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A Permittivity Measurement Method Based on Back Propagation
Neural Network by Microwave Resonator

Hong-Gang Hao*, De-Xu Wang, and Zhu Wang

Abstract—In order to solve the problem of the poor performance of the traditional microwave resonance
method in multi-parameter fitting data processing, a permittivity measurement method based on
Back Propagation (BP) Neural Network algorithm is proposed, which introduces the Neural Network
algorithm in data processing of microwave resonance method for the first time. In order to verify the
effectiveness of this method in measuring permittivity, a microstrip line structure is used as a microwave
resonator. It achieves high sensitivity (4.62%) by loading periodically arranged open resonant rings. On
this structure, the reflection coefficients S11 of different material samples are simulated as the data of
Neural Network. The amplitude and phase of S11 and resonant frequency f are taken as the input layer
of the Neural Network, respectively. The dielectric constant and dielectric loss are taken as the output
to establish the Neural Network model. The simulated and measured results show that the dielectric
constant and dielectric loss calculated by the model are basically consistent with the data provided by
the manufacturer. The relative error of the dielectric constant is less than 0.6%, and the error of the
dielectric loss is less than 0.0005. Compared with the traditional data processing of microwave resonance
method, the introduction of BP Neural Network algorithm can significantly improve the accuracy of
dielectric constant measurement.

1. INTRODUCTION

Permittivity is an important characteristic parameter of electromagnetic materials [1–3], and its accurate
determination plays an important role in medical, industrial, chemical, and biological fields [4, 5]. At
present, the microwave resonance method is usually used to measure the permittivity, which uses the
measured scattering parameters to solve the complex permittivity by digital fitting or equation [6–
8]. In this method, the desired permittivity is first converted into microwave-related electromagnetic
parameters that can be measured by the sensor, such as S parameter or resonant frequency offset.
The relationship between the dielectric constant and the measured electromagnetic parameters is
established by linear fitting or polynomial fitting, which could provide the dielectric constant by any
given electromagnetic parameters [9–11]. However, this method can only fit a single electromagnetic
parameter, such as the relationship between the resonance frequency and dielectric constant or the
quality factor and dielectric loss [12, 13]. It is worth noting that the amplitude, phase, and other data of
S parameter could improve the accuracy of the measurement of the complex permittivity. It is difficult
for the traditional data fitting method to consider the influence of multiple parameters on the dielectric
constant at the same time. The equation method also needs a complex conversion for S parameter to
get a multi-parameter transcendental equation [14–16], which increases the calculation amount and
uncertainty of measurement. Therefore, it is of great significance in improving the measurement
accuracy by using more parameters. In recent years, with the development of artificial intelligence,
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Neural Network has become an effective tool in the field of microwave [17–19]. Because of its strong
nonlinear fitting ability, Neural Network has become a tool for data processing in this paper.

In view of the limitation of traditional microwave resonance method in data processing, this
paper presents a permittivity measurement method based on Back Propagation (BP) Neural Network
algorithm. A microstrip line structure based on open resonant ring (SRR) is designed to measure the
dielectric constant with S parameters. Through the Neural Network algorithm, we use S parameters
in training the Neural Network, which could provide the relationship between the S parameters and
dielectric constant of the material under test (MUT). The introduction of BP Neural Network simplifies
the process of permittivity data processing and realizes the simultaneous calculation of multiple
parameters while improving the accuracy of permittivity.

2. ANALYSIS OF THEORY

The principle of measuring the change of the dielectric constant of the microwave resonant structure is
placing the sample at the strongest electric field of a microwave resonant device. When the dielectric
constant of the sample is varied, the resonant frequency of the device changes accordingly. The
relationship between the dielectric constant and resonance frequency is established by obtaining the
resonant frequency of the object with known dielectric constant. Based on the relationship acquired,
we could calculate the dielectric constant of the sample through its resonant frequency.

