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Investigating the Performance of a New Type of Preloaded Linear
Stroke Length Magnetic Spring

Hossein Baninajar, Jonathan Z. Bird*, and Victor Albarran

Abstract—This paper presents the analytic analysis and proof-of-principle prototyping of a new type
of magnetic spring with preload and a linear stroke length. An analytic based magnetic charge modeling
approach is utilized to investigate design rules that can maximize the magnetic spring’s energy density,
stiffness characteristics, and linearity. It is shown that whilst the proposed magnetic spring has a
lower mass and energy density than a mechanical spring, the magnetic spring offers several unique
characteristics, such as contact-free operation, inherent preload, as well as over-force failure protection.
In addition, the operating principle of the presented magnetic spring can be extended to realize both
positive and negative variable stiffness adjustment characteristics.

1. INTRODUCTION

Magnetic springs are being researched for use in vibration isolators [1–14], energy scavenging devices [15–
17], robot actuators [18], as well as permanent magnet bearings [19–22]. All of the magnet springs
that have been studied to-date appear to operate by using the north-south repulsion between vertical
magnets [3–8, 17, 18] or horizontally positioned magnets [1–3, 9, 11, 18, 21]. Both approaches often have
a limited stroke length, and the force relationship is normally non-linear. Hol [1] investigated the
vibration isolation magnet arrangement as shown in Figure 1(a). In this arrangement, the central
magnet is unstable when being centered [7, 12, 13, 22], but as the side magnets are longer than the
center magnet, a surprisingly constant force can be created, and this force relationship is shown in
Figure 2(a). If the central magnet is made to be the same length as the side magnet, as shown in
Figure 1(b), then a remarkably linear force relationship can be created, as illustrated in Figure 2(b).
A change in stiffness can then be created by shifting opposing magnets along the y-axis, as shown in
Figure 3.
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Figure 1. (a) The constant force magnet spring arrangements studied by (a) Hol [1] and (b) the
constant stiffness magnet spring arrangement studied in this paper.
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Figure 2. 2-D finite element analysis calculated magnetic force comparison between the constant force
and constant stiffness magnetic spring arrangements shown in Figure 1.

 

Figure 3. Magnetic spring with an adjustable stiffness capability. When the green magnets are shifted
along the y-axis the spring stiffness can be changed.

This paper’s research contribution relates to studying the energy density and linearity
characteristics of the pre-loaded magnet spring arrangement shown in Figure 1(b). The force, linearity,
and energy density are studied using a 3-D analytic-based model, and the energy density of the magnetic
spring is compared to an equivalent mechanical spring. The magnet arrangement shown in Figure 1(b)
is indeed simple in form and forms a single pole-pair segment of a Halbach magnet array [25]. Despite
its simplicity, the authors have been unable to locate any other authors that have studied its unique
linear force-displacement stroke length characteristics.

2. FIELD, FORCE AND ENERGY DERIVATION

The geometry and coordinate axis for the cuboidal magnet arrangement being studied are shown in
Figures 4(a)–(c). The magnetic flux density due to the rectangular cuboidal side magnets has been
evaluated using the magnetic charge sheet modelling approach. Since the fields are antisymmetric with
respect to the center (green) magnet, the field effect of only the left side (blue) magnet and center
magnet needs to be evaluated. Using this symmetry allows the partial magnetic charge sheet model, as
shown in Figure 4(c), to be used [23].

In the current-free region, the governing magnetostatic Maxwell’s equations are

∇× H = 0 (1)
∇ ·B = 0 (2)

where B and H are magnetic flux density and field intensity, respectively. The magnetic flux density
and field intensity are related by

B = μ0H + μ0M(H). (3)
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Figure 4. (a) A 3-D perspective model, the central magnet translates, and the side magnets are
stationary, (b) and (c) shows the magnetic charge and geometric definitions.

where μ0 = permeability of free space. The magnetization vector is a function of H and is defined by
the magnetic constitutive equation [10, 13]

M(H) = χmH + Mm (4)

where χm = magnetic susceptibility. Substituting Eq. (4) into Eq. (3) gives:

B = μ0μrH + μ0Mm (5)

where the relative permeability is
μr=χm + 1. (6)

The magnetic scalar potential, φ, is related to the magnetic field intensity by [2]:

H = −∇φ. (7)

Taking the divergence of both sides of Eq. (5) and substituting Eqs. (2) and (7) gives:

