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Applicability Analysis of the Phase Scanning in Antenna Arrays
of Chirp Pulse Radars

Volodymyr G. Galushko* and Dmytro M. Vavriv

Abstract—In this paper, the space-and-time structure of the output signal of the antenna array (AA)
of a chirp pulse radar is investigated in dependence on the frequency sweep range of the probe signal.
Expressions are derived for calculating the output signals of the AA of a chirp pulse radar after optimal
filtering in the case of beamforming using phase shifters and/or time-delay lines. Distortions of the
space-time power pattern pertaining to the phase scanning method are analyzed in dependence on
the frequency chirp range and scan angle. It is shown that these distortions are similar to the effects
observed in the case of using taper windows for sidelobe suppression in the time and space (angular)
domains. Based on the results obtained an applicability condition is suggested for the phase scanning
in AAs of chirp pulse radars. It is shown that minor violations of this condition result in decreasing
the amplitude and broadening of the main lobe and sidelobes in the AA space-time power pattern. In
the case of strong violations of the applicability condition for the phase scanning the sidelobes of the
angular directional pattern degrade, merging with the main one into a single quite broad maximum.
The considered effects lead to deterioration of the range and azimuth resolution capabilities of radars
and should be taken into account when selecting the taper window parameters.

1. INTRODUCTION

For approximately two decades before and during World War II, much activity in radar investigations,
both theoretical and experimental, was focused on the use of antenna arrays (AAs) [1]. The result was
the FuMG 41/42 “Mammut” radar built in Germany in 1944 on the basis of an electronically steerable
phased antenna array (PAA), which is supposed to be the world’s first system of the kind [2]. However,
PAAs have not become widespread at that time since with transition to higher sounding frequencies,
after invention of the resonant-cavity magnetron [3], preference was given to simpler antenna systems
with mechanical beam scanning like, for example, parabolic antennas [4, 5].

The interest in AAs for radar applications was renewed in the early 1960s owing to the rapid advance
in the digital signal processing and is still not calming down [6]. The progress in this field has also
been strongly supported by essential breakthrough in microwave component industry and development
of target processing algorithms. The availability of efficient transmit-receive modules [7] and target
classification and recognition algorithms [8] has resulted in the appearance of multifunctional radars
for ground and airborne applications [9]. According to the report of BCC (Business Communications
Company) analysts [10] among the 5 key tendencies in radar technology for 2018 to 2022 there is
ever increasing demand in active electronically scanned arrays. Antenna systems of the kind permit
parameters of the signals (amplitude, frequency and phase) radiated and/or received by each element
of the aperture to be controlled individually, thus providing the possibility to steer the AA beam
electronically and adapt its shape to perform specific radar functions in rapidly changing conditions.
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An essential advantage of the electronically scanned AA is the time required to switch the beam from
one position to another which takes a few microseconds. This makes it possible to almost simultaneously
track a great number of targets and make a quick survey of the specified scene, as well as to perform
several radar functions in parallel, for example, target detection and tracking (multifunction radars).
In addition, disuse of precision rotary devices allows essentially improving the design reliability and
strength, with decreasing the weight and preserving the beam positioning accuracy. Another advantage
of AAs is the possibility of exciting by a few coherent solid-state transmitters, thus increasing the radar
performance figure and hence the detection range.

Strictly speaking, the AA beam should be steered through changing the time delay between the
signals transmitted/received by elementary antennas. In the 2D case of a linear equidistant AA the
incremental time delay Δτ0 between adjacent elements of the aperture is [6]

Δτ0 =
l

c
sin α0, (1)

where l is the AA spacing (separation between adjacent elements); c stands for the velocity of light in
free space; and α0 specifies the beam direction counted clockwise from the normal to the array. To form
the appropriate time delays Δτ0, electronically controlled delay lines are necessary, which are rather
complex, cumbersome and expensive to be connected to each elementary antenna of the AA [6]. For
this reason, the phase scanning is more frequently used in practice, in which case phase shifters are
applied instead of delay lines to introduce the required incremental phase shift Δϕ0 between adjacent
elements of the AA,

Δϕ0 =
2πl

λ
sin α0. (2)

Comparison of Eqs. (1) and (2) shows that in the case of sufficiently narrow band signals the phase and
time-delay scanning are practically identical, since Δτ0 is expressed through Δϕ0 as

Δτ0 =
Δϕ0

ω0
, (3)

where ω0 = 2πf0, with f0 being the central (carrier) frequency of the signal.
As seen from Eq. (3), if Δϕ0 is frequency-invariant, the dime delay Δτ0 proves to be dependent

on the signal carrier frequency f0. This effect, which some authors (see, for example, [11, 12]) refer to
as the “aperture effect”, is exploited in frequency beam-scanning PAAs [13]. Thus, the time delay Δτ0

will not be the same for different spectral components of broadband signals that may affect the PAA
directional pattern.

