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Triple Band Dual Sense Circularly Polarized Ceramic Based
Antenna: Exploring Conceptual Design Methodology

Anand Sharma1, *, Gourab Das2, and Ravi K. Gangwar2

Abstract—In this communication, conceptual design guidelines for a tri-band dual sense circularly
polarized ceramic-based antenna is explored. An asymmetrical S-shaped aperture is used to stimulate
the ring-shaped ceramic. Some exclusive features are obtained in the designed antenna: (i) creation
of five different hybrid modes (HEM11δ , HEM11δ+2, HEM12δ-like, HEM12δ , and HEM13δ) is helpful for
getting dual wideband impedance bandwidth; (ii) proposed aperture assists in achieving CP waves in
three different frequency ranges with two different senses. Its experimental results confirm the simulated
outcomes. The proposed antenna is operated within the dual-frequency ranges, i.e., 2.2–4.19 GHz and
4.74–6.11 GHz, respectively. The measured 3-dB axial ratio is achieved in three different frequency
ranges within the operating band, i.e., 2.71–2.98 GHz, 3.6–3.79 GHz, and 5.5–5.81 GHz, respectively.
The proposed antenna design is left-handed circularly polarized (LHCP) in the first and third frequency
ranges, while it is right-handed in the second one. These features, along with broadsided far-field
patterns, recommend the proposed antenna design for potential application in WLAN (2.4/5.5 GHz)
and WiMAX (3.3/5.0 GHz) wireless networks.

1. INTRODUCTION

In the current wireless world, dielectric resonator antenna (DRA) has high potential due to its natural
proficiencies such as high efficiency, ease of integration with various excitation mechanisms, and
supporting a wide variety of mode patterns [1, 2]. Modern wireless communications are also towards
the clubbing of circular polarization (CP) features with printed antennas. It is because of its ability to
diminish multipath fading with the help of making transmitter and receiver orientation independent [3].
Therefore, the research on DRA in collaboration with CP waves has been a topic of wide interest.

In the case of CP DRAs, the research is widely concentrated on getting wideband/multiband CP
characteristics. Recently, designing multiband CP DRAs has been receiving much interest because of
its ability to achieve multiple frequency bands with a high signal to noise ratio. Two different methods
have been used to obtain multiple frequency bands in the case of ceramic-based antennas, i.e., hybrid
radiator [4, 5] and multi-mode radiator [6]. Zuo et al. proposed a hybrid DRA, which was the grouping of
cross-aperture and rectangular-shaped ceramic. Cross-aperture has been worked as both radiators and
excitation structure. The presented radiator worked in dual-frequency bands, i.e., 1.9 GHz and 2.7 GHz,
respectively [4]. Pan et al. designed a hybrid DRA, which is the combination of a metallic patch and
ceramic material. It operated in two different frequency bands, i.e., 1.87–1.92 GHz and 2.22–2.66 GHz [5].
Fang et al. presented an aperture coupled grooved rectangle-shaped ceramic material with dual-band
circular polarization features. In above-mentioned antenna structure, dual-band characteristics were
obtained through dual-mode generation, i.e., quasi-TE111 and TE113 [6]. Most of the DRA-based CP
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antennas available in the open literature generate dual-band CP wave. Very few articles are available
where triple or more CP characteristics are excited in a single antenna structure [7–10]. Altaf et al.
presented a triple-band CP antenna with reconfigurability. The use of pin diodes made the design
more complex [7]. Cheng et al. proposed a tri-band omnidirectional CP DRA with top-loaded loops [8].
The top-loaded loops acted as a horizontally placed magnetic dipole and helped to achieve triple-band
CP. Sharma et al. proposed a dual-band dual sense ceramic based radiator. In order to achieve it,
a Swastika-shaped aperture is used as the feeding structure, which stimulates HEMx

11δ and HEMy
11δ

inside the ceramic material [9]. Sharma et al. proposed aperture coupled cylindrical DRA to achieve
quad-band CP waves. It was based on the multi-mode generation technique. However, this antenna
suffered from large physical size, i.e., 120 × 120 mm2 [10].