∇2φ =
∇ ·Mm

μr
. (8)

Only the field emanating from the side magnets needs to be evaluated. The magnetization vector, Mm,
is uniform within the magnet volume, so the divergence of Mm is only non-zero on the permanent
magnet boundaries. Using the coordinate (xo, yo, zo) to define the surface location on the side magnet
the magnetization vector Mm is directed inwards and outwards at zo = 0 and zo = hs such that

Mm(xo, yo, hs) = σsm
�z (9)

Mm(xo, yo, 0) = −σsm
�z (10)

where
σsm = Br/μ0. (11)

is the magnetic surface charge density and Br = permanent magnet remnant flux density. The charge
value on the side magnet is only non-zero at the top and bottom surfaces of the side magnet, as
shown in Figures 4(b) and (c). Using the coordinate definition shown in Figure 4(c), Equation (8) was
evaluated using an integral solution approach [10, 24]. The stationary left side magnet (shown in blue)
was evaluated, this gives

φ(x, y, z) = φs(x, y, z, hs) − φs(x, y, z, 0) (12)

where [10, 24]

φs(x, y, z, zo) =
σsm

4πμr

ws∫
0

ds/2∫
−ds/2

1
R(x, y, z, xo, yo, zo)

dyodxo (13)

and the vector length is

R(x, y, z, xo, yo, zo) =
√

(x − xo)2 + (y − yo)2 + (z − zo)2. (14)
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The coordinate (x, y, z) is the observation point of interest. Due to symmetry the field intensity from the
right-side magnet interacting with the central magnet will be the same as that of the left side magnet.

The central magnet magnetic charge density, σcm, is constant and located at x = ws + g and
x = ws + wc + g, as shown in Figures 4(b) and (c). The central magnet can move along the z-axis
and at a particular stroke position, zT , the interaction energy, U , between the central magnet magnetic
surface charge density, σcm, and the side magnets’ scalar field, φ, is [25]

U(zT ) = Us(zT , ws + wc + g) − Us(zT , ws + g) (15)
where

Us(zT , x) = 2μ0σcm

dc/2∫
−dc/2

hc+zT∫
zT

φ(x, y, z)dzdy (16)

This interaction energy is analogous to the mutual inductance energy between windings. Like with
mutual inductance energy the magnet interaction energy can have a positive or negative value. The
force along the stroke length is computed from

F(zT ) = −∇ U(zT )|σcm=constant . (17)
giving

F(zT ) = Fs(zT , ws + wc + g) − Fs(zT , ws + g) (18)
where [26]

Fs(zT , x) = 2μ0σcm

dc/2∫
−dc/2

hc+zT∫
zT

H(x, y, z)dzdy (19)

Equation (18) provides insight by showing that the linearity of the force is dependent on the uniformity
of the vertical Hz field:

Fz(zT ) = 2μ0σcm

dc/2∫
−dc/2

hc+zT∫
zT

[Hz(ws + wc + g, y, z) − Hz(ws + g, y, z)]dzdy (20)

Substituting Eq. (12) into Eq. (7), the Hz field intensity due to the left side magnet is
Hz(x, y, z) = Hs(x, y, z, hs) − Hs(x, y, z, 0) (21)

where

Hs(x, y, z, zo) =
σsm(z − zo)

4πμr

ws∫
0

ds/2∫
−ds/2

1
R(x, y, z, xo, yo, zo)3

dyodxo. (22)

Evaluating Eq. (22) gives

Hs(x, y, z, zo) =
σsm

4πμr

[
Ψz

(
ws,

ds

2
, zo

)
− Ψz

(
ws,−ds

2
, zo

)
−Ψz

(
0,

ds

2
, zo

)
+Ψz

(
0,−ds

2
, zo

)]
(23)

where

Ψz(xo, yo, zo) = tan−1

(
(x − xo)(y − yo)

(z − zo)R(x, y, z, xo, yo, zo)

)
. (24)

The double integral force equation was computed by using the MATLAB� function integral2.m with
an absolute tolerance setting of 1 × 10−8. Equation (20) will be used in the force and energy density
analysis. It should be noted that the force can also be evaluated using the scalar potential. By
substituting Eq. (12) into Eq. (15) and evaluating Eq. (17) yields

Fz(zT ) = 2μ0σcm

dc/2∫
−dc/2

[φ(ws + wc + g, y, zT )

−φ(ws + wc + g, y, hc + zT ) + φ(ws + g, y, hc + zT ) − φ(ws + g, y, zT )]dy. (25)
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This eliminates the need to evaluate the z-axis integral, but the double integral evaluation of the
magnetic scalar potential is more challenging; therefore, Eq. (20) was used in the energy and linearity
analysis.