The Neural Network algorithm is applied to the data processing stage of permittivity measurement.
The principle is to use a large number of known permittivity media S parameters to train the Neural
Network, and then use the trained Neural Network to analyze and measure the permittivity of unknown
media. The Neural Network method combines microwave method and big data analysis method,
which simplifies the measurement difficulty. With strong nonlinear fitting ability, this method has
high flexibility, and it is suitable for multi-parameter simultaneous fitting.

The topology of BP Neural Network algorithm is shown in Fig. 1. Structurally, this is a typical
multi-layer structure, which mainly consists of three parts: input layer, hidden layer, and output layer.
In general, most of the problems can be solved with one hidden layer, which could avoid the large-scale
operation caused by multiple layers while improving the operation efficiency of the algorithm.

Figure 1. The topology of BP Neural Network algorithm.

The most prominent feature of BP Neural Network model is forward transmission through signals,
and when the actual output and predicted output error are higher than the threshold value, the output
is transmitted back to the next layer. In the whole transmission process, the neuronal activities in each
layer only affect the neurons in the next layer. The weights of each part in the Neural Network can be
adjusted and optimized continuously according to the errors between the actual and predicted values
in the operation process, until the errors between the output value and the predicted value meet the
preset threshold.

The training process of Neural Network is roughly divided into the following stages:
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Step 2: Assign the system connection weight ωij, υjt and threshold θj, γt randomly in the interval
of (−1, 1). Initialize the network and preset iteration times and error conditions.

Step 3: Calculate the input Sj of each unit in the hidden layer by using data such as input sample,
system connection weight, and threshold value. The calculation formula is as follows:

Sj =
n∑

i=1

ωijai − θj, j = 1, 2, . . . , p (1)

The appropriate Neural Network transfer function is selected to calculate the output bj of each
unit in the hidden layer, and the specific form is shown in Equation (2).

bj = f(Sj), j = 1, 2, . . . , p (2)

Step 4: Solve the output value Ct of the output unit by existing parameters. The calculation
formula is as follows:

Lt =
p∑

j=1

υjtbj − γt, t = 1, 2, . . . , q (3)

Ct = f(Lt), t = 1, 2, . . . , q (4)

Step 5: Compare the output value with the target sample, and Equation (5) is used to calculate
the general error dk

t of each unit in the output layer of Neural Network.

dk
t =

(
yk

t − Ct

)
· Ct(1 − Ct), t = 1, 2, . . . , q (5)

Step 6: Calculate the generalized errors ek
j of each cell in the hidden layer by using Equation (6).

ek
j =

[
q∑

t=1

dt · υjt

]
· bj (1 − bj) (6)

Step 7: Fix system connection weights and thresholds by dk
t and bj .

υjt(N + 1) = υjt(N) + α · dk
t · bj (7)

γt(N + 1) = γt(N) + α · dk
t , t = 1, 2, . . . , q, j = 1, 2, . . . , p (8)

Step 8: Modify system connection weights and thresholds by ek
j and input sample.

ωij(N + 1) = ωij(N) + β · ek
j · ak

i (9)

θj(N + 1) = θj(N) + β · ek
j , i = 1, 2, . . . , n, j = 1, 2, . . . , p (10)

Step 9: Go back to Step 3, and substitute the modified system connection weight υjt and threshold
γt for the forward calculation again. Samples complete the iterations as the accuracy satisfies the
requirement. When all samples meet the preset accuracy requirements, the data and Neural Network
training will be completed. Otherwise, the iteration will continue until the requirements are met.

3. DEVICE STRUCTURE AND SIMULATION

Figure 2 shows the structure of the microwave resonator.
Rogers 5880 with a relative dielectric constant of 2.2 and dielectric loss (tan δ) of 0.0009 is selected

as the dielectric substrate. The bottom layer of the substrate is covered with copper, and the center
of the top layer is a 50 Ohm microstrip line. There are periodically arranged SRR structures on both
sides of the microstrip line.

SRR is a basic metamaterial unit structure, which can satisfy the miniaturization design due to its
high quality factor. In the field of microwave measurement, SRR plays an important role in improving



30 Hao, Wang, and Wang

Figure 2. Structure of microwave resonator. The dimensions are as follows: l0 = 40 mm, w0 = 20 mm,
ww = 1.4 mm, ws = 1 mm, d = 9 mm, h = 0.787 mm.