In this article, a step by step analysis of an aperture coupled ring shaped ceramic antenna is
explained. This antenna is designed to produce triple-band CP waves along with dual sense appearances.
Stimulation of the ring-shaped ceramic with asymmetric S-shaped aperture provides two unique features:
(i) formation of five various hybrid mode patterns, i.e., HEM11δ , HEM11δ+2, HEM12δ-like, HEM12δ, and
HEM13δ ; and (ii) triple-band dual sense CP waves are also created. The remainder of the paper
is organised as follows: (a) geometrical layout of the proposed radiator; (b) design methodology of
the proposed radiator; (c) its detailed analysis; (d) its experimental outcomes and comparison with
simulated results; and (e) conclusion.

2. GEOMETRICAL LAYOUT OF THE PROPOSED TRIPLE BAND CP ANTENNA

The geometrical layout of the proposed triple-band dual sense ceramic-based CP antenna is presented
in Fig. 1. An asymmetrical S-shaped aperture and simple microstrip line have been etched on the upper
and lower parts of an FR-4 substrate, respectively. The permittivity and loss tangent (tan δ) of the FR-4

(a) (b)

Figure 1. Geometrical layout of proposed triple band CP antenna. (a) Asymmetrical S-shaped
aperture, (b) 3D view.

(a) (b)

Figure 2. Pictures of fabricated triple band CP antenna. (a) Bottom view, (b) top view.
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substrate are 4.4 and 0.02, respectively. Ring-shaped alumina material (εAlumina = 9.8; tan δ = 0.002)
has been jammed over the substrate with the help of paste, i.e., Fevi-Quick. The inner (R2) and outer
(R1) radii of ring-shaped ceramic are 2.0 mm and 14.0 mm, respectively, whereas the height, denoted by
H, is 14.0 mm. Its prototype has also been designed for experimental verification, and its pictures are
shown in Fig. 2. Dimensions of some of the important parameters of proposed ceramic-based antenna
are: LS = WS = 50 mm; L1 = L2 = 15.0 mm; HS = 1.6 mm; L3 = 5.0 mm; L4 = 8.0 mm; L5 = 3.5 mm;
T1 = 2.0 mm; LF = 26.0 mm; WF = 3.0 mm.

3. DESIGN METHODOLOGY

The design methodology of the proposed radiator is classified into two stages: (i) Multiple Hybrid mode
generation; and (ii) CP wave generation.

3.1. Multiple Hybrid Mode Generation

Following three-step procedure is utilized in order to generate multiple hybrid modes in the proposed
antenna design:

Step-1: Narrow rectangular aperture coupled ring-shaped ceramic material acts as a magnetic
dipole and creates HEM11δ mode in ring DRA. Due to the large current density near the edges of the
aperture, it creates one more mode, i.e., HEM12δ-like mode.

Step-2: In this step, narrow rectangular aperture is converted into a square-shaped aperture. This
aperture performs as both electric and magnetic dipoles. Such type of feed mechanism is helpful for
generating the entire aforementioned mode, i.e., HEM11δ , HEM12δ-like, and HEM12δ modes. Due to the
broadening of aperture dimension, satisfying the boundary condition for vanishing E-field due to the
metallic ground plane as well as the large height of ring ceramic allows the higher-order mode, i.e.,
HEM11δ+2 and HEM13δ .

Figure 3. Designing steps for proposed triple band CP antenna.

Figure 4. |S11| variation for different design steps.
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Step-3: Two metallic strips of unequal lengths are added with a square-shaped aperture
(asymmetrical S-shaped aperture). This creates orthogonal degenerated modes with a 90◦ phase shift.
Due to the introduction of path delay with unequal metallic strip, two more resonant peaks are observed
in the spectrum, i.e., HEMy

11δ and HEMy
11δ+2. Practically, two modes are said to degenerate, if the ratio

of resonant frequencies lies in between 1.01 and 1.10 [11]. All these four steps are displayed in Fig. 3,
and resultant |S11| variation is shown in Fig. 4.

3.2. CP Wave Generation

To generate CP waves in any radiating structure, two conditions are to be satisfied: (i) generation of
degenerated orthogonal modes with equal amplitude; and (ii) 90◦ phase shift between them [3]. Adding
two metallic strips on the opposite faces of square aperture creates orthogonal modes inside the ceramic
material. Unequal length of metallic strip helps to get 90◦ phase shift between the orthogonal modes.
Fig. 5 shows three different steps for obtaining the CP waves. In step-1, a square-shaped aperture is
used to excite the ceramic material. On the other hand, step-2 and step-3 consist of square apertures
with one strip and two strips, respectively.

