) + 0.07001T8(x) − 0.04028T9(x) + 0.02317T10(x)
−0.03034T11(x) + 0.01739T12(x) − 0.009975T13(x) + 0.005724T14(x), (4.5)

b1 = 0.02531 − 0.1869T1(x) + 0.08994T2(x) − 0.04277T3(x) + 0.02289T4(x)
−0.01274T5(x) + 0.007165T6(x) − 0.004052T7(x)
+0.002299T8(x) − 0.001308T9(x) + 0.0007452T10(x). (4.6)

In the frequency domain:

b0 = 60.1621161272 − 243.0116514447f + 579.2961160339f2 − 842.320228251f3

+815.4104970348f4 − 550.7609349484f5 + 267.4197891336f6

−95.02694983356f7 + 24.9098280334f8 − 4.8083534666f9 + 0.6746957636f10 , (4.7)
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Figure 3. Dielectric properties ε′, ε′′ of porcine muscle at three different temperatures based on the
approximations from Section 4.2 (solid lines), and the results reported in [25, Sec. 4.2] (dots).
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Figure 4. Temperature coefficients for the complex dielectric permittivity of porcine muscle
based on Eq. (3.3) and the approximations from Section 4.2 (solid lines), and on the power series
approximation (3.5) (dots), for Tr = Tm.

b1 = 1.1695318708 − 2.7978340348f + 3.6690071226f2 − 3.006511116316f3

+1.5970250289f4 − 0.5639051466f5 + 0.1333297839f6 − 0.02083564929f7

+0.002062799972f8 − 0.0001171049527f9 + 10−6 · 2.90212257f10 . (4.8)
The dimension of the cyclic frequency f , as it appears in Eqs. (4.3), (4.4), (4.7), (4.8), is the gigahertz.

4.2. Porcine Muscle [25, Table 2]

ε′: L = 1, r = 0.18%,
b0 = 55.1698 − 8.5142T1(x) + 0.7330T2(x) − 0.3500T3(x) + 0.2198T4(x) − 0.1265T5(x)

+0.07140T6(x) − 0.06441T7(x) + 0.03650T8(x) − 0.02074T9(x) + 0.01181T10(x), (4.9)
b1 = −0.05984 + 0.05851T1(x) + 0.01032T2(x) − 0.006992T3(x)

+0.003502T4(x) − 0.001898T5(x) + 0.001065T6(x). (4.10)
ε′′: L = 1, r = 0.86%,

b0 = 18.2753 + 1.6918T1(x) + 1.8778T2(x) − 1.5891T3(x) + 0.9506T4(x) − 0.5443T5(x)
+0.3103T6(x) − 0.1769T7(x) + 0.1009T8(x) − 0.05763T9(x) + 0.03294T10(x) − 0.01884T11(x)
+0.02804T12(x) − 0.01612T13(x) + 0.009266T14(x) − 0.005329T15(x), (4.11)
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Figure 5. Dielectric properties of porcine fat at three different temperatures based on the
approximations from Section 4.3 (solid lines), and the results reported in [25, Sec. 4.3] (dots).
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Figure 6. Temperature coefficients for the complex dielectric permittivity of porcine fat based on
Eq. (3.3) and the approximations from Section 4.3, and on the power series approximation (3.5) (dots),
for Tr = Tm. The scaling coefficient sk is 1 for k = 1, and 102 for k = 2.

b1 = 0.07818 − 0.2562T1(x) + 0.1284T2(x) − 0.06599T3(x) + 0.03682T4(x)
−0.02096T5(x) + 0.01199T6(x) − 0.00687T7(x) + 0.003943T8(x)
−0.002266T9(x) + 0.001303T10(x) − 0.0007496T11(x). (4.12)