In the case of simple signals, for example, unmodulated rectangular pulses, the phase scanning can
be expected to be applicable if all elementary antennas of a PAA are excited simultaneously, i.e., if the
following condition holds

cτp ≥ L| sin α0|, (4)

where τp is the signal duration and L the array length.
Given that the signal spectrum width Δf relates to τp as Δf ≈ 1/τp, Equation (4) yields the

following estimate of the PAA relative bandwidth

Δf

f0
=

λ

L| sin α0| ,

which quite agrees with the formulas for Δf/f0 from [2, 14]. For example, in [14] Δf/f0 is determined
as (we slightly modified the original formula replacing L sin α0 with L| sin α0| to secure Δf > 0)

Δf

f0
= 0.866Bb

λ

L| sin α0| , (5)

where Bb is the beam broadening factor associated with a nonuniform field distribution across the PAA
aperture (for uniformly excited array Bb = 1). The bandwidth Δf in Eq. (5) is determined as the
difference between the frequencies at which the PAA power gain is reduced to 3 dB level with respect to
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its value at the central frequency f0. Note that Eq. (5) allows estimating the PAA absolute bandwidth
as

Δf = 0.866Bb
λf0

L| sin α0| = 0.866Bb
c

L| sin α0| , (6)

which implies that Δf is inversely proportional to the “longitudinal” dimension of the array L‖ =
L| sin α0|, i.e., to its projection on the main beam direction.

Thus, the estimates in Eqs. (5) and (6) consider only frequency dependences of the PAA directivity
characteristics. At the same time, amplitudes of different frequency components of the signal can
essentially differ from one another. For this reason, analysis of possible distortions of the radar echo
after optimal processing, associated with application of the phase scanning, requires considering not
only spatial (angular) dependence of the PAA output signal but also its time structure.

The present study is aimed at investigating the space-time structure of the output signal of the PAA
chirp pulse radar in dependence on the frequency sweep range of the sounding signal and analyzing the
applicability condition for the phase scanning in such systems. As will be discussed in the next sections,
the maximum achievable angular and range resolutions in radar systems with PAA are interrelated. For
example, an attempt to improve the range resolution by increasing the frequency sweep range is limited
by a finite length of the AA, which determines the angular resolution. We give a detailed explanation
of this effect and propose approaches to find a trade-off between the angular and range resolutions. The
obtained results are applicable to a wide range of PAA radar systems.

2. PROBLEM FORMULATION. GENERAL EXPRESSION FOR THE OUTPUT
SIGNAL OF THE LINEAR EQUIDISTANT AA OF A CHIRP PULSE RADAR

Consider a linear equidistant AA consisting of N elementary antennas arranged symmetrically along
the x-axis (see Fig. 1). The spacing between adjacent antennas is equal to l, such that the AA length
L is L = l(N − 1).

A fixed point target T is located at a certain range RT from the AA center coinciding with the
origin of the Cartesian coordinates x, y. The target azimuth counted from the y-axis is equal to αT .

Figure 1. Problem geometry.
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The AA radiating elements are all identical and transmit a chirp pulse waveform

u(t) = A0(t)e−i[ω0(t−τp/2)+μ(t−τp/2)2/2+ϕ0].

Here A0(t) = { A0, t ∈ [0, τp],
0, t /∈ [0, τp],

with A0 and τp being the pulse amplitude and duration, respectively;

ω0 = 2πf0 is the carrier frequency; μ = 2πΔf/τp is the slope of the phase modulation, with Δf being
the frequency sweep width; and ϕ0 is the initial phase.

The signal uj(t) from antenna j at the target position can be represented as

uj(t) = G (αTj, RTj) A0j(t)e
−i

[
ω0(t−τdj−τp/2)+μ(t−τdj−τp/2)2

/2+ϕ0j

]
. (7)

Here G(αTj , RTj) is a factor allowing for the directional pattern of antenna j (αTj is the target azimuth
with respect to antenna j) and attenuation of the signal on its path RTj from antenna j to the target;
τdj is the total delay of the signal equal to the sum of the delay τdAj in antenna j with respect to a zero

time moment t = 0 and the propagation delay τdpj ; A0j(t) = { A0, t ∈ [τdj , τdj + τp],
0, t /∈ [τdj , τdj + τp];

and ϕ0j is the

phase shift in antenna j.
The signal in Eq. (7) is reflected from the target and then is received by each antenna of the array.

Thus, for the signal received by antenna n we can write

unj(t) = G (αTn, RTn) G (αTj, RTj) A0nj(t)e
−i

[
ω0(t−τdnj−τp/2)+μ(t−τdnj−τp/2)2

/2+ϕ0nj

]
.

Here G(αTn, RTn) is a factor allowing for the directional pattern of antenna n (αTn is the target azimuth
as seen by antenna n) and attenuation of the target echo on its path RTn from the target to antenna
n; τdnj is the total delay of the signal consisting of the delays in antennas j and n, τdAnj = τdAj + τdAn,
and propagation delay from antenna j to the target and then back to antenna n, τdpnj = τdpj + τdpn;

A0nj(t) = { γA0, t ∈ [τdnj, τdnj + τp],
0, t /∈ [τdnj, τdnj + τp],

with γ being the target reflection factor; and ϕ0nj is the total

phase delay in antennas j and n.
The AA output uA(t) represents a sum of the signals received by each elementary antenna

uA(t) =
N∑

j,n=1

unj(t). (8)

For further analysis the distributions of the phase shifts ϕ0j and time delays τdAj across the AA
are assumed to be linear functions, viz.