Figure 5. Different steps involved for getting CP wave in proposed antenna.

Figure 6 shows the axial ratio variation over the working frequency band. As clear in the figure, it
is confirmed that CP waves are generated in three different frequency bands due to the square-shaped
aperture with two strips. The complete design methodology is displayed in Fig. 7. Two important
observations are obtained from Fig. 7: (i) wide square aperture is able to stimulate five different hybrid
radiating modes in ring-shaped ceramic; and (ii) transition from square aperture to asymmetrical S-
shaped aperture converts the proposed antenna from linear to circular polarization.

Figure 6. Axial ratio variations for different steps involved for getting CP wave in proposed antenna
(θ = 0◦; ϕ = 0◦).

4. DETAILED ANALYSIS OF THE PROPOSED ANTENNA

In this section, detailed mathematical, as well as theoretical analysis of proposed antenna, has been
carried out using Ansys HFSS EM simulator. Before starting any analysis, it is important here to confirm
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Figure 7. Flowchart for design methodology of proposed antenna.

the accountability of different resonances because aperture can also act as resonating structure. For this
purpose, Fig. 8 presents |S11| variations of proposed antenna with and without Alumina ceramic. From
Fig. 8, it is confirmed that alumina-based ceramic material is accountable for all the resonances present in
the spectrum. Another important observation obtained from Fig. 8 is that ring-shaped ceramic material
delivers improved impedance bandwidth as compared to cylindrical shaped ceramic in the operating
frequency bands. This modification in ceramic shape also slightly adjusts the resonant frequency due
to the change in effective permittivity. It can be understood, mathematically, as follows [12]:

εring DRA =
[
εAlumina(VAlumina) + Vair−cavity

VAlumina + Vair−cavity

]
(1)

Figure 8. |S11| variations of the proposed
antenna with and without Alumina ceramic.

Figure 9. |S11| variation of narrow rectangular
aperture coupled ring-shaped ceramic material
with change in L1.
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(a) (b)

(c) (d)

Figure 10. Near field distribution on ring shaped ceramic. (a) Upper view at 2.55 GHz, (b) adjacent
view at 2.55 GHz, (c) upper view at 5.0 GHz, (d) adjacent view at 5.0 GHz.

VAlumina = VCylindar − Vair−cavity (2)

In Eqs. (1) and (2), ‘VAlumina’ and ‘Vair-cavity’ are the volumes of cylinder-shaped solid sections of alumina
and air-cavity, respectively. From the above-mentioned equations, it is mathematically confirmed that
‘εringDRA’ is lower than ‘εAlumina’. It is known that impedance bandwidth is inversely proportional to
the effective permittivity [3].

Figure 9 shows |S11| variation of narrow rectangular aperture coupled ring-shaped ceramic material
change in length (L1). From Fig. 9, it is confirmed that in the aforementioned case, dual resonating
peaks are created at 2.55 GHz and 5.0 GHz, respectively.

Figure 10 displays the near-field distribution on ring-shaped ceramic at 2.55 GHz and 5.0 GHz.
From Fig. 10, it is confirmed that HEM11δ and HEM12δ-like modes are accountable for resonant peaks at
2.55 GHz and 5.0 GHz, respectively [13, 14]. In order to understand the physics behind the creation of
HEM11δ mode, let us see the E- and H-field spreading on the narrow rectangular aperture at 2.55 GHz
in Fig. 11. From E- and H-field distributions, it is clear that TE10 mode is generated in this case. For
this mode, tangential electric field distribution (ES), as well as surface electric (JS) and magnetic (MS)
current density across the aperture, is given as follows [3]:

ES = E0 cos
(

π

L2y

){ −L1/2 ≤ X ≤ L1/2
−L2/2 ≤ Y ≤ L2/2

}
(3)

MS =

⎧⎨
⎩ −2n̂ × ES

{ −L1/2 ≤ X ≤ L1/2
−L2/2 ≤ Y ≤ L2/2

}
0 elsewhere

⎫⎬
⎭ (4)

JS = 0 everywhere (5)

From Eqs. (3)–(5), it is confirmed that the narrow rectangular aperture behaves as a magnetic dipole. It
is a well known fact that if the feed behaves as a magnetic dipole, then it generates HEM11δ mode inside
the ring-shaped ceramic [15]. The E-field line at 5.0 GHz is approx. same as HEM12δ. However, due
to high field distribution at the edges of the aperture, E-field lines rotate towards the ground, which
is not the case of HEM12δ mode. Therefore, this mode is generally called as HEM12δ-like mode [14].
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(a) (b)

Figure 11. Field distribution over the aperture at 2.55 GHz. (a) E-field, (b) H-field.