4.3. Porcine Fat [25, Table 3]

ε′: L = 1, r = 0.60%,

b0 = 6.54496 − 0.65536T1(x) + 0.091035T2(x) − 0.011027T3(x) − 0.00095369T4(x)
+0.0021116T5(x) − 0.0016077T6(x) + 0.0010348T7(x) + 0.0017096T8(x), (4.13)

b1 = −0.014599 + 0.00092458T1(x) + 0.0012014T2(x) − 0.00098439T3(x)
+0.00059538T4(x) − 0.00033751T5(x) + 0.00018837T6(x) − 0.00010486T7(x). (4.14)

ε′′: L = 2, r = 0.11%,

b0 = 1.4152 − 0.08743T1(x) + 0.06564T2(x) − 0.0581T3(x) + 0.0398T4(x) − 0.02468T5(x)
+0.01469T6(x) − 0.003155T7(x) + 0.002002T8(x) − 0.001235T9(x) + 0.0007497T10(x)
−0.00045T11(x) + 0.001417T12(x) − 0.0008166T13(x) + 0.0004707T14(x), (4.15)
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Figure 7. Dielectric properties of porcine blood at three different temperatures based on the
approximations from Section 4.4 (solid lines), and the results reported in [25, Sec. 4.4] (dots).
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Figure 8. Temperature coefficients for the complex dielectric permittivity of porcine blood based
on Eq. (3.3) and the approximations from Section 4.4 (solid lines), and on the power series
approximation (3.5) (dots), for Tr = Tm. The scaling coefficient sk is 1 for k = 1, and 102 for k = 2.

b1 = −0.01346 − 0.001211T1(x) + 0.002599T2(x) − 0.001646T3(x) + 0.0009624T4(x)
−0.0005654T5(x) + 0.000335T6(x) − 0.0004792T7(x) + 0.0002715T8(x)
−0.0001544T9(x) + 0.00008797T10(x) − 0.00005023T11(x), (4.16)

b2 = 0.0003018 − 0.0001988T1(x) + 0.00008622T2(x) − 0.00004257T3(x)
+0.00002227T4(x) − 0.00001191T5(x) + 10−6 · 6.436T6(x). (4.17)

4.4. Porcine Blood [25, Table 4]

ε′: L = 1, r = 0.40%,

b0 = 62.2524 − 6.6012T1(x) − 0.3233T2(x) − 0.005475T3(x)
+0.04398T4(x) − 0.02699T5(x) + 0.0152T6(x)
−0.04156T7(x) + 0.0239T8(x) − 0.01376T9(x), (4.18)

b1 = −0.1433 + 0.06214T1(x) + 0.01969T2(x) − 0.008936T3(x)
+0.004395T4(x) − 0.002481T5(x) + 0.001429T6(x). (4.19)



Progress In Electromagnetics Research B, Vol. 91, 2021 91

0 5 10 15 20
20

25

30

35

40

45

50

55

60 C
41.5 C
23 C

0 5 10 15 20
10

15

20

25

30

35

40

45

5050

60 C
41.5 C
23 C

f, GHz f, GHz

ε' ε''

o

o

o

o

o

o

Figure 9. Dielectric properties ε′, ε′′ of animal liver at three different temperatures based on the
approximations from Section 4.5 (solid lines), and the results reported in [24] (dots).
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Figure 10. Temperature coefficients for the complex dielectric permittivity of animal liver based
on Eq. (3.3) and the approximations from Section 4.5 (solid lines), and on the power series
approximation (3.5) (dots), for Tr = Tm. The scaling coefficient sk is 1 for k = 1, 102 for k = 2,
and 103 for k = 3.

