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Addressing Grating Lobes in Linear Scanning Phased Arrays with
Self-Nulling Elements and Optimized Amplitude Distributions

Zabed Iqbal and Maria Pour*

Abstract—An effective method to reduce grating lobes in linear scanning phased array antennas with
large element spacing of one wavelength is presented. The proposed technique is based on employing
self-nulling antenna elements by simultaneously exciting the first two modes in a circular microstrip
patch antenna to partially nullify the grating lobes. More importantly, a modified amplitude tapering
is optimized in the array level to facilitate the grating lobe reduction for relatively wide scan angles up
to ±60◦. Analytical results of a 21-element linear array are fully presented, and a −22.5 dB grating lobe
reduction for up to ±60◦ scan angles is reported using the proposed method, followed by the results of
a smaller array for validation purposes.

1. INTRODUCTION

Scanning phased array antennas are much sought after in modern wireless communication systems
because they can provide high directivity, reconfigurable radiation patterns, moderate aperture
efficiency, and electronic beam scanning [1]. Microstrip patch antennas have extensively been used
as an element in phased arrays due to their easy fabrication and accessible integration with the feeding
network and other microwave circuits. The main drawback of conventional patch antennas is their low
efficiency, which results in limited gain in the order of 5–6 dBi for a single element [2]. To simultaneously
reduce the cost of phased array antennas and increase gain, a substantially large aperture area with
a reduced number of elements is required, which inherently necessitates the use of large inter-element
spacing. However, grating lobes appear in the visible region for element spacing greater than half a
wavelength, which worsens for medium- and wide-scanned beams [3].

Various grating lobe reduction techniques have been reported to improve the phased array
performance. The sparse or thinned array [4, 5] is one of the most common approaches to reduce
grating lobes. However, building a large thinned array is challenging and cumbersome as it often
needs complicated optimization techniques [6–8] and feeding networks to achieve desired radiation
characteristics. Another classical approach to suppress grating lobes is the aperiodic distribution of
the elements [9] or subarrays [10, 11] with a tapered amplitude excitation. To this end, non-uniform
element separation [12] along with an amplitude tapering was used to reduce grating lobes [13] as well
as minor lobes [14]. In addition, the desired minor lobes can be obtained by using different array
synthesis methods, e.g., orthogonal [15], Tschebyscheff [16–18], and binomial arrays [19, 20]. However,
all of the aforementioned grating lobe reduction methods and array syntheses use conventional single-
mode antennas as an element. In contrast, adaptive multi-mode antenna elements exhibit unique
self-scanning and nulling characteristics, which have been utilized by the authors in hexagonal planar
phased arrays [21, 22] to reduce grating lobes for small-, medium-, and wide-scan angles by uniformly
tapering the amplitude coefficients of the peripheral elements. Recently, preliminary results of grating
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lobe reductions in a planar array using the dual-mode elements for scan angles up to 45◦ were presented
by the authors in [23], wherein the standard −30 dB Tschebyscheff distribution was applied to the array
without any further optimization.

In this paper, the grating lobe issue is further addressed in linear scanning phased array antennas,
consisting of dual-mode microstrip patch elements, spaced one-wavelength apart, for scanned angles up
to ±60◦. The dual-mode circular microstrip patch antenna operates at the TM11 and TM21 modes. It
will be shown that in addition to using the adaptive dual-mode elements, the amplitude distribution
of the array is no longer a simple step function as reported in [21] in hexagonal planar arrays; instead
it needs to be properly optimized to mitigate the grating lobe issues. To this end, a 21-element linear
phased array is investigated. It will be shown that the grating lobes reduce to well below −22.5 dB for the
scan angles up to ±60◦. The array performance in terms of grating lobes is compared with conventional
amplitude tapering distributions such as the Binomial and Tschebyscheff ones in counterpart arrays
consisting of single-mode antenna elements. For the proof of concept, the simulated and synthesized
measured patterns are provided for an 11-element linear array with the 30◦ scan angle and an element
spacing of one wavelength.