(a) (b)

Figure 3. (a) Structure of SRR. (b) Equivalent circuit of SRR. The dimensions are as follows:
a1 = 3.4 mm, a2 = 3.4 mm, a3 = 2.8 mm and g = 0.7 mm.

the sensitivity and accuracy of sensors. Fig. 3(a) and Fig. 3(b) show the structure and equivalent circuit
of SRR [20–23].

The resonant frequency of SRR is solved by the basic LC resonance model, as follows [23, 24]:

fSRR =
1

2π
√

LSRR(CSRR + CS)
(11)

where LSRR and CSRR represent the equivalent inductance and capacitance of SRR. Cs is the
capacitance between the microstrip line and SRR [23]. The equivalent capacitance and inductance
are related to the parameters of the resonance ring itself, and the resonance frequency can be adjusted
by adjusting the size parameters of SRR. The equivalent circuit of the microwave resonator loaded with
periodic SRR arrangement is shown in Fig. 4.

Figure 4. The equivalent circuit of microwave resonator.

The microwave resonance method is based on the changes of resonant frequency to measure the
dielectric constant. A larger obvious change of the resonant frequency results in a higher sensitivity of
the sensor.
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The MUT is placed on the top layer of the resonator and covered with the SRR array. The
horizontal dimension of the MUT is 22mm× 11 mm in order to cover the SRR array, where the electric
field distribution is at its maximum, as shown in Fig. 5.

Figure 5. Sample placement state.

The thickness (tn) of MUT also affects the sensitivity of the sensor. In order to find the appropriate
thickness of MUT, the resonant frequency offset (Δf) of sensor under different thicknesses is simulated
in HFSS. Fig. 6 shows the frequency offset (Δf = fε′=1 − fε′=10) at different thicknesses of the MUT
as the permittivity changes from 1 to 10. It may be observed that with the increase of tn, Δf becomes
larger, and the corresponding sensitivity becomes higher. The frequency offset is almost constant for tn
greater than 3mm. Therefore, the size of the MUT is determined as 22mm × 11mm × 3.0 mm.
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Figure 6. Sample placement state.

In order to show the relationship between dielectric constant and S parameter intuitively, HFSS
software is used to simulate the change of the S parameter under different dielectric constants and
dielectric losses based on the control variable method. Firstly, we keep the dielectric loss equal to 0.001.
The dielectric constant is set as a variable ranging from 1 to 10 (step width 1). The simulation results
of reflection coefficient S11 are shown in Fig. 7(a). Secondly, the simulation results are obtained under
the condition that the dielectric constant is equal to 1 while the dielectric loss varies from 0.001 to 0.01
with a step width of 0.001, which is displayed in Fig. 7(b).

The range of varied dielectric constant and dielectric loss is determined with the consideration of the
high dielectric constant and high dielectric loss which dramatically decrease the resonance performance.
The range of permittivity is determined to 1–10, and the loss tangent is 0–0.01.

As can be seen from Fig. 6(a), when the MUT dielectric constant changes from 1 to 10, the resonant
frequency of the resonator shifts from 2.69 GHz to 1.90 GHz. According to the definition of dielectric
constant sensitivity s [25, 26]:

s =
Δf [%]
Δε′

=
f2 − f1

f1 (ε′1 − ε′2)
(12)



32 Hao, Wang, and Wang

1.8 2.0 2.2 2.4 2.6 2.8
-30

-25

-20

-15

-10

-5

0

ε  =10

d
B

(S
(1

,1
))

Freq (GHz)

ε  =1

2.688 2.692 2.696 2.700
-25

-20

-15

-10

-5

0

tanδ=0.004-0.01

d
B

(S
(1

,1
))

Freq (GHz)

tanδ=0-0.003

'
'

(a) (b)

Figure 7. Simulation results of S11. (a) tan δ = 0.001; ε′ = 1–10. (b) ε′ = 1; tan δ = 0–0.01.

where the resonant frequencies of the sensor with and without MUT are f1 and f2, respectively, while
ε′2 and ε′1 represent the dielectric constants with and without MUT, respectively [23]. Based on the
results in Fig. 7, the sensitivity of the sensor is 4.62%. Such sensitivity ensures the high reliability of
the data measured with the structure.