ϕ0j = −Δϕ0(j − 1) and τdAj = Δτ0(j − 1),

where Δϕ0 and Δτ0 are, respectively, phase and time delay differences between elementary antennas
j + 1 and j of the AA (see Equations (1) and (2)).

Suppose that the AA length L is much shorter than the target range RT , L/RT � 1, and directional
patterns of the elementary antennas are sufficiently broad such that

G(αTj , RTj) ≈ G(αT , RT ).

Then Eq. (8) can be written as

uA(t) ≈ G2 (αT , RT )
N∑

j,n=1

A0nj(t)e
−i

[
ω0(t−τdnj−τp/2)+μ(t−τdnj−τp/2)2

/2+ϕ0nj

]
, (9)

where ϕ0nj = −Δϕ0(j + n − 2) and τdnj ≈ 1
c [2RT + L sin αT − (j + n − 2)l sinαT ] + Δτ0(j + n − 2).

Noticing that summands with coincident sums j + n in Eq. (9) are equal, we can go over to
summation over a single index m = j + n − 1. To that end, let us first sum terms for each m =
1, 2, . . . , 2N − 1. The result is uAm(t) ≈ A0γG2(αT , RT )Am(t)me−i[ω0(t−τdm−τp/2)+μ(t−τdm−τp/2)2/2+ϕ0m]

for m ∈ [1, N ] and uAm(t) ≈ A0γG2(αT , RT )Am(t)(2N − m)e−i[ω0(t−τdm−τp/2)+μ(t−τdm−τp/2)2/2+ϕ0m] for
m ∈ [N +1, 2N −1], where ϕ0m = −Δϕ0(m−1), τdm ≈ 1

c [2RT +L sin αT −(m−1)l sin αT ]+Δτ0(m−1),
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and Am(t) = { 1, t ∈ [τdm, τdm + τp],
0, t /∈ [τdm, τdm + τp].

Finally, combining these two expressions and making summation

over m, we obtain

uA(t) ≈ A0γG2 (αT , RT )
2N−1∑
m=1

Am(t) (N − |N − m|) e−i[ω0(t−τdm−τp/2)+μ(t−τdm−τp/2)2/2+ϕ0m]. (10)

Thus, we have expressed the output signal of a linear equidistant AA as a function of the array
parameters, time, and target position. This signal undergoes optimal filtering whose procedure is
considered in the next Section.

3. OPTIMAL PROCESSING OF THE AA OUTPUT SIGNAL. SPACE-TIME
PATTERN OF THE AA

As known (see, for example, [15]), the optimal algorithm of chirp pulse compression consists in
convolution of the received signal with the reference (transmitted) signal ur(t). Let us select in the
capacity of ur(t) the chirp pulse of unit amplitude associated with transmission of antenna N , viz.

ur(t) = Ar(t)e−i[ω0(t−τdr−τp/2)+μ(t−τdr−τp/2)2/2+ϕ0r], (11)

where τdr = Δτ0(N − 1), ϕ0r = −Δϕ0(N − 1) and Ar(t) = { 1, t ∈ [τdr, τdr + τp],
0, t /∈ [τdr, τdr + τp].

.

In practice, it is more convenient to calculate the convolution integral in the spectral domain based
on the convolution theorem [16]. Then, with account of Eq. (10), the output signal of the compression
filter uc(t) can be represented as

uc(t) =

∞∫
−∞

S∗
r (ω)SA(ω)e−iωtdω = A0γG2(αT , RT )

2N−1∑
m=1

(N − |N − m|)
∞∫

−∞
S∗

r (ω)SAm(ω)e−iωtdω. (12)

Here

Sr(ω) =
1
2π

τdr+τp∫
τdr

ur(t)eiωtdt (13)

is the reference signal spectrum (asterisk “*” means the complex conjugation) and

SAm(ω) =
1
2π

τdm+τp∫
τdm

uAm(t)eiωtdt, (14)

where
uAm(t) = Am(t)e−i[ω0(t−τdm−τp/2)+μ(t−τdm−τp/2)2/2+ϕ0m].