2. ANALYTICAL MODEL OF THE ELEMENT AND ARRAY

Based on the cavity model, a dual-mode circular microstrip patch antenna, which is the constitutive
element of the proposed phased array antenna, is analyzed at the frequency of 10 GHz. A two-layer
stacked configuration supported by an infinite ground plane was adopted to construct such a dual-mode
antenna element as depicted in Fig. 1. For simplicity, air (εr = 1) is considered as the dielectric substrate
with a thickness of 0.053λo between the layers. The TM11 mode was exited in the top patch with radius
a1 = 0.293λo and the TM21 mode was excited in the middle patch with radius a2 = 0.486λo, where λo

is the free-space wavelength at 10 GHz.

Figure 1. Top-view of the dual-mode circular microstrip patch antenna element operating at the TM11

and TM21 modes with a1 = 0.293λo and a2 = 0.486λo, where λo is the free-space wavelength at 10 GHz.

As expected, the microstrip patch antenna generates broadside and conical radiation patterns at
the individual TM11 and TM21 modes [24], respectively. To demonstrate the self-scanning and adaptive
nulling [25] properties of the dual-mode circular patch antenna, some representative element patterns
of the combined modes with a +90◦ phase shift are plotted in Fig. 2(a) for different magnitudes of the
mode excitation ratio, denoted by |A21|, which represents the relative strength of the TM21 mode to
that of the dominant TM11 mode. The phase shift between the two modes is denoted by α21. That
is, A21 = |A21|∠α21. As observed in Fig. 2(a), the main beam direction and the location of nulls of
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Figure 2. (a) Normalized radiation patterns, (b) null positions and tilt angle of a circular microstrip
patch antenna operating at the combined TM11 and TM21 modes with a 90◦ phase shift for different
|A21|.

the element patterns are controlled by the magnitude excitation ratio |A21|, while a +90◦ phase shift
between the two modes is required to form a full null in the element pattern. More specifically, the
main beam of the element pattern is scanned towards positive and negative elevation angles, for phase
shifts of −90◦ and +90◦, respectively. For brevity, only the results for the latter phase shift are plotted
in Fig. 2(a). Thus, by simultaneously exciting the two modes, a null is formed in the element pattern,
which can be steered by the magnitude excitation ratio |A21| to partially nullify the grating lobe in the
array pattern. In the element level, a continuous null steering from 10◦ to 74◦ is realized by changing
|A21| from 4.0 to 1.0, resulting in a 64◦ dynamic null range. Also, the main beam scans from broadside
to −32◦ for |A21| from 0 to 4.0, as per Fig. 2(b).

As an example, a 21-element linear array is investigated, which is composed of identical dual-mode
circular microstrip patch antenna elements placed symmetrically along the x-axis with an element
spacing of d = λo, as illustrated in Fig. 3. The total radiation pattern of the linear array is expressed
by [3],

Et(θ, φ) = Eelement(θ, φ) × AF (θ, φ) (1)

where Et(θ, φ) is the total array radiation pattern, Eelement(θ, φ) the element pattern, and AF (θ, φ) the
array factor of the 21-element linear array, which can be written as,

AF (θ, φ) =
∑M+1

r=1
wr cos

[
2πd (r − 1)

λ
(sin θ cos φ − sin θo cos φo)

]
(2)

and,

Eelement (θ, φ) = âθEθ (θ, φ) + âφEφ (θ, φ) (3)
Eθ (θ, φ) = −j ([J0 (koa1 sin θ)− J2 (koa1 sin θ)] cos φ

+jA21 [J1 (koa2 sin θ) − J3 (koa2 sin θ)] cos 2φ) (4)
Eφ (θ, φ) = +j ([J0 (koa1 sin θ) + J2 (koa1 sin θ)] sin φ

+jA21 [J1 (koa2 sin θ) + J3 (koa2 sin θ)] sin 2φ) cos θ (5)

Figure 3. Geometry of a 21-element linear phased array consisting of the proposed dual-mode circular
patch antennas with element spacing of d = λo.
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In Eq. (2), wr is the amplitude coefficient of the array elements, and (θo, φo) are the angular
location of the scanned beam, and M = 10 for the 21-element linear array. In Eqs. (4)–(5), ko is the
wave number, and a1 and a2 are the radii of the TM11 and TM21 patches, respectively. Jm(u) is the
Bessel function of the first kind of order mth, where m changes from 0 to 3. The zeros of the derivatives
of the Bessel function determine the order of the resonant frequencies and the effective radii of the
patches.