ε′′: L = 2, r = 0.20%,

b0 = 23.28048 + 6.093682T1(x) + 1.75161T2(x) − 1.9565T3(x) + 1.17338T4(x)
−0.57987T5(x) + 0.33479T6(x) − 0.19322T7(x) + 0.11148T8(x)
−0.064319T9(x) + 0.037111T10(x) − 0.021414T11(x) + 0.012358T12(x)
−0.018733T13(x) + 0.010796T14(x) − 0.0062229T15(x), (4.20)

b1 = −0.18037 − 0.42486T1(x) + 0.16280T2(x) − 0.063201T3(x) + 0.03421T4(x)
−0.024517T5(x) + 0.01403T6(x) − 0.0080412T7(x) + 0.0046142T8(x)
−0.0026501T9(x) + 0.0015231T10(x) − 0.00087587T11(x) + 0.0005039T12(x), (4.21)

103 · b2 = 3.1373 + 1.1602T1(x) − 0.19031T2(x) − 0.15711T3(x) + 0.10862T4(x). (4.22)

4.5. Animal Liver [24, Table 2]

ε′: L = 3, r = 0.19%,

b0 = 28.5631 − 22.6298T1(x) + 2.05503T2(x) + 0.3170T3(x)
−0.3761T4(x) + 0.09142T5(x), (4.23)
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b1 = 0.5625 + 0.5742T1(x) − 0.01597T2(x) + 0.01089T3(x)
+0.006065T4(x) − 0.001617T5(x), (4.24)

·b2 = −0.01129 − 0.01114T1(x) − 0.001192T2(x) − 0.0002214T3(x), (4.25)
104 · b3 = 0.8613 + 0.9930T1(x) + 0.1295T2(x). (4.26)

ε′′: L = 3, r = 0.46%,

b0 = 25.46991 + 5.77835T1(x) − 2.76428T2(x) − 0.67156T3(x)
+1.4388T4(x) − 1.30002T5(x) + 0.96666T6(x) − 0.69354T7(x)
+0.50046T8(x) − 0.36365T9(x) + 0.26481T10(x) − 0.19282T11(x)
+0.069318T12(x) − 0.050467T13(x) + 0.03673T14(x) − 0.026726T15(x)
+0.019443T16(x) − 0.014143T17(x) + 0.010286T18(x) − 0.024804T19(x)
+0.018032T20(x) − 0.013109T21(x), (4.27)

b1 = −0.58475 − 0.32518T1(x) + 0.14023T2(x) − 0.040014T3(x)
+0.013128T4(x) − 0.0013986T5(x) − 0.00011555T6(x)
−0.00020656T7(x) + 0.00032556T8(x) − 0.00027024T9(x)
+0.00019287T10(x) − 0.000135T11(x) + 0.0038954T12(x)
−0.0028309T13(x) + 0.0020575T14(x) − 0.0014954T15(x)
+0.0010869T16(x) − 0.00079003T17(x) + 0.00057425T18(x), (4.28)

b2 = 0.013778 + 0.0074208T1(x) − 0.001291T2(x) − 0.00063344T3(x)
+0.00048347T4(x) − 0.00041738T5(x) + 0.00031699T6(x)
−0.00022857T7(x) + 0.00016446T8(x) − 0.00011913T9(x)
+0.000086578T10(x) − 0.000062962T11(x), (4.29)

104 · b3 = −1.0162 − 0.70134T1(x) + 0.23338T2(x). (4.30)

5. SUMMARY

In this paper, we have presented the use of the bivariate Chebyshev series to generate polynomial
approximations for the frequency and temperature dependent dielectric functions of materials. This
technique has enabled us to provide simple polynomial approximations with a relative error less than
1% of the experimental wideband temperature-dependent dielectric functions described in [24, 25], for
the biological tissues studied.

The Chebyshev series technique has allowed us to represent the temperature coefficients in
the form of rational functions of frequency, in contrast with the power series approach, where the
temperature coefficients are obtained as the derivatives of the exact dielectric functions with respect to
the temperature variable. Numerical experiments have shown that we gain improved accuracy and need
fewer temperature coefficients by employing the framework of the Chebyshev series approximation for
the dielectric functions, as compared to using the power series approach.

The algorithm allows a straightforward extension to the case where the dielectric functions depend
on more than the two variables, f and T .