Thus, to find uc(t), it is necessary to calculate the integral

ucm(t) =

∞∫
−∞

S∗
r (ω)SAm(ω)e−iωtdω. (15)

Substitution of Eqs. (13) and (14) into Eq. (15) with account of the Dirac delta function definition,

δ(x) = 1
2π

∞∫
−∞

eiωxdω [17], yields

ucm(t) =
1
2π

e−iΔϕ0(N−m)

τp/2∫
−τp/2

τp/2∫
−τp/2

eiω0(t′−t′′)eiμ(t′−t′′)(t′+t′′)/2δ
(
t + t′ − t′′ + τdr − τdm

)
dt′dt′′.
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Changing the integration variables to the sum ξ = t′ + t′′ and difference ρ = t′ − t′′ ones, ucm(t) can be
represented as

ucm(t) =
1
4π

e−iΔϕ0(N−m)

⎧⎪⎨
⎪⎩

0∫
−τp

dρ

ρ+τp∫
−ρ−τp

dξ +

τp∫
0

dρ

−ρ+τp∫
ρ−τp

dξ

⎫⎪⎬
⎪⎭ ei(ω0ρ+μρξ/2)δ(t + ρ + τdr − τm).

The integrals over ξ are easily calculated, and with account of the expressions for τdr and τm (see
explanations to Equations (11) and (12)), we obtain

ucm

(
t̃
)

=
1

πμ
e−iΔϕ0(N−m)

⎧⎪⎨
⎪⎩

0∫
−τp

eiω0ρ sin [μρ (τp + ρ) /2]
ρ

δ
[
t̃ + ρ − (N − m)Δ

]
dρ

+

τp∫
0

eiω0ρ sin [μρ(τp − ρ)/2]
ρ

δ
[
t̃ + ρ − (N − m)Δ

]
dρ

⎫⎬
⎭ , (16)

where t̃ = t − 2RT /c and Δ = l
c sin αT − Δτ0. As can be seen, the first term in Eq. (16)

contributes to ucm(t̃) provided that (N − m)Δ ≤ t̃ ≤ (N − m)Δ + τp, while the second one if
(N −m)Δ ≥ t̃ ≥ (N −m)Δ− τp. Then, making use of the sifting property of the Dirac delta function,
we finally arrive at

ucm

(
t̃
)

|t̃−(N−m)Δ|≤τp

=
1

πμ
e−i{ω0[t̃−Δ(N−m)]+Δϕ0(N−m)} sin

{
μ
[
t̃ − Δ(N−m)

](
τp−

∣∣t̃−Δ(N−m)
∣∣) /2

}
t̃ − Δ(N − m)

. (17)

So, now we are in position to calculate the pulse compression filter output uc(t̃) through substitution of
Eq. (17) into Eq. (12) with account of Eq. (16) and summation of the result over m. Since with fixed
parameters of the AA and angle α0 the response of the pulse compression filter uc(t̃) depends not only
on the time alone but also on the target angular position, in what follows we will refer to it as the AA
space-time pattern and denote as uc(t̃, αT ). In the next Section, uc(t̃, αT ) is analyzed as a function of
the AA parameters and characteristics of the sounding signal.

4. APPLICABILITY CONDITION OF THE PHASE SCANNING. ANALYSIS OF
NUMERICAL RESULTS

As follows from Eq. (17), in the case of the time-delay scanning (i.e., through changing Δτ0 = l
c sinα0

only, with Δϕ0 = 0), the partial signals ucm(t̃) in Eq. (12) will be summed with no loss if α0 = αT , i.e.,
when the array antenna is precisely aimed at the target. In this case Δ = 0 and Equation (12) yields

u(td)
c (t̃, αT
|t̃|≤τp

) =
A0γ

πμ
N2G2(αT )e−iω0 t̃ sin

[
μt̃

(
τp − |t̃|) /2

]
t̃

.

(Here and below, we ignore the range dependence of the factor G(αT , RT ) assuming that it changes but
slightly over the characteristic scale of the function sin[μt̃(τp−|t̃|)/2]/t̃). As expected, the output signal
of the pulse compression filter in the case under consideration is N2 times stronger than that received
by a single elementary antenna.

In the case of phase scanning (i.e., through changing Δϕ0 = 2πl
λ sin α0 with Δτ0 = 0) summation

in Eq. (12) will be performed with some loss even if the AA is precisely aimed at the target (α0 = αT ),
since Equation (17) implies that

ucm

(
t̃
)

|t̃−(N−m)Δ|≤τp

=
1

πμ
e−iω0t̃

sin
{

μ

2

[
t̃ − l

c
(N − m) sin αT

](
τp −

∣∣∣∣t̃ − l

c
(N − m) sin αT

∣∣∣∣
)}

t̃ − l

c
(N − m) sin αT

.
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Therefore, the output signal u
(ph)
c (t̃, αT ) will comprise partial signals ucm(t̃)

|t̃−(N−m)Δ|≤τp

shifted relative to

one another along the time axis t̃ by Δsm = l
c(N −m) sin αT , and certain portion of target echo power

will be lost. The exception is the case αT = 0 where the time shift between adjacent components of the
signal u

(ph)
c (t̃, αT ) is equal to 0.

The amount of the loss in the target echo power can be regarded as negligibly small if the maximum
shift Δsmax = l

c(N − 1)| sin αT | = L
c | sin αT | of the partial components of the signal u

(ph)
c (t̃, αT ) is much

less than their characteristic width Δt̃, i.e., if the following inequality holds
Δs1

Δt̃
� 1. (18)

It is easy to show that the zero-level width of the functions ucm(t̃) is

Δt̃ = τp

[
1 −

√
1 − 4/B

]
, (19)

where B = Δfτp stands for the time-bandwidth product of the chirp pulse.
Then, the condition in Eq. (18) for B � 1 can be brought to the form

BL| sin αT |
2cτp

� 1.