The resonant frequency corresponding to each dielectric constant and the quality factor under each
loss tangent are obtained by Fig. 7. The fitted curves are drawn, as shown in Fig. 8(a).
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Figure 8. The fitted curves. (a) Resonant frequency with the permittivity. (b) Quality factor with
the loss tangent.

The resonant frequency and dielectric constant basically satisfy the quadratic term relation, and
the fitting relationship between the dielectric constant and resonance frequency (GHz) is listed as
Equation (13). Fitting of the tan δ − 1/Q relationship is shown in Fig. 8(b). tan δ and 1/Q basically
agree with the quadratic relationship of Equation (14).

ε′ = 12.825f2 − 70.118f + 96.953 (13)

tan δ = −10.291
Q2

+
0.6767

Q
− 0.0012 (14)

According to Equations (13) and (14), the calculation model of the relative dielectric constant
under the circuit can be established.
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4. NEURAL NETWORK MODEL

In order to obtain the permittivity and tan δ of MUT from S parameter, BP Neural Network model is
used to establish the relationship between the S parameter and complex permittivity. The 2.6 amplitude
and phase of S11 and f are respectively taken as the input layer of the Neural Network. ε’ and tan δ
are taken as the output. The Neural Networks are trained with 1919 samples of f and S11. While
maintaining the measurement selectivity, these samples are acquired when MUT dielectric constant and
dielectric loss vary between 1 and 10 (step width 0.5), and 0 and 0.01 (step width 0.0001), respectively.
In the process of model building, the samples of odd sequence are used for training Neural Network
model, and the samples of even sequence are used for error analysis. The constructed Neural Network
structure is shown in Fig. 9.

Figure 9. Structure of constructed Neural Network.

As shown in Fig. 9, the Neural Network model has 3 neurons at the input layer, 1 neuron at the
output layer and a hidden layer. The number of neurons NA at the hidden layer is 5. The transfer
function of neurons in the hidden layer is tangent function Tansig, while the output layer is pure linear
function Purelin. The training algorithm uses Levenberg Marquardt algorithm. The simulation results
and errors are shown in Fig. 8.

It can be seen from Fig. 10 that the prediction of ε′ and tan δ by using the established Neural
Network model is in good agreement with the expectation, and the measurement results are relatively
stable. For the samples used for error measurement, the relative error of dielectric constant of 90%
samples is less than 2%, and the error value of dielectric loss of 90% samples is less than 0.0005,
indicating a high accuracy.

Figure 11 shows the average error for each set of data. Taking 2% and 0.0005 as the error thresholds
of dielectric constant and dielectric loss, respectively, then the measurement ranges of the permittivity
and dielectric loss are 1–9 and 0–0.008.

5. EXPERIMENT AND DISCUSSION

Agilent vector network analyser N5242A is used to measure the S parameters. The resonator and
measurement system are shown in Fig. 12. Rogers5880 (ε′ = 2.2, tan δ = 0.0009), F4B (ε′ = 2.65,
tan δ = 0.001), Rogers4350 (ε′ = 3.48, tan δ = 0.004), FR4 (ε′ = 4.4, tan δ = 0.004), and PVC
(ε′ = 8.00, tan δ = 0.005) are selected as the MUT. These values of dielectric constant and dielectric
loss are acquired from the properties of materials in HFSS at 9.4 GHz [8, 11, 26].

The measured results of S parameter are shown in Fig. 13.
For the traditional digital fitting method, Equations (13) and (14) are used to calculate the dielectric

constant and dielectric loss of the sample. The maximum relative error of the permittivity reaches 8.64%.
The error of dielectric loss is up to 0.00101. Thus, it is necessary to reduce errors in data processing.