3. OPTIMIZED AMPLITUDE DISTRIBUTION

Radiation patterns with low grating lobes (GL) and sidelobe levels (SLL) are highly sought after in
many applications, e.g., wide-angle scanning radars, passive multifunctional imaging radars, automotive
radars such as collision avoidance, autonomous cruise control radars and many more. While low SLL
arrays can be synthesized by properly tapering the amplitude distributions of the elements, grating lobes
cannot necessarily be reduced by only empowering tapered amplitude distributions. Thus, to reduce
grating lobes effectively, an element pattern with self-nulling characteristics is required, which can be
realized by simultaneously exciting the TM11 and TM21 modes in circular patch elements. In particular,
a proper mode excitation ratio of A21 needs to be utilized for a given scan angle, as it controls the main
beam tilt angles and element pattern nulls. The direction of the scanning beam in the element level
is controlled by the polarity of the ±90◦ phase shift between the modes. Thus, the main parameters
to reduce the grating lobes are the magnitude excitation ratio of |A21| and array coefficients wr. In
this study, the Genetic Algorithm (GA) optimization tool [26] in MATLAB is used to find the optimal
values of |A21| and wr for a given scan angle for the realization of maximum grating lobe reduction and
low SLLs in linear arrays with one-wavelength element spacing.

In the GA, the initial population was chosen as 200 chromosomes, and each chromosome consists
of (N +1)/2 genes. Of these (N +1)/2 genes, (N −1)/2 genes contain the information of the amplitude
distribution of the N elements, and one gene represents |A21|. In this study, without the loss of
generality, an odd number of elements, e.g., N = 11, 15, or 21, are considered, in which the amplitude
coefficient of the elements is normalized to that of the centre element. Now, to evolve toward the optimal
values of the |A21| and wr, a fitness function (FF ) is defined as,

FF = q1 · |GLt (θo) − GL (θo)| + q2 · |SLLt − SLL| (6)

where GLt and SLLt are the target grating lobe and target SLL, respectively, while q1 and q2 are the
respective weights. The target SLL was set to −40 dB. The expected grating lobe is a function of scan
angle θo, and thus the minimum grating lobe was set to −30 dB for θo = −60◦. Adaptive feasible
mutation and a crossover fraction of 0.8 were used as reproduction criteria. The maximum generation
is 25× (N +1), which was set as the stopping criterion. The constrains on the amplitude tapering were
bounded such that its upper and lower limits were set to the −30 dB Tschebyscheff and the standard
Binomial distributions, respectively. The normalized Binomial coefficients for an N (odd) element linear
array can be calculated by,

wB
r =

(n

2
!
)2

(r − 1)! (n − r + 1)!
(7)

where r = 1, 2, . . . , n + 1, and n = N − 1. The optimized amplitude coefficients (wr) and |A21| for
different scan angles in the 21-element linear phased array with one-wavelength element spacing are
provided in Fig. 4.

4. RESULTS: RADIATION PATTERNS, ARRAY DISTRIBUTIONS, AND
DIRECTIVITY

To verify the proposed grating lobe reduction method using the dual-mode antenna element with
the optimized amplitude tapering of the array, results for different scan angles are presented and
discussed for the 21-element linear array shown in Fig. 3. To further demonstrate the capability of
the proposed technique, the dual-mode array with the optimized amplitude tapering is compared with
the conventional arrays of single-mode elements with standard Binomial and −40 dB Tschebyscheff
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Figure 4. GA optimized values of the amplitude coefficients (wr) of the 21-element array when d = λo.
(Inset — GA optimized values of the mode excitation ratios for a given scan angle).