Taking into account that the value cτp

2B = ΔR determines the range resolution, the applicability condition
of the phase scanning in Eq. (18) can be represented as

ς =
L| sin αT |

4ΔR
� 1. (20)

Thus, the phase scanning is applicable in AAs of chirp pulse radars if the “longitudinal” dimension of
the array L‖ = L| sin α0| is much smaller than four range bins. Note that inequality in Eq. (20) permits
estimating the relative frequency sweep Δf/f0 as

Δf

f0
� 2λ

L| sin αT | ,

which value quite agrees with the estimate in Eq. (5) for the PAA relative bandwidth [14]. Accordingly,
for the absolute value of the frequency sweep Δf we have

Δf � 2c
L| sin αT | .

Shown in Fig. 2 as 3D relief plots are normalized space-time power patterns (STPP) of a linear
equidistant AA calculated for the scan angles α0 = 10◦ (a), α0 = 19◦ (b), and α0 = 60◦ (c) in dependence
on the time t̃ and target azimuth αT for the cases of time-delay, u

(td)
cnorm(t̃, αT ) = |u(td)

c (t̃, αT )|2/|u(td)
c (t̃ =

0, αT = α0)|2 (left panels) and phase, u
(ph)
cnorm(t̃, αT ) = |u(ph)

c (t̃, αT )|2/|u(td)
c (t̃ = 0, αT = α0)|2 (right

panels) scanning. The sounding signal represents a chirp pulse of length τp = 0.1µs with the frequency
sweep Δf = 400 MHz and central frequency f0 = 10 GHz (λ = 3 cm). The array spacing equals a half
wavelength l = λ/2 = 1.5 cm, and the number of the elementary antennas is N = 133 (L = 198 cm). The
directional pattern of the elementary antenna is described as cos2 α0. (Note that the same values of the
AA parameters are used in all the calculations presented in this paper.) The factor ς for αT = α0 = 10◦,
19◦ and 60◦ assumes the values of approximately 0.23 (ς � 1), 0.43 (ς < 1) and 1.14 (ς > 1). Note that
according to Eq. (6), the bandwidth of the PAA under consideration for α0 = 19◦ is 403 MHz, i.e., is
practically equal to the frequency sweep range Δf = 400 MHz used in the calculations, and α0 = 60◦
corresponds to the conventionally accepted value of the maximum scan angle [6].

As can be seen, the u
(td)
cnorm(t̃, αT ) pattern preserves its structure in the course of changing the scan

angle α0. Only the familiar broadening of the main beam and sidelobes is observed over the angular
coordinate αT associated with decreasing the directivity due to reducing the effective (“transverse”)
length L⊥ = L cos α0 of the AA as α0 increases. At the same time, the u

(ph)
cnorm(t̃, αT ) pattern is essentially
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(a)

(b)

(c)

Figure 2. 3D plots of normalized STPPs of a linear equidistant AA calculated for the scan angles (a)
α0 = 10◦, (b) α0 = 19◦ and (c) α0 = 60◦ in dependence on the time t̃ and target azimuth αT for the
cases of time-delay (left panels) and phase (right panels) scanning.

dependent on the scan angle α0. Thus, for α0 = 10◦, when the condition in Eq. (20) is strictly met since
ς = 0.23 � 1, the u

(ph)
cnorm(t̃, αT ) and u

(td)
cnorm(t̃, αT ) patterns are practically coincident (see Fig. 2(a)).

One can see just a minor decrease in the main lobe amplitude (approximately by 0.5 dB) and a slight
increase of the minima in the case of the phase scanning as compared with the time-delay one. With
α0 = 19◦, when the condition in Eq. (20) is slightly violated (ς = 0.43 < 1), the difference between
u

(ph)
cnorm(t̃, αT ) and u

(td)
cnorm(t̃, αT ) is more noticeable (see Fig. 2(b)) despite the fact that the bandwidth of

the given PAA as estimated after Eq. (6) is about 403 MHz, and this value exceeds the sweep frequency
range of the chirp pulse by just 3 MHz. In particular, the main maximum of u

(ph)
cnorm(t̃, αT ) is lower than

that of u
(td)
cnorm(t̃, αT ) by approximately 1.72 dB and slightly wider along the angular coordinate than the

latter. Also, the minima become yet less pronounced than the case α0 = 10◦.
With a strong violation of the condition in Eq. (20), whose situation corresponds to α0 = 60◦(ς =

1.14 > 1), the u
(ph)
cnorm(t̃, αT ) pattern becomes drastically distorted. This is clearly observed from the

sections of u
(td)
cnorm(t̃, αT ) and u

(ph)
cnorm(t̃, αT ) shown in Fig. 2 by the planes αT = α0 and t̃ = 0µs, which

are presented in Fig. 3. As can be seen, increasing the angle α0 in the case of the phase scanning results
in decreasing the main maximum of the u

(ph)
cnorm(t̃, αT = α0) dependence and its broadening as compared

with the main lobe of u
(td)
cnorm(t̃, αT = α0), and also in lowering the relative sidelobe level (SLL), SLL

(ph)

t̃
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(a)

(b)

(c)

Figure 3. Sections of the u
(td)
cnorm(t̃, αT ) and u

(ph)
cnorm(t̃, αT ) patterns presented in Fig. 2 by the planes

αT = α0 (left panels) and t̃ = 0µs (right panels) for the cases of the time-delay (solid lines) and phase
(dashed lines) scanning.