The BP Neural Network algorithm is used to calculate the dielectric constant. The frequency f
and amplitude and phase of S11 are substituted into the BP Neural Network model, and the calculated
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Figure 10. Simulation results. (a) Prediction and expectation of ε′. (b) Relative error of ε′. (c)
Prediction and expectation of tan δ. (d) Error of ε′.
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Figure 11. The average error for each set of data. (a) Dielectric constant. (b) Dielectric loss.

permittivity and dielectric loss measurement results and errors are shown in Fig. 14.
The experimental results show that ε′ and tan δ calculated by the model are basically consistent

with the data provided by the manufacturer. The relative error of ε′ is less than 0.6%, and the tan δ is
less than 0.0005.
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(a) (b)

Figure 12. (a) Fabricated microwave resonator. (b) Measurement system.
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Figure 13. Measurement results of S11. (a) Amplitude of S11. (b) Phase of S11.

The dielectric constants calculated by the traditional data fitting and the BP Neural Network
algorithm are compared, and the result is shown in Table 1.

Table 1. The comparison of results for fitted and BP Neural Network.

The MUT
ε′ tanδ

Standard
Error%
(Fitted)

Error%
(BP)

Standard
Error

(Fitted)
Error
(BP)

Rogers 5880 2.20 8.64% 0.12% 0.0009 0.00098 0.00045
F4B 2.65 7.17% 0.39% 0.001 0.00101 0.00049

Rogers 4350 3.48 1.72% 0.48% 0.004 0.00048 0.00013
FR4 4.40 2.28% 0.56% 0.004 0.00022 0.00015
PVC 8.00 0.25% 0.03% 0.005 0.00027 0.00008

It can be seen from Table 1 that the use of BP Neural Network can indicate a high measurement
accuracy. It has a certain degree of reliability.
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Figure 14. Measurement results. (a) Prediction and expectation of ε′. (b) Relative error of ε′. (c)
Prediction and expectation of tan δ. (d) Error of ε′.

6. ANALYSIS OF ERROR

As can be seen from the experimental results, compared with the traditional method, in data processing,
the BP Neural Network is more accurate and easier to measure the permittivity. However, in some
frequency points there will be a large error. The error analysis of this method shows that the main
reasons for the error are as follows:

First of all, the error caused by the placement position of the MUT. It is worth noting that because
the sensor and MUT are both rough planes, it is impossible to achieve complete contact as in the
simulation conditions, which is an important source of error in the measurement process. In addition,
the location of MUT can also affect the measurement results. In this paper, the average value of multiple
measurements is taken to reduce the two kinds of errors as far as possible.

Secondly, the error caused by sample preparation. The sample used for measurement needs to be
consistent with the size of simulation, but due to technological limitations, there will be errors between
the actual size of the processed sample and the expected size. The method to reduce this error is to
obtain high precision standard samples from professional plate manufacturers. The first two errors are
evident in the measurement of solid materials. However, these two kinds of errors almost do not exist
when using the proposed data treatment to measure the liquid. It is one of the emphases of future
research to measure the dielectric constant of liquid by using the experimental method in this paper.

Then, the training data are derived from the simulation results of the simulation software. However,
when the actual media are measured, the S parameters which are substituted into the network are
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measured data. Therefore, the error between the training data and measured data is the main source of
the permittivity measurement error of the Neural Network method. When the measured S parameter
is also used in the training data, this error can be greatly reduced, but multiple media with different
dielectric constants need to be processed, which increases the cost and complexity of this method. The
error can be reduced by decreasing the sampling step and increasing the sampling amount.

Lastly, the errors are also due to sensor plate processing and SMA joint welding process. The error
can be reduced by standard sample calibration.

7. CONCLUSION

In this paper, based on the microwave resonance structure loaded with an SRR structure, a measurement
method of dielectric constant based on BP Neural Network algorithm is proposed, realizing the
measurement of ε′ and tan δ. The measurement ranges of the permittivity and dielectric loss are 1–9 and
0–0.008. The simulation and measurement results show that this method avoids the shortcoming of the
traditional method of insufficient nonlinear fitting ability. The Neural Network training of S parameter
makes the calculated results more consistent with the standard value of MUT, and the reliability is
higher.
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