Figure 12. |S11| variation of square aperture coupled ring-shaped ceramic material with change in
length (L1 = L2).

Mathematically, the resonant frequency of HEM11δ mode is calculated as follows [15]:

fr,HEM11δ
=

6.324c
4πR1

√
εring DRA + 2

{
0.27 + 0.36

(
R1

2H

)
+ 0.02

(
R1

2H

)2
}

(6)

From Eq. (6), it is found that mathematically, HEM11δ mode is obtained at 2.76 GHz for the same ring-
shaped ceramic material. It is closer to the simulated obtained value. Resonant frequency of HEM12δ-like

mode cannot be calculated mathematically because of the non-availability of the empirical formula.
Figure 12 shows the reflection coefficient (|S11|) variation for wide square-shaped slot excited ring

ceramic. From Fig. 12, it is observed that apart from the resonant peak created due to narrow
rectangular aperture, three different resonant peaks are created at 3.9 GHz, 5.6 GHz, and 5.8 GHz,
respectively.

In order to find out the accountability of resonant peak at 5.6 GHz, Fig. 13 shows the near-field
distribution on the ring-shaped ceramic. It is clearly observed from Fig. 13 that the HEM12δ mode is
exited at 5.6 GHz [12]. To understand the generation mechanism of the HEM12δ mode, Fig. 14 displays
the E-field and H-field distributions over the square aperture at 5.6 GHz. From Fig. 14, it can be
observed that the E-field distribution of wide square aperture is same as H-field of narrow rectangular
aperture at 5.6 GHz. According to Babinet’s principle, interchanging of E- and H-fields confirms the
electric dipole nature of wide square aperture [3]. There is no empirical formula available for HEM12δ

mode. However, it can be expected with the assistance of the resonant frequency of HEM11δ mode and
aspect ratio of ring shaped ceramic. In the proposed antenna, aspect ratio of ring shaped ceramic is
1.0. For such ceramic, the resonant frequency of HEM12δ mode can be predicted as follows [10]:

fr,HEM12δ
= 1.9 × fr,HEM11δ

(7)
From Eq. (7), the frequency of HEM12δ mode is found to be 5.33 GHz, which is fairly close to simulated
results.
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(a) (b)

Figure 13. Near field distribution on ring-shaped ceramic. (a) Top view at 5.6 GHz, (b) side view at
5.6 GHz.

(a) (b)

Figure 14. Field distribution over the aperture at 5.6 GHz. (a) E-field, (b) H-field.

(a) (b)

(c) (d)

Figure 15. Near field distribution on ring-shaped ceramic. (a) Top view at 3.9 GHz, (b) side view at
3.9 GHz, (c) top view at 5.8 GHz, (d) side view at 5.8 GHz.

Figure 15 displays the near-field distribution at 3.9 GHz and 5.8 GHz, respectively. Fig. 15 confirms
that HEM11δ+2 and HEM13δ modes are obtained at 3.9 GHz and 5.8 GHz. It is well known that
HEM11δ+2 and HEM13δ are the higher-order modes of HEM11δ [10, 16]. Therefore, it is formed because
of the magnetic dipole nature of the feeding mechanism. It should be highlighted that a wider aperture
allows to produce higher order modes. However, in the proposed antenna design, the size of the square
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aperture is much smaller than ground plane. Accordingly, the boundary conditions satisfy the required
boundary condition for both the HEM11δ+2 and HEM13δ modes due to heavily attenuated tangential
E-field on the ground plane [16].

There is no mathematical formula available for calculating the resonant frequency of HEM11δ+2

and HEM13δ modes. However, they are the higher-order modes of HEM11δ. Therefore, their resonant
frequencies can be predicted as follows [17]:

fr,HEM11δ+2
= 1.5 × fr,HEM11δ

(8)
fr,HEM13δ

= 1.5 × fr,HEM11δ+1
+ (fr,HEM11δ+1

− fr,HEM11δ
) (9)

HEM11δ+2 mode is the second higher-order mode of HEM11δ , so its resonant frequency is 1.5 times of
fundamental mode. From Eqs. (8) and (9), the resonant frequencies of HEM11δ+2 and HEM13δ modes
are found to be 4.1 GHz and 5.865 GHz, respectively, which are quite close to simulated value.