(see the dashed lines in the left panels of Fig. 3).
In addition, the matched filter output of the chirp pulse compression radar u

(ph)
cnorm(t̃, αT = α0)

stretches along the time axis t̃. Thus, for α0 = 60◦ its length is about ±0.1055µs, whereas duration of
u

(td)
cnorm(t̃, αT = α0) is equal to double length of the sounding pulse τp, i.e., to ±0.1µs. It is quite evident

that this effect is because the time-delay differences between m-th components of the signal uc(t̃) are
not compensated in the case of the phase scanning. As a result, the length of the pulse compression
filter is equal to 2(τp + L‖/c), as can be seen from Eq. (17).

As to decreasing and broadening the main maximum and reducing the relative SLL in the case
of the phase scanning, these effects likely occur due to amplitude modulation of the effective pulses
transmitted by the PAA toward a target and then received from it. Actually, transmission of chirp
pulses with a fixed phase shifts Δϕ0 = 2πl

λ sin α0 between the elementary antennas can be treated in
terms of frequency scanning antenna arrays [13]. Indeed, if the instantaneous frequency fins of a chirp
pulse changes during its transmission within the range fins = f0±Δf/2, the main lobe position will vary
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between the limits α0 = sin−1 cΔϕ0

2πl(f0±Δf/2) . As a result, the pulse transmitted toward the target will be
amplitude modulated by the PAA pattern. A similar modulation occurs in the course of reception of the
target echo. Because of this, the signal waveform at the pulse compression filter input can essentially
differ from the square one. So, this modulation can be regarded as a result of applying a kind of a taper
window to the transmitted/received pulses, which is always accompanied by the effects similar to those
described above (see, for example, [15, 18]).

It should be noted that high-level sidelobes in the matched filter output can mask weak target
echoes against strong reflections from other targets and clutter or cause false detections. For this reason,
various kinds of taper windows (Hamming, Blackman, etc.) are used in the time or frequency domain
for sidelobe suppression. As a rule, these are standard windows developed for optimum estimation of
the spectral amplitude of narrowband signals [19]. The choice of a particular window always faces an
alternative between broadening and decreasing the main maximum, which affect the range resolution
and signal-to-noise ratio, and reduce the SLL. Since similar effects can be observed in phased array
radars, it might be necessary to take these into account when selecting the taper window parameters.

Analysis of the u
(td)
cnorm(t̃ = 0, αT ) sections presented in the right panels of Fig. 3 shows that their

structure is practically independent of the scan angle α0, except for the familiar broadening of the
main and minor lobes as α0 increases. At the same time, the u

(ph)
cnorm(t̃ = 0, αT ) distributions depend

essentially on α0. Thus, if α0 = 10◦ (ς = 0.23 � 1), the u
(ph)
cnorm(t̃ = 0, αT ) and u

(td)
cnorm(t̃ = 0, αT )

dependences are practically identical (see Fig. 3(a)). One can see only a slight difference in the main
and minor lobe levels, as well as in the width of the main maximum and depth of minima. With
α0 = 19◦ (ς = 0.43 < 1), in addition to the noticeable decrease of the main maximum discussed above
when analyzing the u

(td)
cnorm(t̃, αT = α0) and u

(ph)
cnorm(t̃, αT = α0) dependences, a significant increase is

observed in the main lobe width Δα
(ph)
−20 dB at the −20 dB level, which is approximately half as much

again as the respective width Δα
(td)
−20 dB of u

(td)
cnorm(t̃ = 0, αT ). The minima flatten out significantly and

practically degrade. When α0 = 60◦ (ς = 1.14 > 1) the sidelobes in u
(ph)
cnorm(t̃, αT = α0) finally disappear,

merging with the main lobe in a single broad maximum with Δα
(ph)
−20 dB ≈ 5.7◦. This maximum is lower

than the main lobe of the u
(td)
cnorm(t̃ = 0, αT ) dependence by approximately 8 dB and is shifted with

respect to the latter by nearly 0.72◦ toward smaller αT . This effect seriously deteriorates the signal-
to-noise ratio, angular resolution, and accuracy of estimating the target azimuth. Most likely, it arises
due to uncompensated time-delay difference between m-th components of the signal u(ph)(t̃). Indeed,
Equation (17) implies that maxima and minima of component m of the signal u(ph)(t̃) in the case of the