distributions for the respective scan angle, maintaining a one-wavelength element spacing for all cases.
The corresponding results for the scan angles of −20◦, −40◦ and −60◦ are shown in Figs. 5(a)–
(c), respectively. As can be seen, for the −20◦ scan angle, the grating lobe for the dual-mode
(A21 = 1.35/90◦) case is reduced to well below −30 dB with the optimized amplitude distribution.
The reduction is in order of −31 dB when the main beam is scanned to −40◦ with the same set of
amplitude tapering coefficients and |A21| = 2.2, as depicted in Fig. 5(b). Interestingly enough, even for
the wide scan angle of −60◦, a 22.5 dB grating lobe reduction is realized with the proposed method,
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Figure 5. Normalized radiation patterns of the 21-element linear phased array with d = λo, for the scan
angle of (a) θo = −20◦, (b) θo = −40◦ and (c) θo = −60◦, with both single-mode antenna elements with
Binomial and −40 dB Tschebyscheff excitations, and the dual-mode antenna elements with optimized
amplitude distribution; for dual-mode cases: (a) |A21| = 1.35, (b) |A21| = 2.2, and (c) |A21| = 4.5.
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when |A21| = 4.5. Several minor lobes appear in the radiation patterns as per Fig. 5(c), though all of
which are well below −35 dB. These minor lobes can be further suppressed by choosing another set
of tapering coefficients, which are close to the regular Binomial expansion, but with the penalty of
larger far-out lobes. The corresponding results are omitted here for brevity. It is worth noting that the
grating lobes are almost as high as the main beam for the conventional single-mode arrays with standard
Binomial and −40 dB SLL Tschebyscheff amplitude distributions for the aforementioned scan angles, as
shown in Fig. 5. This implies that tapering off the amplitude distribution in conventional, single-mode,
scanning linear arrays to reduce grating lobes simply becomes ineffective. Instead, adaptive antenna
elements with null-steering capabilities, such as the proposed dual-mode elements, are required.

A sequence of normalized radiation patterns of the optimized 21-element linear phased array
antenna is plotted in Fig. 6, starting from θo = −10◦ to θo = −60◦, when d = λo. All the grating
lobes of the total radiation patterns, i.e., the product of the antenna element and the array factor, have
been reduced to well below −22.5 dB.

N
or

m
al

iz
ed

 R
ad

ia
tio

n 
P

at
te

rn
 (

dB
)

-5

-10

-15

-20

-25

-30

-35

-40

0

-80 -60 -40 -20 0 20 40 60 80

θ (degree)

Figure 6. Normalized radiation patterns of the optimized 21-element linear phased array with d = λo,
and a scan angle from θo = −10◦ to θo = −60◦, with the dual-mode antenna elements and modified
array amplitude coefficients.

The proposed modified amplitude coefficients are compared with the conventional amplitude
functions, i.e., uniform, Binomial, and −30 dB and −40 dB Tschebyscheff in Figs. 7(a)–(c) for 11-,
15-, and 21-element linear arrays, respectively. The optimized coefficients for the scan angle up to −60◦
with one-wavelength element spacing are quite close to those of the classical −39.2 dB Tschebyscheff
synthesis, as illustrated in Fig. 7.

Figure 8 summarizes the resultant grating lobe reduction and the required |A21| of the proposed
method for the scan angles of −10◦ to −60◦, with one-wavelength element spacing. It is seen that
the grating lobes are reduced to well below −22.5 dB by using the dual-mode self-nulling elements and
optimizing their amplitude coefficients in the array level. The selection of null positions, along with the
scanned main beam angle, is crucial to effectively reduce the grating lobes. More specifically, the mode
excitation ratio controls the element pattern shapes and the positions of the nulls in order to partially
nullify the grating lobes for a given scan angle.

It is also interesting to note in Fig. 5 that the beamwidth of the optimized dual-mode array now
slightly decreases compared to that of conventional single-mode arrays. This will in turn result in
lesser gain drop as the main beam scans away from the boresight angle in the proposed dual-mode
antenna array. For further clarification, the directivity versus scan angles for the 21-element linear
array is plotted in Fig. 9. As observed, the directivity of the dual-mode array is greater than that of the
conventional single-mode arrays with the −40 dB Tschebyscheff and Binomial amplitude distributions.
Moreover, as the beam scans from θo = 10◦ to θo = 60◦, the relative gain drop is only 2.5 dB in the
proposed dual-mode array, which is impressively less than the ∼ 6 dB gain drop in the conventional
Binomial and −40 dB Tschebyscheff arrays, as shown in Fig. 9.
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d = λo.
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Figure 8. Grating lobe reduction level versus scan angles of the 9-, 11-, 15-, and 21-element linear
phased arrays with d = λo. (Right Axis: mode excitation ratio versus scan angles).