Figure 16 shows the |S11| variation of the proposed antenna with the change in length L4. In the
same case, L3 is fixed. From Fig. 16, it can be observed that as the length of the upper strip (L4) increases
with respect to L3, two more resonant peaks are generated at 2.84 GHz and 3.4 GHz, respectively. In
order to recognize the responsibility of resonances, Fig. 17 shows the near-field distribution at 2.84 GHz

Figure 16. |S11| variation of proposed aperture coupled ring-shaped ceramic with change in length L4

and fixed L3.

(a) (b)

(c) (d)

Figure 17. Near field distribution on ring-shaped ceramic. (a) Top view at 2.84 GHz, (b) side view at
2.84 GHz, (c) top view at 3.4 GHz, (d) side view at 3.4 GHz.
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and 3.4 GHz, respectively. From Fig. 17, it is confirmed that HEM y
11δ and HEM y

11δ+2 are generated at
2.84 GHz and 3.4 GHz, respectively [15, 16]. Upper and lower strips in connection with square-shaped
aperture are used to generate orthogonal modes (in order to get CP Waves). That is why these additional
resonant peaks are generated.

Figure 18 shows the optimization of CP waves with change in the length of the upper strip, i.e.,
L4. Simulation has been done in the broadside direction (θ = 0◦; ϕ = 0◦). As two strips are added with
the square-shaped aperture, orthogonal modes are produced (as shown in Fig. 17). From Fig. 18(a), it
is seen that as the length (L4) of the upper strip is more than L3, 90◦ phase shift is created between
the orthogonal degenerated modes with equal amplitude at three different frequencies, i.e., 2.8 GHz,
3.7 GHz, and 5.6 GHz. It is the necessary condition for CP generation.

Figures 19, 20, and 21 show E-field variations for different phase angles at 2.8 GHz, 3.7 GHz, and
5.6 GHz, respectively. It is clearly observed from Fig. 19 and Fig. 21 that E-field rotates in clockwise
direction. On the other hand, it is seen from Fig. 20 that E-field rotates in anticlockwise direction.
It simply means that the proposed antenna is left-handed circularly polarized (LHCP) at 2.8 GHz and
5.6 GHz, respectively, while it is right-handed circularly polarized (RHCP) at 3.7 GHz [3].

(a) (b)

Figure 18. Optimization of CP wave for proposed antenna (θ = 0◦; ϕ = 0◦). (a) Variation in phase
difference of EX and EY component, (b) ratio of |EX/EY | for the proposed antenna.

(a) (b)

(c) (d)

Figure 19. E-field variation at 2.8 GHz. (a) 0◦, (b) 90◦, (c) 180◦, (d) 270◦.
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(a) (b)

(c) (d)

Figure 20. E-field variation at 3.7 GHz. (a) 0◦, (b) 90◦, (c) 180◦, (d) 270◦.

(a) (b)

(c) (d)

Figure 21. E-field variation at 5.6 GHz. (a) 0◦, (b) 90◦, (c) 180◦, (d) 270◦.

5. EXPERIMENTAL OUTCOMES

In this section, the experimental outcomes are discussed and compared with numerical simulation
outcomes. For this purpose, a prototype of the proposed antenna is fabricated (shown in Fig. 2). Fig. 22
presents the comparison between measured and simulated reflection coefficients curves. Reflection
coefficient is measured with the aid of Keysight E5071C VNA. It can be observed from Fig. 22 that
the proposed antenna works in two frequency bands, i.e., 2.2–4.19 GHz and 4.74–6.11 GHz, respectively.
Some differences have occurred between practically obtained and simulated reflection coefficients. It is
due to the use of adhesive for jamming the ceramic material [18].
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Figure 23 presents the experimental and simulated axial ratio variations towards the broadside
direction (θ = 0◦; ϕ = 0◦). Axial ratio is measured with dual linear pattern measurement method [19].
After seeing Fig. 23, it can be said that the proposed radiator provides CP waves in three different
frequency ranges within the working bands, i.e., 2.71–2.98 GHz, 3.6–3.79 GHz, and 5.5–5.81 GHz,

Figure 22. Assessment between experimental
and simulated reflection coefficients.