phase scanning are shifted by the value Δ(ph)

t̃
= l

c sin αT along the time axis t̃ relative to the respective
maxima and minima of component m + 1. Thus, with changing αT in a certain vicinity to α0 the
delay Δ(ph)

t̃
may prove sufficient for the sidelobes in the u

(ph)
cnorm(t̃ = 0, αT ) dependence being partially

or completely suppressed.
Figure 4 presents ratios of amplitudes u

(td)
cnorm(0, α0)/u

(ph)
cnorm(0, α0) (solid line) and characteristic

widths (at the −20 dB level) Δα
(ph)
−20 dB/Δα

(td)
−20 dB (dashed line) and Δt̃

(ph)
−20dB/Δt̃

(td)
−20 dB (dash-and-dot

line) of the output signals of the pulse compression filter in dependence on the frequency sweep range
Δf of the chirp pulse. The results have been obtained for the pulse length τp = 0.1µs, scan angle
α0 = 30◦, and increment in Δf equal to 100 MHz. The values of the above ratios calculated at these
discrete points (these are marked by symbols) have been approximated using the “spline” option in the
Origin 8.1 program. With the given parameters of the AA and sounding pulse, the ratio ς in Eq. (20)
changes linearly with Δf from 0.158 at Δf = 100 MHz to 1.108 at Δf = 700 MHz. As can be seen, with
increasing Δf the main maximum of the u

(ph)
cnorm(t̃, αT ) pattern monotonically decreases in magnitude

and broadens over the time and angular coordinates with respect to that of the u
(td)
cnorm(t̃, αT ) pattern.

Note that the bandwidth of the PAA with the given parameters as estimated from Eq. (6) is equal
to about 262.4 MHz. With this value of Δf the main maximum of the u

(ph)
cnorm(t̃, αT ) pattern is lower

by approximately 1.85 dB than that of the u
(td)
cnorm(t̃, αT ) pattern and nearly 1.13 and 1.28 times wider
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Figure 4. Ratios of the amplitudes u
(td)
cnorm(0, α0)/u

(ph)
cnorm(0, α0) (solid line) and characteristic widths

(at the −20 dB level) Δα
(ph)
−20 dB/Δα

(td)
−20 dB (dashed line) and Δt̃

(ph)
−20dB/Δt̃

(td)
−20 dB (dash-and-dot line) of

the main maxima of the pulse compression filter output in dependence on the frequency sweep range
Δf calculated for a chirp pulse of length τp = 0.1µs and scan angle α0 = 30◦.

along the t̃ and αT coordinates, respectively.
Figure 5 presents dependences of the relative SLLs of the distributions u

(ph)
cnorm(0, αT ), (SLL

(ph)
α ,

solid line with squares), u
(td)
cnorm(0, αT ) (SLL

(td)
α , dashed line with squares), u

(ph)
cnorm(t̃, αT = α0) (SLL

(ph)

t̃
,

solid line with triangles) and u
(td)
cnorm(t̃, αT = α0) (SLL

(td)

t̃
, dashed line with triangles) on the chirp sweep

range Δf . The pulse length is equal to τp = 0.1µs, and the scan angle is α0 = 30◦. The calculated
points have been approximated similarly as in Fig. 4. Note that for certain values of Δf (specifically,
400, 600, and 700 MHz), the sidelobes in the u

(ph)
cnorm(0, αT ) dependence have not been pronounced. In

these cases, the SLL
(ph)
α estimates have been represented by the u

(ph)
cnorm(0, αT ) values calculated for the

angles αT corresponding to the first (highest) sidelobe of the u
(td)
cnorm(0, αT ) dependence. These points

are encircled in the SLL
(ph)
α plot.

As already mentioned above when analyzing the plots in Fig. 3, the time-delay scanning is not
accompanied by any distortions of the space-time structure of the output signal of the pulse compression
filter. As a result, SLL

(td)
α and SLL

(td)

t̃
are practically independent of Δf , as can be clearly seen from

the plots in Fig. 5. A minor increase observed in the SLL
(td)

t̃
is explained by the fact that the announced,

in the literature, −13.2 dB sidelobe level in compressed chirp pulses [15] is reached only with very large
values of the time-bandwidth products B → ∞. At the same time, SLL

(ph)
α and SLL

(ph)

t̃
are essentially

dependent on Δf . Thus, SLL
(ph)

t̃
rapidly decreases from approximately −15 dB to nearly −31 dB as Δf

changes from 100 to 500 MHz. To all appearance, this is due to increasing the angular sector of effective
frequency scanning (this effect was discussed earlier), which results in stronger amplitude modulation
of the pulse transmitted toward the target and echo received from it. In this way, an equivalent of a
tapered window is realized which leads to sidelobe suppression in the u

(ph)
cnorm(t̃, αT = α0) dependence.