5. FULL-WAVE AND MEASURED RESULTS

To include the edge effect and the mutual coupling between the elements and the modes, which were
ignored in the analytical results in Section 4, a full-wave simulation was carried out in the array level.
To validate the proposed grating lobe reduction method and in the interest of computational time and
without the loss of generality, a smaller 11-element linear phased array consisting of the dual-mode
antenna elements with one-wavelength element spacing is simulated using finite-element method based
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Figure 10. Active S-parameters and mutual coupling between the adjacent elements of the 11 element
linear phased array antenna with d = λo.

full-wave EM solver ANSYS HFSS [27]. The arrangement of the dual-mode antenna element is similar
to that of the dual-mode microstrip patch antenna reported by the authors in [28]. Representative
results of simulated active scattering parameters of the dual-mode 11-element linear array are shown in
Fig. 10, where the active S11 and S22 are the active reflection coefficients of the ports exciting the TM11

and TM21 modes, respectively. Good impedance matching is observed for the both TM11 and TM21

modes as active |S11| and |S22| are below −15 dB at the design frequency of 10 GHz. In the array level,
the associated mutual couplings are categorized into two major groups: (a) mutual coupling between
two adjacent elements and (b) mutual coupling among non-adjacent elements. More specifically, each
group represents mutual coupling between (i) TM11 to TM11 modes (ii) TM21 to TM21 modes, and (iii)
TM11 to TM21 modes and vice versa. As shown in Fig. 10, the highest mutual coupling occurs between
the TM21 modes amongst the adjacent elements, which is below −15 dB at 10 GHz.

To show the grating lobe reduction capability of the proposed dual-mode method in the 11-element
linear phased array with one-wavelength element spacing, proper mode excitation ratios and optimized
amplitude distributions were applied to each element. The results are depicted in Fig. 11 for the scan
angle of 30◦. As can be seen, a grating lobe as high as the main lobe is emerged in the −30◦ scan angle in
the uniformly-excited, single-mode array. In contrast, by employing the optimized dual-mode antenna
elements, the grating lobe reduces to −20 dB with this large element spacing of one wavelength both
in full-wave simulation and synthesized measured patterns. For the 30◦ scan angle, the simulated peak
gain and realized gain of the proposed dual-mode, 11-element phased array are 19.7 dBi and 17.3 dBi,
respectively, whereas the conventional single-mode, 11-element phased array counterpart exhibits the
peak gain of 17.5 dBi and the peak realized gain of 16.2 dBi. The measured pattern for the 11-element
array is obtained by directly multiplying the measured radiation pattern of the fabricated dual-mode
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Figure 11. Normalized radiation patterns of the 11-element linear phased arrays with conventional
single TM11 mode excitation with uniform amplitude distribution, and simulated and synthesized
measured patterns of the dual-mode TM11 + TM21 excitation with modified amplitude tapering for
a scan angle of 30◦, when d = λo.

circular microstrip patch antenna in [28] with the array factor. As per the analytical results in Fig. 8, the
grating lobe reduction for the 11-element linear array using the proposed method was around −28 dB.
The discrepancy between the analytical and full-wave or measured results is mainly due to probes and
mutual coupling, which were ignored in the analytical investigation. Nonetheless, such a grating lobe
reduction is quite significant in phased array antennas with one-wavelength element spacing.

6. CONCLUSION

The grating lobe reduction in linear scanning arrays with one-wavelength element spacing was addressed.
The arrays comprising conventional single-mode elements suffer from large grating lobes. It was shown
that by optimizing the array excitation coefficients and utilizing dual-mode elements with self-scanning
and adaptive nulling properties, the grating lobe could be reduced significantly. The main idea is
to judiciously choose the mode excitation ratio in the antenna element, which facilitates steering the
position of the element pattern null close to that of the grating lobe, as well as properly optimize
the amplitude tapering coefficients in the array level to effectively reduce the grating lobes and
SLLs. A −22.5 dB grating lobe reduction was achieved for a −60◦ scan angle with one-wavelength
element spacing. This novel technique exhibited promising results on grating lobe reductions and
gain enhancement over the conventional single-mode antenna arrays excited by standard Binomial and
Tschebyscheff amplitude distributions.
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