3. FORCE AND ENERGY CHARACTERISTICS

The field and force equations were validated by using a 3-D magnetostatic finite element analysis (FEA)
method and an experimental setup. Using the geometric and material properties defined in Table 1, the
force and energy comparison between the analytic, 3-D FEA model and experimentally measurements
are compared in Figure 5 and Figure 6. Figure 5 shows that the 3-D analytic-based model accurately
predicts the force values, but the 3-D model is not as linear as the 2-D analysis predicted. The higher
force value and the greater linearity shown by the 2-D analysis are due to neglecting the magnet width,
thereby neglecting the y-axis flux leakage and edge effects. Figure 6 shows how the energy changes with
force. The peak positive force is almost double the peak negative force. The maximum force position,
at zT = 0, has zero interaction energy. Figure 7 shows how the peak force changes as the magnet width
increases, and the analytic model accurately predicts the parameter change. An experimental setup
used to validate the model is shown in Figure 8.

Figure 9 shows the magnetic flux density comparison between the numerical and analytic models.
It can be noted that the Bz field component is not constant along the stroke length, which results in
the force not being fully linear. Section 4 discusses geometric parameters that improve the linearity.

Table 1. Geometric and material properties for the rectangular magnets.

Parameter Value Units

Side magnets
Height, hs 25 mm
Width, ws 12.5 mm
Depth, ds 12.5 mm

Central magnet

Height, hc 25 mm
Width, wc 12.5 mm
Depth, dc 12.5 mm

Air-gap between magnets, g 0.35 mm

Magnet properties (Nd-Fe-B, N48)
Residual flux density, Br 1.39 T
relative permeability, μr 1.04 -

Mass density 7500 kg/m3

200

Displaceme, z   [mm]T

150

100

50

0

-50

-100
-40 -30 -20 -10 0 10 20 30 40

3-D Analytic 3-D FEA 2-D FEA

Fo
rc

e 
[N

]

Figure 5. Analytic based magnetic charge model comparison with a 3-D and 2-D finite element analysis
model.
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Figure 6. Force and interaction energy for the proof-of-principle magnetic spring. Also shown is (a)
zero force positive stiffness (stable) magnet position, (b) maximum force magnet position and (c) zero
force negative stiffness position.
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Figure 7. Peak magnetic force comparison between the analytic-based model and the FEA.

(a) (b)

Figure 8. (a) The simple magnetic spring used to validate the force equation and linearity
characteristics. (b) The experimental setup used to measure the force and position. The setup measured
the negative, zT stroke length.

4. SCALING AND PERFORMANCE ANALYSIS

Using the presented analytic-based model, a scaling analysis was conducted to ascertain the linearity and
energy density of the presented magnetic spring. The stroke length linearity was assessed by evaluating
the coefficient of determinant, r2 [27] for each geometric design. The r2 value measures the distance
between the force path and the fitted line. A path with perfect linearity has an r2 value of unity. The
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Figure 9. The analytic and 3-D finite element analysis field comparison due to both side magnets along
the stroke length, z-axis, at (x, y) = (25.35, 0) mm. The Appendix shows the analytic field solution for
the Bx and By field components used in the Figure 9 plot.

energy was evaluated by computing the work done:

U(zo) − U(0) =

zo∫
0

Fz (zT ) dzT (26)

where zT = zo is the zero-force position. As the interaction potential energy is zero at zT = 0, the
energy density can be evaluated by using

Udm =
U(zo)

[2hswsds + hcdcdc]ρm
(27)

The following height, h, width, w, and depth, d, magnet ratios were used in the scaling analysis:

Γh =
hs

hc
. (28)

Γw =
ws

wc
(29)

Γd =
ds

dc
. (30)

where subscripts c and s denote center and side magnet lengths, respectively. A central magnet width-
to-height ratio

Γwh =
wc

hc
(31)

and central magnet depth-to-width ratio

Γdw =
dc

wc
(32)

were also used. Using the ratio values defined in Table 2, the energy density and stroke linearity were
evaluated for each geometric combination when the central magnet height was fixed at hc = 25 mm,
and the height ratio was fixed at Γh = 1. The height ratio was fixed because it allows an equivalent
mechanical spring stroke length comparison to be made. Additionally, it was observed that the preload
force and positive stroke length are maximum when Γh = 1. This can be seen by looking at Figure 10
in which the force and stroke length for different Γh values are shown.