A complete model of the EM properties of living tissues must include the local blood flow (LBF) as
an independent variable. From physical perspective, a biotissue can be regarded as a mixture of several
substances, including blood, which differ in their EM properties. Due to high permittivity of blood at
microwave frequencies, the variations in the LBF may cause the EM properties of the mixture to change.
The blood perfusion may vary as a result of a thermally induced vasodilation or vasoconstriction of the
local blood vessels — e.g., see [30]. As was experimentally shown in [31], the LBF exhibits a barely
discernible increase with local temperatures below a certain critical value (∼ 41.5◦C), and shows a rapid
(and practically linear) increase with temperatures above the critical value. However, many data for
biotissues have been estimated only from the ex vivo studies where the blood flow is difficult to realize or
control. This experimental problem can be resolved by perfusing an excised tissue sample with natural
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or artificial blood using a pump. Alternatively, the effective permittivity of a perfused tissue can be
estimated using a mixing rule approach [32].

A prominent feature of many biotissues is that they demonstrate spatial inhomogeneity on many
scales [33]. The measurement of the EM response of such a multi-scale composite medium yields the
smoothed, averaged value over the inhomogeneities whose sizes are much smaller then the size of the
receiving aperture (for definiteness, we here mean the open-ended waveguide measurement method).
This may introduce a dependence of the experimental results upon the size of the field-probe interaction
region (i.e., the aperture diameter) even if the size and mass of the tissue sample are sufficiently large
so that the model of an infinite medium under test applies.
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APPENDIX A. CONVERGENCE OF THE POWER SERIES FOR THE
TEMPERATURE-DEPENDENT COLE-COLE MODELS

In the Kth-order Cole-Cole model, the real part ε′ and the imaginary part ε′′ of the complex relative
permittivity are given by [16, Eq. (7)]:

ε′ = ε∞ +
K∑

k=1

Δεk

Dk

(
1 + xk sin

παk

2

)
, (A1)

ε′′ =
K∑

k=1

Δεk

Dk
xk cos

παk

2
+

aS

2πf
, (A2)

Dk = 1 + 2xk sin
παk

2
+ x2

k, (A3)

xk = (2πfτk)1−αk . (A4)

Here, the following real-valued quantities are involved: ε∞ is the infinite-frequency relative permittivity;
Δεk are the dispersion amplitudes; τk (τk > 0) are the relaxation times, αk (0 ≤ αk < 1) are the
exponents; aS determines the static conductivity; and f (f > 0), as before, is the cyclic frequency.
Putting all αk’s to 0, one obtains the Debye model. For the temperature-dependent model, the
parameters ε∞, Δεk, τk, aS are taken as (non-zero) real polynomials in the temperature variable
T [22, 24, 25], with τk(T ) being non-constant (deg τk ≥ 1) and positive on [Tmin, Tmax].

To gain insight into the range of validity of the power series expansions of ε′(f, T ), ε′′(f, T ) in
the temperature variable, we shall now view T as the complex variable, and extend ε′(f, T ), ε′′(f, T )
into the complex T -domain by analytically continuing Eqs. (A1)–(A4) and the appertaining polynomial
expressions for the Cole-Cole parameters ε∞(T ), Δεk(T ), τk(T ), aS(T ).

The complex functions ε′(f, T ), ε′′(f, T ) are regular everywhere in the complex T -plane except for
the isolated singularities of the summands within the summation over k (k = 1, 2, . . . ,K). Note that
the k-th summands in Eq. (A1) and Eq. (A2) have the same singularities. Since we do not need the
Debye model, hereafter it is assumed that 0 < αk < 1 for all k. Then the k-th summand is a multivalued
function of T due to the presence of the complex power function τ1−αk

k (T ). Let us consider the zeros of
the polynomial τk(T ),

τk(T ) = 0. (A5)

We shall assume that all zeros of τk(T ) are simple, as is the case with the experimental polynomials
from [24, 25]. Then every such zero is a branch point of the function τ1−αk

k (T ), and no other point in
the finite T plane can be a branch point of the latter [34, Sec. 55, pp. 219–224; Sec. 57, p. 229]. We shall
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resolve this function into single-valued branches by extending the branch cuts from each branch point
to infinity along the multi-connected curve T = Tk(u) which is defined implicitly by an equation