Figure 23. Assessment between experimental
and simulated axial ratios towards broadside
direction (θ = 0◦; ϕ = 0◦).

(a) (b)

(c)

Figure 24. LHCP and RHCP patterns of proposed triple band CP antenna in XZ plane. (a) 2.8 GHz,
(b) 3.6 GHz, (c) 5.6 GHz.
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(a) (b)

(c)

Figure 25. LHCP and RHCP patterns of proposed triple band CP antenna in Y Z plane. (a) 2.8 GHz,
(b) 3.6 GHz, (c) 5.6 GHz.

Figure 26. Gain and radiation efficiency graph of proposed triple band CP antenna.

respectively. Slight changes are present between practically obtained and simulated outcomes, which
are due to the misalignment between reference and proposed antennas, as well as the use of adhesive.

Figure 24 shows the experimental and simulated LHCP and RHCP patterns at 2.8 GHz, 3.6 GHz,
and 5.6 GHz in XZ, respectively. Fig. 2 shows the experimental and simulated LHCP and RHCP
patterns at 2.8 GHz, 3.6 GHz, and 5.6 GHz in Y Z, respectively. Three remarks are attained from
Fig. 24 and Fig. 25: (i) broadsided patterns are obtained at all three frequencies, which confirms the
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presence hybrid mode [15]; (ii) LHCP pattern is more dominant (approx. 15 dB) than RHCP at 2.8 GHz
and 5.6 GHz; and (iii) RHCP pattern is more dominant (approx. 15 dB) than LHCP at 3.6 GHz. These
observations confirm the dual-sensing capability of the proposed radiator.

Figure 26 presents gain (experimental and simulated) and radiation efficiency (simulated) towards
the broadside direction. Two-antenna method has been used to measure the gain value [3]. Good
agreement is observed between experimental and simulated gain values. The maximum value of gain
is about 8.0 dBi for the proposed antenna. Radiation efficiency is greater than 90% in both working
bands. Table 1 compares the performance of the proposed antenna with other published ceramic-
based CP antennas based on electrical antenna size, impedance, axial ratio bandwidth, and gain. After
observing Table 1, it can be said that the proposed radiator has better inclusive performance than other
published CP DRAs.

Table 1. Comparison of proposed triple band CP antenna with other existing one.

Shape of

Ceramic Material

Excitation

Technique

Impedance

Bandwidth (%)

AR

Band (%)

Antenna

Size (mm2)

Max

Gain (dBi)

Rectangular [4] Aperture 14/12.8 3.0/3.5 0.44λ0 × 0.44λ0 5.5

Cylindrical [5] Probe 2.64/18.03 3.16/5.06 0.36λ0 × 0.36λ0 1.4

Grooved Rectangular [6] Aperture 25.3/35.3 6.3/3.68 0.8λ0 × 0.8λ0 8.0

Spandrel Fractal [7] Probe 14.44/40.48 6.35/6.65/7.09 1.18λ0 × 1.77λ0 5.55

Cylindrical [8] Probe 1.8/7.8/3.9 1.5/4.9/0.8 0.58λ0 × 0.58λ0 1.6

Cylindrical [9] Aperture 10.75/16.79 5.45/10.12 0.29λ0 × 0.29λ0 6.0

Cylindrical [10] Aperture 21.1/12.82/27.06/7.54 11.6/7.64/7.01/7.1 0.44λ0 × 0.44λ0 5.0

Ring (Proposed) Aperture 62.28/25.25 9.49/5.1/5.48 0.4λ0 × 0.4λ0 8.0

6. CONCLUSION

In this article, a ring-shaped ceramic-based antenna with triple-band and dual sense CP features has
been designed and examined. Asymmetrical S-shaped aperture coupling creates five different mode
patterns inside the ring-shaped ceramic, i.e., (HEM11δ , HEM11δ+2, HEM12δ-like, HEM12δ , and HEM13δ).
A detailed mode analysis is carried out for the proposed antenna design. Additionally, the proposed
antenna design offers triple-band dual sense CP waves over the operating bandwidth. Hybrid mode
provides the broadsided radiation pattern with good co- to cross-polarization value. These features
recommend the proposed antenna design for potential application in WLAN (2.4/5.5 GHz) and WiMAX
(3.3/5.0 GHz) wireless networks.
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