The change in energy density, linearity, and force when using the geometric values shown in Table 2
is summarized in Figure 11. The maximum symmetrical force shown in Figure 11(b) is defined as

Fz,sym = Fz(0) − Fz(12.5) (33)
The design with the largest peak force has the highest stiffness and linearity. When the force is

below Fz,sym = 690 N, there is a trade-off between the energy density and linearity. By examining the
energy density solutions, a number of geometric design rules can be determined. These design rules are
discussed in the following sections.
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Figure 10. Magnetic force applied on the central magnet vs. stroke length displacement, zT . The
magnetic spring arrangements on the right correspond to the designs with hc = 25 mm and Γh = 0.5,
1, and 2. The other ratios were fixed at (Γw,Γd,Γwh,Γdw) = (1, 1, 0.5, 0.5).

Table 2. Magnet sweep parameters.

Geometric Parameter Range

Central magnet height, hc [mm] 25

Airgap length, g [mm] 0.35

Magnet height ratio, Γh 1

Magnet width ratio, Γw [0.2, 0.3, . . . , 2]

Magnet depth ratio, Γd [0.5, 0.75, . . . , 2]

Central magnet width-to-height ratio, Γwh [0.2, 0.3, . . . , 2]

Central magnet depth-to-width ratio, Γdw [0.25, 0.5, . . . , 3]

4.1. Depth-to-Width Ratio, Γdw

The energy density as a function of central magnet depth-to-width and width-to-height ratio is shown in
Figure 12 for the case when (Γh,Γw,Γd) = (1, 0.5, 1). The energy density increases, but with diminishing
returns as the depth-to-width ratio, Γdw, increases. When Γdw > 3, the edge effects are minimal; the
model approaches the ideal 2-D form; Γdw can be used to adjust the required force value. When Γdw ≥ 3,
a width-to-height ratio Γwh = 1 maximizes the energy density. To highlight how the other parameters
affect each other’s performance, Γdw = 3 is used in the remaining parameter discussion.

4.2. Depth Ratio, Γd and Width Ratio, Γw

Figure 13 shows how the energy density as a function of depth ratio, Γd, and width ratio, Γw, changes
when (Γh,Γdw) = (1, 3). The peak energy density occurs at Γd = 1 for all Γw values. In order to
maximize the energy density

wc

2ws
=

ds

dc
(34)

must be satisfied. The designs that meet this criterion are on the Pareto front in Figure 11(b).

4.3. Width-to-Height Ratio, Γwh

When (Γh,Γd,Γdw) = (1, 1, 3), Figure 14 shows how the energy density changes with the width ratio
and central magnet’s width-to-height ratio. The energy density is maximum when (Γwh,Γw) = (1, 0.5).
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Figure 11. (a) Energy density versus linearity, r2 value. (b) Energy density versus maximum
symmetrical force value. The legend shows the r2 value.

Table 3. Magnetic spring performance comparison.

Parameter
Initial

(a)

Peak energy
density

(b)

Improved
(c)

Units

Central magnet
Height, hc 25 25 25 mm

Width-to-height ratio, Γwh 0.5 1 1 -
Depth-to-height ratio, Γdw 1 3 0.57 -

Side magnets
Height ratio, Γh 1 1 1 -
Width ratio, Γw 1 0.5 0.5 -
Depth ratio, Γd 1 1 1 -

Peak force 98.5 1,118.3 127.2 N
Peak symetrical force 56.5 690.9 74.4 N

Pre-load force 9.7 225.7 15.0 N
Mass 87 702.3 132.7 g

Stiffness constant 5.17 62.4 6.83 kN/m
Mass energy density 6.64 12.15 7.01 J/kg

Volume energy density 43.7 74.5 44.6 kJ/m3

Coefficient of determinant, r2 value 0.96 0.99 0.97 -
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Figure 12. Energy density change when the width-to-height and depth-to-width ratio are varied. This
is for the case when (Γh,Γw,Γd) = (1, 0.5, 1).
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central magnet’s width-to-height ratio, Γwh, and
width ratio Γw.
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Figure 15. Shows how the linearity, measured using the r2 value improves when the width-to-height
ratio, Γwh, increases. The energy density is maximum when Γwh = 1.