τk(T ) = −iu, (0 ≤ u < +∞). (A6)

To fix the a definite single-valued branch of τ1−αk
k (T ), it is sufficient to restrict the argument of τk(T )

by

−π

2
+ 2πpk < arg τk(T ) ≤ 3π

2
+ 2πpk, (A7)

where pk is an integer. In the practically important case where αk is a rational number, it can be
expressed in a unique way as a fraction qk/rk of two coprime natural numbers qk, rk such that rk ≥ qk+1.
Then there are just rk distinct branches, and it suffices to take [34, Sec. 57, p. 231]

pk = 0, 1, 2, . . . , rk − 1 (A8)

to enumerate all these branches. Once a single-valued branch of τ1−αk
k (T ) (k = 1, 2, . . . ,K) has been

defined, it leads in an natural way to the definition of the corresponding single-valued branches for the
k-th summand and other related functions. Obviously, the branches of ε′r(f, T ), ε′′r (f, T ) on the slit
T -plane can be uniquely enumerated by the multi-index (p1, p2, . . . , pK), with the principal branches
which agree with Eqs. (A1)–(A2) on [Tmin, Tmax] being determined by p1 = p2 = . . . = pK = 0.

We are now in a position to consider the poles of the k-th summand. These poles arise as the zeros
of the denominator Dk(T ). For simplicity, we exclude from the consideration a possibility that such
zero is canceled out by the same zero of Δεk(T ) in the numerator. It is easy to see that T = Tpole(f)
is a zero of the pk-th branch of Dk(T ) iff either

(i) there exists an integer n such that

pk(1 − αk) − 1
2

< n ≤ pk(1 − αk) − αk +
1
2

(A9)

and Tpole is a root of the polynomial equation

τk(T ) =
1

2πf
e
iπ

(
2n+1
1−αk

− 1
2

)
, (A10)

or

(ii) there exists an integer n such that

−pk(1 − αk) − 1 +
αk

2
≤ n < −pk(1 − αk) − αk

2
, (A11)

and Tpole is a root of the polynomial equation

τk(T ) =
1

2πf
e
−iπ

(
2n+1
1−αk

− 1
2

)
. (A12)

The restrictions in Eqs. (A9), (A11) on the values of the integer parameter n have been obtained from
Eq. (A7). Each of the double inequalities in Eqs. (A9), (A11) has at most one solution, n. Accordingly,
the pk-th branch of the k-th summand may have no more than 2deg τk poles.

If the principal branch of ν(f, T ) = ε′r(f, T ), ε′′r (f, T ) is regular at some point Tr, then it can be
developed as a power series in T around Tr, and the radius of convergence of the series is equal to the
distance from Tr to the nearest singularity — a branch point or a pole — of ν(f, T ) in the complex
T -domain [34, Sec. 84, p. 385, Thm. 17.10, pp. 391–394]. Since ε′r and ε′′r in Eqs. (A1), (A2) have
the same singularities, the radius (but not necessarily the rate) of convergence is the same for both
series. For the temperature-dependent Cole-Cole models of [24, 25], and Tr set to the average measured
temperature in Eq. (1.9), any poles of ν(f, T ) for all measured frequencies in Eq. (1.5) lie much farther
away from Tr than the branch points. The radii of convergence of the appertaining power series are
summarized in Table A1. Interestingly, they are the same for all frequencies because the location of the
branch points does not depend upon f .
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Table A1. Radius of convergence RT of the power series expansions in T about the point Tr for some
experimental temperature-dependent Cole-Cole functions ε′(f, T ), ε′′(f, T ).

Tissue Liver [24] Liver [25] Muscle [25] Fat [25] Blood [25]
RT , ◦C 36.0 49.5 48.5 24.9 41.1

1
2ΔT, ◦C 18.5 10 10 10 10
Tr,

◦C 41.5 40 40 40 40
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