The SLL of the u
(ph)
cnorm(0, αT ) dependence first decreases from approximately −26.5 dB to nearly −29 dB

as Δf changes from 100 to 500 MHz and then begins to increase monotonically with Δf . Apparently,
this effect is explained as follows. The time delay Δ(ph)

t̃
between components m and m + 1 of the signal

u(ph)(t̃) in the case of the phase scanning is determined by the array spacing l and scan angle α0, viz.
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Δ(ph)

t̃
= l

c sin α0. With a fixed pulse length τp, the time-bandwidth product B of the signal linearly
increases with Δf which results, as follows, from Eq. (19), in decreasing the widths of the main and
minor lobes (Δt̃

(ph)
ml and Δt̃

(ph)
sl , respectively) of the signal u(ph)(t̃). With the AA parameters as specified

above and scan angle α0 = 30◦, Δ(ph)

t̃
is equal to 0.25 ·10−8 s, while Δt̃

(ph)
ml varies, according to Eq. (19),

from 0.225 · 10−7 s for Δf = 100 MHz to approximately 0.29 · 10−8 s for Δf = 700 MHz. As a result, the
amount of loss in summation of the m-th components of the signal u(ph)(t̃) increases with Δf . Since the
first (highest) sidelobe of component m of the signal u(ph)(t̃) is approximately half as narrow as its main
maximum, the first sidelobe in the resultant signal u(ph)(t̃) decreases faster than its main maximum.

As a result, the SLL
(ph)
α magnitude in Fig. 5 decreases with changing Δf from 100 to approximately

450 MHz. At Δf ≈ 400 MHz the characteristic width Δt̃
(ph)
sl of the sidelobes becomes comparable with

the time delay Δ(ph)

t̃
. Accordingly, the sidelobes degrade merging with the main peak in a single rather

wide maximum. With a further increase of Δf , this maximum diminishes and broadens. As a result,
the SLL

(ph)
α value in Fig. 5 increases quite rapidly as Δf changes from about 450 to 700 MHz.

Figure 5. Relative SLLs of the functions u
(ph)
cnorm(0, αT ) (solid line with squares), u

(td)
cnorm(0, αT ) (dashed

line with squares), u
(ph)
cnorm(t̃, αT = α0) (solid line with triangles) and u

(td)
cnorm(t̃, αT = α0) (dashed line

with triangles) calculated in dependence on the chirp sweep range Δf for the chirp pulse of length
τp = 0.1µs and scan angle α0 = 30◦.

Thus, the use of the phase scanning in AAs of chirp pulse radars is accompanied by the effects which
are similar to those observed in the case of applying tapered windows for reducing the sidelobe levels in
the time and space (angular) domains. The magnitude of these effects for a specific AA depends on the
frequency sweep range Δf of the sounding signal which should be taken into account when selecting
parameters of the tapered function. To increase the admissible frequency sweep range Δf with a given
azimuth scanning sector (or the azimuth scanning sector with a given frequency sweep range Δf), a
combination of two beamforming techniques can be used (see, for example, [1, 11, 12]). In this case the
AA is divided into subarrays, with the phase scanning being used in each of these. The subsection
length Lss is to be selected from the condition in Eq. (20) based on the given frequency sweep range
Δf and maximum scan angle α0max, viz.

Lss � 2c
Δf | sinα0max| .
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The final directional pattern is synthesized through summation of the signals from all subarrays after
introducing appropriate time delays between the latter.

5. CONCLUSIONS

The paper presents results of investigating the space-time structure of the output signal of a linear
equidistant array of a chirp pulse radar after pulse compression filter, uc(t̃, αT ), in dependence on
the frequency sweep range Δf of the sounding signal. Distortions of the space-time power pattern
u(ph)(t̃, αT ) observed in such systems in the case of the phase scanning are analyzed. An explanation
of these distortions is suggested. It is shown that they are similar to the effects observed in the case of
applying taper windows for sidelobe suppression in the time and space (angular) domain. Magnitudes
and widths of the main and minor lobes of the space-time power pattern of a phase-scanned array are
analyzed as functions of the scan angle with the frequency sweep range being fixed and vice versa.
Based on the results obtained an applicability condition is suggested for the phase scanning in antenna
arrays of chirp pulse radars. It is shown that slight violation of this condition results in decreasing and
broadening of the main and minor lobes in the sections of u(ph)(t̃, αT ) by the planes t̃ = 0 and αT = α0.
With strong violations of the phase scanning applicability condition the sidelobes in the u(ph)(t̃ = 0, αT )
dependence degrade merging with the main lobe in a single rather broad maximum. The observed
effects can seriously affect the range and azimuth resolution of radars and should be taken into account
when selecting parameters of tapered windows. To increase the admissible frequency sweep range with
a given azimuth scanning sector (or the azimuth scanning sector with a given frequency sweep range), a
combination of two beamforming techniques can be used (see, for example, [1, 11, 12]). In this case, the
array antenna is divided into several subarrays, with the phase scanning being used in each of them.
The subsection length is to be selected from the phase scanning applicability condition based on the
given frequency sweep range and maximum scan angle. The final directional pattern is synthesized
through summation of the signals from all subarrays after introducing appropriate time delays between
the latter.
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