However, Figure 15 shows that the linearity keeps improving beyond Γwh = 1. The improving linearity
with increased Γwh is because when Γwh increases the Bz magnetic flux density becomes more uniform
along the stoke length; this is shown in Figure 16.

Table 3(a) shows the initial proof-of-principle design values. Table 3(b) shows the values that yield
the peak energy density for a 12.5 mm stroke length, and this peak energy density uses all the design
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Figure 17. (a) Initial design, (b) peak energy density design, and (c) improved initial design.

Table 4. Mechanical spring performance comparison.

Mechanical Spring Characterstic High Force [28] Low Force [29] Units

Peak force 1120 127.3 N

Outer diameter 30.9 34.2 mm

Length (unloaded) 76.2 25.4 mm

Mass 200.1 14.0 g

Stroke length 12.45 12.55 mm

Stiffness constant 90.0 10.1 kN/m

Mass energy density 34.9 57.0 J/kg

Volume energy density 118.3 82.6 kJ/m3

specifications outlined above. The peak force and energy density are then 1,118 N and 12.15 J/kg,
respectively. The peak energy density design has a large force because the width is larger, as shown in
Figure 17. Table 3(c) shows a design that improves on the linearity and energy density of the initial
design without greatly increasing the force.

Table 4 shows the performance of mechanical spring designs that have a comparable stroke length
and force value. One can note that the mechanical spring’s mass and volumetric energy density is
significantly higher, 3 times and 1.6 times smaller in mass and volume.
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5. CONCLUSION

This paper presented an analytic design, analysis, and proof-of-principle prototype of a new type of
linear stroke length compression magnetic spring with pre-load. An analytic based magnetic charge
modeling approach was used to investigate the magnetic spring energy density and linearity in order to
approximately compare the magnetic springs performance with equivalently sized mechanical springs.
Magnetic spring sizing design rules were also suggested, whilst it was shown that the energy density of
the magnetic spring is significantly lower than a comparable mechanical spring. The magnetic spring
offers a number of unique characteristics, such as contact free operation, inherent preload, over-force
failure protection, as well as the ability to use designs that enable stiffness adjustment to be achieved.

ACKNOWLEDGMENT

The authors would like to thank the JMAG Corporation for the use of their FEA software. This material
is based upon work partially supported by the Department of Energy’s Office of Energy Efficiency and
Renewable Energy (EERE) under the Water Power Technologies Office award number DE-EE0001837.

APPENDIX A.

The magnetic field intensity, Hx and Hy as shown in Figure 9, was calculated by evaluating the field
contribution from the left and right side magnets and then adding the result. For example, the field
from the left side magnet is given by:

Hx(x, y, z) = Hsx(x, y, z, hs) − Hsx(x, y, z, 0) (A1)

Hy(x, y, z) = Hsy(x, y, z, hs) − Hsy(x, y, z, 0) (A2)

where

Hsx(x, y, z, zo) =
σsm

4πμr

ws∫
0

ds/2∫
−ds/2

(x − xo)
R(x, y, z, xo, yo, zo)3

dyodxo (A3)

Hsy(x, y, z, zo) =
σsm

4πμr

ws∫
0

ds/2∫
−ds/2

(y − yo)
R(x, y, z, xo, yo, zo)3

dyodxo (A4)

Evaluating Eq. (A3) gives

Hsx(x, y, z, zo) =
σsm

4πμr

[
Ψx

(
ws,

ds

2
, zo

)
− Ψx

(
ws,−ds

2
, zo

)
− Ψx

(
0,

ds

2
, zo

)
+Ψx

(
0,−ds

2
, zo

)]
(A5)

where
Ψx(xo, yo, zo) = ln

√
(y − yo) + R(x, y, z, xo, yo, zo). (A6)

And evaluating Eq. (A4) gives

Hsy(x, y, z, zo) =
σsm

4πμr

[
Ψy

(
ws,

ds

2
, zo

)
− Ψy

(
ws,−ds

2
, zo

)
− Ψy

(
0,

ds

2
, zo

)
+Ψy

(
0,−ds

2
, zo

)]
(A7)

where

Ψy(xo, yo, zo) = tanh−1

(
R(x, y, z, xo, yo, zo)

(x − xo)

)
. (A8)
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